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Local magnetic field distributions: Two-dimensional Ising models
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We show that the statistical mechanics of Ising models can be conveniently reformulated in terms
of the local magnetic field probability distribution function P(h). It is shown that for arbitrary ex-

change interactions J;,, which may or may not be random, both thermodynamic quantities such as

magnetization, specific heat, etc. , and the neutron scattering law S(k,u) can be obtained from

P(h). Indccd S(k,GP) provides a direct mcasurcmcnt of thc spmmetrEc part of I (h) which also
determines the energy, specific heat, etc. , while the magnetization can be obtained from the antisym-
metnc part of P(h). As an example, specific results for P(h) are presented for the honeycomb,
square, and triangular lattices with constant nearest-neighbor interactions. All three lattices exhibit
a pronounced dip in the center of P(h) at the transition temperature.

I. INTRODUCTION

At various stages in the development of the theory of
magnetism, the local-field probability distribution func-
tion P(h) has been used. ' I3espite the fact that P(h)
has a s1IIlplc phys1cal 1ntcI'pIctat1GIl, 1t has IMt bccQ %1dc-

ly adopted. This is probably because its usage has been
associated with mean-field-type theories and as such it is
rcgardcd as an approximation.

In this paper we show that an exact, useful, and com-
plete description of the thermodynamics of a rather gen-
eral class of Ising models can be obtained in terms of
P(h) These mo. dels have localized spins S; associated
with sites R;. The spins can have different magnitudes

and the sites R; do not have to form a crystalline lattice.
The Hamiltonian involves only the S,' components and
contains arbitrar'y exchange interactions J,J and external
fields H;. The range of the JJ is also quite general. All
these results are scattered throughout the literature of
the early l960s and are summarized by Southern. %C
collect them together in this paper.

%c show that a measurement of the inelastic-neutron-

scattering law S{k,co) at a particular temperature pro-
vides a direct measurement of the symmetric part of P(h)
at that temperature. The total magnetization of the sys-
tern can be obtained directly from the antisymmctric part
of P(h), although the converse is not true. Finally, the
total energy can be obtained from the syrnrnetric part of
P {h)„ if all the H~ ——0. Other thermodynamic quantities
of interest, such as the fr'ee energy, specific heat, etc., can
be obtained from the energy. The above connections are
very powerful because they require a knowledge of
only P(h) and the temperature, no other information
about the system In the case w. here the H;&0, the ener-

gy, and hence the other thermal thermodynamic quanti-
ties, can still be found from P(h) in simple cases. Such
an example would be a uniform field where all the
H; =H, and a knowledge of P(h), the temperature, and H
would lead to the energy.

The layout of this paper is as follows. In the next sec-
tion we develop the general formalism for S=—,'. This is
for pedagogical reasons, and the rather obvious generali-
zations to arbitrary spin. are given in the Appendix. In
Sec. III we illustrate these results for various spin- —,

Qearest-neighbor Ising models: the one-dimensional
chRIQ, RIld thc honcycornb, sqUarc, Rnd tr1angular nets 1Q

two dimensions. These results are exact and could have
been obtained at any time in the past 20 years. Surpris-
ingly, they do not appear in the literature. The results in
two dimensions are rather interesting as P(h) changes
from a roughly Gaussian shape at high temperatures to
dcvclop a pronounced dip 1Il thc ccntcl at thc traQs1t1OIl

tcrnpcratUrc T~. It 1s UIlclcRI' how gcncI'al th1S

phenomenon is. We define a quantity that measures the
Auctuations 1Q thc local f1cld h and show, Ilot surprising-
ly, that it has a maximum at T, .

The attraction of P(h) is that it provides an alternative
description of a thermodynamic system with perhaps a
nloi'c intilitlvc iiltcrplctatioil tllail tllc f1cc cilclgy. It co11-

talns IIlorc information tharl Just thc free crlcI'gy and, for
example, the neutron-scattering law S(k, co) can also be

derived from it. We note that S(k,co) cannot be derived
from the free energy.

Our original motivation for this work was that comput-
er experiments on spin-glass models at zero temperature
ofte~ focus on P(h). Indeed, it is a "natural" quantity to
compute. Such experiments have Universally demonstrat-
ed a zero-field mnumum m spm-glass models with com-
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peting interactions in their ground or low-lying metastable

states. A similar minimum has been found in simula-

tions of amorphous antiferromagnets. ' Because of the
interesting new results found for simple Ising models, we

have deferred a discussion of more complex spin systems

with competing interactions to a planned, subsequent pa-

per.

II. GENERAI. FORMALISM

We define a spin- —, Ising system with the Hamiltonian

where the JJ. and H; are arbitrary and the factor —,
' is to

prevent double counting. This Hamiltonian describes a
completely general spin- —,

'
Ising system with o.; =+1, an

arbitrary range of exchange parameters Jt, and an exter-
nal field H; that can vary from site to site. We define the

J;;=0. The sites can be inequivalent and we make no as-

sumptions about the existence of a crystalline lattice or
translational invariance. Although we develop these re-
sults for spin —,, all of the results of this section easily

generalize to arbitrary spin, as shown in the Appendix.
There are a number of ways of decomposing the Hamil-

tonian (1). The most obvious is

H = gA—;cr;,

where

(h;e; ) =(x z;,cr;o, ya o;)
J

=(h, tanh(Ph, )) . (8)

M=+(~, ), E=gE, . (10}

We introduce the probability distribution P;(h) for the
local magnetic field at site i by

P, (h) =(gh —h, )),
where both the "internal" and external fields are included
in h; via Eq. (5). It is, of course, possible to define a simi-

lar quantity P (h) counting only the internal-field contri-
bution, namely

P (h)=(5 h —xJ;,o( )
P(h H(. =—

For the rest of this paper we shall use (11). From the def-
inition of P;(h), we see that

It is not possible to obtain the energy from (8) alone for
H;&0, because of the missing factor —,

' in from of the ex-

change, as required for the decomposition in Eqs. (2) and
(3). However, the energy can be obtained as

E; = —(8;tanh(Ph;) )

= ——,
' ((h, +H, )tanh(ph;)) .

The magnetization M and the energy E are given by

A( —,g J/Jcrj +H(
J

(3)

This is not useful in discussing local fields, where it is
necessary to decompose (1) as

f P;(h)dh=l,

x J,, +H; o")=i h"F, (h)dh,
. J

(13)

(14)

H= —h o. +H'

where

(o.; ) =tanh(/3h; )

tanh Jijoj+Hi
. J

(7)

We note in passing that replacing the thermal average of
the tanh in (7) by the tanh of the thermal average leads to
mean-field theory. Setting 0 equal to h; in (6) leads to

h; —g Jjoj+H; .
J

The first term in Eq. (4) contains all terms involving o;;
other terms are lumped together in H'. Notice that 8; as
defined in (3) and h; as defined in (5) differ in the factor

in front of the exchange term. This means that some

care must be taken in calculating the energy of the system
later in this section.

We consider the thermal average (Oo.; ) where 0 is any
operator not involving site i; we write

( Ocr; ) = (Tr;[Oo;exp(Ph;o; )]/Tr; [exp(Ph;cr; }])
= (0 tanh(/3h;)) .

Setting 0 equal to the unit operator, we find that '

It can be seen from (15) that a knowledge of P (h) and the
temperature is sufficient to determine the magnetization,

M=X f tanh(ph)P(h)dh . (18)

It is not necessary to know anything else about the sys-

tem; in particular, it is not necessary to know the J;J or
the H;. It is this sense in which P(h) provides a descrip-
tion of the system in the same way as the free energy does.
Because tanh(ph) is an odd function of ph, only the an-
tisymmetvic part P, (h) of P(h) contributes to M,

P, (h) = —,
' [P(h) P( —h)], —

M =X f tanh(ph)P. (h)dh .

(19)

(20)

In general, the energy cannot be obtained directly from
P(h). However, if all the H; are known to be zero, then

and, from (7) and (9),

(o.; ) = f tanh(/3h)P;(h)dh,

E~ ————,
' f h tanh(ph)P;(h)dh —,'H;(o;) . —

The distribution function P(h) for the entire system
with X sites is obtained from (11)via

1
l
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from (10) and (16),

E= ——f h tanh(ph)P (h)dh,
iV

(21)

ergy as an integral over P(h) [see their Eq. (2.5)].
The function P(h) contains more than just thermo-

dynamic information; it is directly related to the
inelastic-neutron-scattering cross section, '

and E can be calculated directly from P(h) without any
knowledge of the Jtj. Because h tanh(ph) is an even func-
tion of h, only the symmetric part P, (h) of P(h) contri-
butes to E,

P, (h) = —,
' [P(h)+P( —h)], (22)

S(k,~)= ' f+ dte-'"'gexp[ik (R;—Rj)]
27T

17J

X (a";a,(t) ), (26)

E= ——f h tanh(ph )P, (h )dh . (23)

In this case, the free energy F is given by
PpF= —Xln2+ f E(p')dp' . (24)

If the H; are sufficiently simple, the free energy can
still be found. For example, if the magnetic field is con-
stant at every site H; =H, the energy given in (9) becomes

E= ——f (h +H)tanh(ph)P(h)dh,
2

and the free energy F(H, T) is given by (24) with the in-
tegration done at constant H.

It can be seen that under appropriate conditions the lo-
cal magnetic field probability distribution P(h) leads to
the magnetization M and the energy E. All other thermo-
dynamic quantities, such as the free energy, specific heat,
etc., have to be found by integrating or differentiating M
or E. This is because M and E are determined from the
expectation values of local operators, whereas other ther-
modynamic functions are not. Thus M and E are partic-
ularly important when the statistical mechanics is done
via P(h). This point appears not to have been appreciated
by Klein and Brout, who attempted to write the free en-

(27)

The time dependence of these operators is given by

cr,. (t)=exp(iHt)a, —exp( iHt) =—a;exp(2ith;cr; ), (28)

where the h; are given by (5). Combining (27) and (28) we
find that

S(k,co)= f dte ' 'g (exp(2ith;a;))

f dt e '"'g {[cos(2th;)

+ia;sin(2th;)] ) .

With the use of Eq. (6), this can be rewritten as

where x is any direction perpendicular to the z axis. In
the previous part of this section we suppressed the z su-

perscript on the o'; operators. This cross section is k in-
dependent because Ising systems have no dynamics, so
that transforming to raising and lowering operators, "
S(k,co)= f dte '"'g(, [a+a; (t)+a; cr+(t))) .

S( k, co) = f dt e '"'g ( [ c(o2sth;)+i tanh(ph;)sin(2th;)] )
2'7T

1 + 00f dh f dt e ' 'g [cos(2th)+i tanh(ph)sin(2th)]P;(h)

N P(co/2)+P( —co/2)
2 1+exp( —Pco)

(29)

which shows that the neutron-scattering law provides a
direct measurement of the symmetric part P, (h) of P (h),

P, (co/2)
S( k, co) =X (30)

1+exp —co

The thermal factor [1+exp( —pco)] ' ensures detailed
balance.

From the properties of P (h), it is easy to show that

2% f S(k,co)[1+exp( —pco)]dco= 1,

and if all the H; =0,

—,
' f S(k,co)[l —exp( —Pco)]codco= E. —

Both (31) and (32) hold for arbitrary JJ. Expression (31)
could be useful in normalizing neutron data taken at dif-
ferent temperatures, if this data were to be used to find E.

III. TWO-DIMENSIONAL ISING MODELS

In this section we present results for P(h) for some
pure two-dimensional Ising systems. ' This presentation
is rather straightforward, but does serve to illustrate some
of the points made in the preceding section and provides
some interesting results.

It is convenient to redefine the Hamiltonian (1) with
only a nearest neighbor J,J- which is set equal to 1,

H = ,' ger;a/, —— (33)
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where the sum goes over nearest-neighbor pairs only, and
the factor —,

'
is to prevent double counting. In what fol-

lows we use a slightly tnodified form of the notation of
Choy and Sherrington. ' As all sites are equivalent, we

can ignore the distinction between P;(h) and P(h).
Therefore,

and the a' are given by the generating function

1
d O exp( —ih O)cos' "0sin"O i"

27T

1
a„',5(h —s) .

S=—Z

(39)

P(h)=(h h —g txt l,j=l
(34)

where the sum over j goes over the z nearest neighbors of
atom i. This can be conveniently rewritten as

The factor 1/2' is included so that the a„', are integers.
They are easily obtained for a given z by doing the simple
integrals involved in (39) and are given in Table I. The c,
are correlation functions' defined by

tX)

P(h)= 1 dt)exp( —ihP) exp it)gn) )j=1

00 Z

dp exp) —th ))) + () ~i ntang))2'' Jj=l

Cr=
(ij e ~ e 1)

where the parentheses around the summation indices
denote that only the distinct products of r operators
among the z nearest neighbors are to be taken. If we label
the z nearest neighbors of an atom cyclically from 1 to z,
then for the linear chain,

&& cos'0, (35)

where we have used the integral representation of the
Dirac 5 function with the usual convergence factors im-

plied at + ao. Multiplying out the product in the angular
brackets, this becomes

CO=1

c, =g (o; & =2(cr, &,

C2 = CTI C7J- = O &OP

(41)

Z Z

P(h)= —g g a'c„5(h —s),
s= —z r=p

(36)
For the honeycomb lattice (z =3),

cp= 1

where the r sum is in steps of 1 and the s sum is in steps
of 2. The final result has the form

Z

P(h)= g w, 5(h —s),

c)=g (o; &=3(o&&,

c,=g &o;oj & =3(0.)o2&,
(ij )

(42)

with

1

r=0

c3 —— o.; o.J ok
—— o ~o2o 3

(ijk)

(38) For the square net (z =4),

TABLE I. Coefficients a„, defined in Eq. (39) are given for z =2, 3, 4, and 6.

z=3
1

2
0

—2

1
—2

1

3
1

—1
—3

1

1

—1

—1

1
—1

—1

1

1

—3
3

—1

4
2
0

—2

1

2
0

—2
—1

1

0
—2

0
1

1

—4
6

—4
1

6
4
2
0

—2
4

—6

1

6
15
20
15
6
1

1

4
5

0
—5

4
—1

z=6
2

1

2
—1

—1

2
1

1

0
—3

0
3
0

—1

1

—2
—1

—1
—2

1

1
—4

5
0

—5
4

—1

1
—6

15
—20

15
—6

1
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cp= 1

c,=g (0.;o, & =4&o102)+2(olo3&,
(ij )

c3 =g (0(cTjok ) =4(olo2o3)
(ij k)

O~OJOk01 = Oi~2304
(ijkl)

For the triangular net (z =6),

cp ——1,
c, =g (o;)=6(cr, ),

where

3 = —,
' [tanh(3K)+ tanhK],

8 = —,
' [tanh( 3K)—3 tanhK) .

Setting 0=1 yields

(01cr2o3) =m (1—3A)/8,

and setting 0 =0.
I yields

(o to2) =(e—3)/(2A +8) .

Combining all of these results, we find that'

1 3[tanh(3K) F]—
2 3 tanh( 3K)—tanhK

(50)

(51)

c2 ——g (o.;oj ) =6(crtcr2) +6(o.,o.3)+3(o,o4),
(ij )

c3 = g ( cT( cTjcTk ) =6 ( 0102cT3') +'12 (0'10'20 4 )
(ij k)

+2(01(T3CT5 )

c4= g ((T;cTjcTkcTi ) =6(0'1cT2cT3(T4) +6(cT1(T2(T3cr5)
(ijkl)

3m [tanh(3K) —1]
tanh(3K) —3 tanhK

1 3e—tanhEC
W+3 =

2 3 tanh(3K) —tanhK

+ m (1—3 tanhK)
tanh(3K) —3 tanhK

(52)

+3(o 1o.,o.,cr, &,

c,= P (o;o,okoi(T ) =6(cr,o-,cr3(T4(T5),
(ijklm)

&O(Oj OkO!OmOn ) &Ol(T2O3O4O5O6)
(ij k1mn)

From the a„', and the c„ the amplitudes of the various
fields w, occurring in (37) can be calculated using (38).
Many of these correlation functions c„can be obtained
from the literature for two-dimensional lattices. No exact
calculations of the c, exist in higher dimensions. We in-
clude the linear chain only bemuse it is very simple. In
what follows, K=PJ, where J has previously been set
equal to 1.

For the linear chain, '

cp = 1, ci =0, c2 =tanh E

The reduced energy e can be written as an elliptic in-
tegral, ' ' and the reduced magnetization m is a known
function of K. These results are illustrated in Fig. 1.

For any lattice at high temperatures, P (h) obeys a bino-
mial distribution. The field is h if —,(z+h) nearest-
neighbor spins are up and —,(z —h) are down. This occurs
with probability 'Ci, +kli2/2; so that at infinite tempera-
ture,

Z

P(h)= g —'CI, +,IT25(h —s) .
S=—Z

2'

As z becomes large, P(h) approaches closer to a Gaussian
distribution.

When the temperature is lowered P(h) at first flattens
and then develops a pronounced dip just above T, for the

so that from (38) we have

wo ———,(1—tanh K), w2 ——w 2 ———,(1+tanh K) . (46)

0.5-

0.5—

T/Tc=O 0

T/Tc =0.e

0.8-
0.6-

wh

0.4-
0.2

I

I

I

I

I

I

I

h=-I
h=+3

There is no phase transition in the linear chain, and so at
all temperatures ct ——0 and P(h) is symmetric. At infin-
ite temperature ( K =0), we h'ave wo ———,

' and

w2 ——w 2
———,, while at zero temperature (K =Do), we

1have wp ——0 and wq ——w

For the honeycomb lattice all of the c, can be expressed
in terms of the reduced energy e and the reduced magneti-
zation m

0
P(h)

0.5- T/Tc = I.O

T/Tc= I.2

8 v r 8

T/Tc= oo

T=O T=Tc

w~ I &/8=0. 375
wl 0 I/8 =O.I25
w

I
0 I/s=0I25

w & 0 &/8=0. 375

I/s =O. I 25
~/8= 0.375
~/8=0. 375
I/e = O. I 25

0 I

0.6 0.8 I I.2 1.4
T/ TQ

e=&o,o, &, m=&oo&,

where o.
p is the spin at the site of interest. This is

achieved by rewriting (6) as'

(Ooo) =3 (O(o1+o2+o3))+8(Oo1o2o3), (48)

FIG. 1. For the honeycomb lattice, the bar graph at the left
and the line graph in the upper right show the behavior of P(h)
as a function of temperature. The ordinate gives the weight NI,
in the 6 functions. The table in the lower right gives the value
of wk [defined in Eq. {37)]at special temperatures.
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0.5-

0.5-

P (h)
0.5—

T/Tc=0 0

TITc= 0.9

T/Tc=l 0

0.8

0.6-
wh

0.4-
0.2-

0.-
0.6 0.8 I 1.2 I 4

Tl Tc

0.5—

T/Tc= 1.2

Tl Tc

-4 -2 0 2
h

T=O T= Tc

w4 I &x/P. = 0.325483
w p 0 I-4x = O. I 32045
wp 0 5x I

""0.084943
w ~ 0 I-4x= 0.132045
w-4 0»/2= 0.325483

I/lg = 0,0625
I/+ =0.25

&/8 =0.375
I/4 =0.25
I/I6 = 0.0625

FIG. 2. Same as Fig. 1 except for the square net. The pa-
rameter x =1/vr 1/n . —

honeycomb lattice as shown in Fig. 1. At
T„ the values of tu, can be obtained by setting

e, =4v3/9, m, =O, and exp(2K, )=2+~3 in (52). The
distribution function rapidly develops an asymmetry
below T, as the magnetization increases from zero as
( T, —T) with P= —,'. At zero temperature there is a
single peak at h =3, as we mould expect when the align-
ment is complete.

Note that P (h ) contains the critical exponents a
(through e) and P (through m ) in Eqs. (52). All the criti-
cal exponents of interest can be obtained from these two
equations.

As the coordination increases, so does the number of
correlation functions that must be known. For the square
net, the three spin correlation function is still proportional
to the reduced magnetization via a relationship similar to
(50).' ' However, it is necessary to compute two other
independent, even spin correlation functions, as they can
not all be reduced to just e via relations such as (48) and
(49). Computation of these functions involve evaluating
elliptic integrals. For the triangular net the situation is
much more complex, but a similar reduction to elliptic in-

tegrals for even spin correlations can be made starting
from the Pfaffian form given by Stephenson. The de-

tails are complicated and are given elsewhere. %hile the
magnetization is given by Potts, the remaining odd spin
correlations can be found using the methods of Barry,
Munera, and Tanaka. However, we found their results
to contain errors and have not pursued this further. Con-
sequently, Fig. 3 for the triangular net is not complete for
T(T~.

The results for the square net and the triangular net are
shown in Figs. 2 and 3, respectively. They are very simi-
lar to those for the honeycomb lattice given in Fig. 1,
showing a rather universal behavior for P(h) for all two-
dimensional lattices.

Results have been published previously' by two of us
for the antiferromagnetic triangular net, which show that
there is very little change in P(h) between T= oo and
T=0, apart from some flattening. This is related to the
fact that this model does not have a phase transition and
has a finite entropy at zero temperature. The antifer-
romagnetic honeycomb and square lattices map on to

0.5-

0.5-

P (h)
0.5—

T/Tc= 0.0

T/Tc=l 0

0.8

0.6

wh 04

0.2

0
0.6

—h=O----- h=-2—h-'- 4
h 6

0.8 I l. 2 l. 4
Tc

Q.5— T/Tc I 2

T/Tc = oo

-6 -4 2 0 2 4 6
h

T=0

w, I

W4 0
w~ 0
Wp 0
w&0
w-4 0
w-6 0

T=Tc

0.275842
O. I 22099
0.072446
0.059225
0.0 7 2.4 46
0.122099
0.275842

T= co

I/6+ = 0 Ol 5625
~rsz = 0.09375
I&/64 = 0.234375
5/i6 =0.3I25

l5/64 =0 23 4375
&/a z = 0,09375
'/64 =O.OI5625

FIG. 3. Same as Fig. 1 except for the triangular net. The re-

sults for T & T, are not complete as we have not been able to
compute the required odd spin-correlation functions.

and is shown in Fig. 4 for ferromagnetic interactions in
the honeycomb, square net, and triangular net. At high
temperatures, u~ 1 for all lattices as the correlation func-
tions c~,cz become zero. Not surprisingly, this quantity,
which measures the local fluctuations, has a maximum at
T, and then decreases rapidly to zero as the temperature
goes to zero. The increase in U as the temperature is
lowered from infinity towards T, is due to the flattening
and then the dip in P(h). The rapid drop in u below T, is
due to the asymmetry caused by c

&
and, hence, the mag-

netization.
For antiferromagnetic interactions, the quantity u keeps

going up as the temperature is lowered. For two sublat-
tice antiferromagnetics, such as the honeycomb and
square net, the local magnetic field distribution function
is given by the symmetric part [see Eq. (22)] of the distri-
bution for the corresponding ferromagnet (i.e., all ex-

change interactions changing sign). Thus u increases

their ferromagnetic counterparts as they are both bi-
chromatic. With the use of the definition (11) for P;(h),
these functions will be identical above T, for both sublat-
tices and equal to the ferromagnetic counterparts. How-
ever, below T„ the asymmetry will develop on opposite
sides of h =0 for the two sublattices, and thus P(h) for
the entire system is just the symmetric part P, (h ) of P (h )

defined in ('22) for the ferromagnetic counterpart. This
leads to zero net magnetization via (18), as expected. In
order to obtain the staggered magnetization it would be
necessary to know P;(h} at the up and down sites sepa-
rately, and not just the average.

The one-dimensional Ising model can also be regarded
as having a dip in P(h) at T, if T, is identified with zero
temperature. At zero temperature mo ——0 and m2
=w z ———,', from (46).

If the distribution P(h) is to be characterized by a sin-

gle parameter, the most useful is

u=[h —(h) ]/z, (53)

where the overbar denotes an average over P(h}. From
the definition of the c„this can be rewritten as

u = 1+(2c2 —c ) ) /z,
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dent of temperature, as is clear from Table II,

S k, co dco=1 .

This is easily proved from the definition (26).

IV. CONCLUSIONS

0.5
I

I.O

l

I.5
I

2.0

%e have shown that the statistical mechanics of Ising
models can be described through the local magnetic field
probability distribution function P(h). This function
determines both the neutron-scattering law S(k,co) and
the thermodynamic quantities of interest for a large class
of Ising systems. We have calculated P(h) for the fer-
romagnetic honeycomb, square net, and triangular net,
and have shown that in all cases a pronounced dip
develops at T, .

In a subsequent paper, we plan to extend these results to
random spin systems and spin-glass models and also to
look at systems described by classical rather than Ising
spins.

FIG. 4. Fluctuation v in the local field as a function of re-
duced temperature T/T, for ferromagnetic interactions in the
honeycomb, square net, and triangular net.

monotonically from 1 at high temperatures to z at zero
temperature. For the triangular net, antiferromagnet U in-
creases from 1 at high temperatures to 1.097809 at zero
temperature. '

Finally, in this section, we consider the neutron-
scattering law, Eqs. (26) and (30). The scattering only
takes place at discrete energies. In Table II we have in-
cluded the thermal factor in (30) to give S(k,co) for the
square net. At very. low temperatures, only the "spin-
wave peak" is seen at co=8. ' This corresponds to flip-
ping a spin where all its nearest neighbors are parallel. As
the temperature is raised, other peaks have nonzero
weights. Even at T„we note that 63%%uo of the weight is
still in the spin-wave peak. However, there is some
weight at co=4, which corresponds to a spin flip where
three nearest neighbors are up and one is down. The peak
at co=0 will combine with the elastic peak and the peaks
at negative frequencies are related to those at positive fre-
quencies by detailed balance factors. At infinite tempera-
ture the thermal factor is —,

' for all frequencies and the
neutron-scattering law becomes symmetric. There is a
useful sum rule for spin —, [in addition to (31) and (32)]
which shows that the total integrated intensity is indepen-

TABLE II. Inelastic-neutron-scattering intensity per site,
S{k,u)/X, at various special temperatures for the square net.
The frequency is in units of J and the numbers in the table give
the weights 2tU, /[1+exp( —Pco)] of the five 8 functions.
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APPENDIX

The results of Sec. II can be generalized to case of arbi-
trary spins S; whose magnitude can vary from site to site.
We will adopt a numbering scheme for equations such
that equations in the text and the Appendix correspond.
The Hamiltonian is

H= ——,
' gz,js,'s,'—QH, s,'.

Note that this J~ differs from the J;.
~

in the main text by
a factor of 4 in the limit when the spin becomes —,. This
is because we found it more convenient to use Pauli opera-
tors in the main text. In a similar way there is a factor-
of-2 difference in the definition of H; Rather .than rede-
fine these quantities, we prefer to start from (1'). The
reader will easily discover places where factors of 2 ap-
pear between equations in the main text and the corre-
sponding equations in the Appendix. In order to proceed
it is necessary to insist that the J;;=0. The most obvious
decomposition of (1') is

(2')

where

8
4
0
4

—8

Tc

0.6324
0.2254
0.0849
0.0387
0.0186

0.0625
0.25
0.375
0.25
0.0625

A; —,g JjqS~+Hg,
J

but the most useful for our purposes is

H= —h;S +H',
where

(3')

(4')
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h;=g J;JS~'+H; .
J

%(Ph) =—g As, (Ph) .1

iNote that it is important that H be linear in all the S,'- so
that terms such as (S,'), (S,') SJ, (S,'SJ ), etc., are not al-
lowed in the Hamiltonian if the present formalism is to be
used.

The thermal average (OS,'), where 0 is any operator
not involving site i is given by

This takes account of a varying spin magnitude. It is only
necessary to know the number of sites with each spin
magnitude in order to know %(Ph).

From (7) and (9) we have

(5') and, further, an average Brillouin function %(ph) by

( Os ) = (Tr;[OS,'exp(/3h;S, ')]/Tr;[exp(PhS, ')] )

= (O&s, (Ph;) ), (6') and

(s,') = f u, .(ph)p, (h)dh (15')

where the modified Brillouin function is defined by

4's(x) =(S+—,
' )coth[(S+ —,

' )x]——,
' coth( —,

' x),
and hence

E, = ——,
' f he, (ph)p, (h)dh ,'H, —(S—,') .

The magnetization M is given by

M=N f%(ph)P(h)dh,

(16')

& &&z(x)= —, tanh( —,'x) .

Setting 0 equal to the unit operator in (6'), we find that

(s,') =(u, (ph, ) ),

and, as before, it is not necessary to know the J;J or the
H; in order to find M from P(h).

Again, as before, the energy cannot be obtained directly
from P(h). However, if all the H~ are known to be 0,
then from (10) and (16'),

and setting 0 equal to h; leads to

& I,s,*& = (ye.,s,*s,*+H,s,*l
J

=(h, u, (Ph, )) .

E=——f h&(ph)P(h)dh,N
2

the free energy E is given by

pF= —gin(2S;+1)+ f E(p')dp',

(21')

(24')

There is the same problem with the factor of —,
' in obtain-

ing the energy as before, and we have

E, = —(S,u, (Ph, ))

and Eq. (21) generalizes in the obvious way with
tanh(Ph )-+9P (Ph ).

The inelastic-neutron-scattering cross section is given

= ——,
' ((h;+H; )As (Ph; ) ) . (9')

The magnetization M and the energy E are given by (10),
as before.

It is convenient to define a P(h) for the entire system

S( k, co) =—f dt e '"'g exp[i k.(R; —R~ )]
f)J

&& (S,"SJ"(t)), (26')

P(h) = g As (Ph)P;(h) g us, .(ph) where x is any direction perpendicular to z. Using argu-
ments similar to those in Sec. II, we find that

S(k,co)= f dte '"'g([s+S; (t)+S; S;+(t)])

ol

=2+ [P;(co)+P; ( —co)]As.(Pco)/[1 —exP( —Pco)]

=2N [P(co)+P ( co)]A (Pco)/[—1 —exp( —Pco)], (29')

S( k, co)=4NP (co)As'(Pco)/[1 —exp( —Pco)] .

These lead to the sum rules

1 / k
1 —exp( —Pco) d

(30')

(31')

and if all the H; =0,

—,
' f S(k,co)[1—exp( Pco)]codco= E. — — (32')

These sum rules are very general and can be proved without introducing P(h). The second one is particularly easy to
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establish as the magnitude of the spin does not enter explicitly.
Using the identity

(A(0)8(t)) =(8(t iP—)A(0))

for any operators A, B, we see that

S( k, co)[1—exp( —Pro)] = I Ct e -'"'g exp [i k (R, —R, ) ]( [S,+S, (t)+S, S,+(t) S, —(t)S;+ S,+—(t)S; ] ) .

Only the diagonal terms contribute for Ising models so that

S(k,co)[1—exp( —Pco)]= J dte ' 'g ([S;+,S; (t)]+[S;,S;+(t)]) .

Therefore,

BS;f S(k,co)[1—exp( —/3')]code@= i g— S;+,
Bt

+ S;, )

=g ([S(+,h;S; ] [S—;,h;St+])

=4.g (h, S,')
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