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Spin systems on hierarchical lattices. II. Some examples of soluble models
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Several examples are given of soluble models of phase-transition phenomena utilizing classical
discrete spin systems with nearest-neighbor interaction on hierarchical lattices. These include criti-
cal exponents which depend continuously on a parameter, the Potts model on a lattice with two dif-
ferent coupling constants, surface tension, and excess free energy of a line of defects. In each case
we point out similarities and differences with a corresponding Bravais-lattice model.

I. INTRODUCTION II. CONTINUOUSLY VARYING& CRITICAL
EXPONENTS

In a previous paper' we introduced a general definition
of a hierarchical lattice, discussed some of the topological
properties of such lattices, and proved the existence of a
thermodynamic limit for some classical spin n1odels asso-
ciated with a certain class of hierarchical lattices. The in-
terest in statistical mechanics models on this sort of lat-
tices was triggered by Berker and Ostlund's observation
that some renormalization-group methods, which are ap-
proximate when the models are defined as Bravais lattices,
are exact if the models are considered on hierarchical lat-
tices. In the present paper we show by means of examples
how variations on this general theme can illustrate a
variety of phase-transition phenomena: critical exponents
which vary continuously with a parameter (Sec. II), Potts
models on a lattice with two interaction constants (Sec.
III), surface tension (Sec. IV), and defect free energies
(Sec. V). Some of the results were announced earher in
Ref. 3.

In each case the phenomena of interest, or at least some
analog of it, has been studied for the corresponding model
011 R two-dImcnslonal Blavlas lattice by IIlcRlls of complex
and difficult mathematical techniques. By contrast, the
exact solution on the corresponding hierarchical lattice is
comparatively simple and straightforward.

We make no claim to be exhaustive. There are surely a
large number of other phenomena related to phase transi-
tions which can be studied on hierarchical lattices. Some
of them have already been studied in Refs. 4—16 and
references to even earlier work can be found in Ref. 1.

The question as to whether calculations on hierarchical
lattices provide genuine insight into phase transitions for
the corresponding models on "realistic" Bravais lattices
is not easy to answer. It may be worth noting the rather
close connection between hierarchical lattices and approx-
1mate Ieal-space renormallzatlon-group methods.
%'hereas the two are not identical, whatever limitations
apply to one are likely to apply to the other.

Presently, the phenomenon of "universality" near criti-
cal points, in which the critical exponents and asymptotic
equations of state are the same for a wide variety of sys-
tems, is explained in the renormalization-group context on
the basis of a single fixed point, while continuously vary-
ing exponents, as in the Baxter model, are ascribed to
lines (or surfaces, etc.) of fixed points in a suitable space
of parameters. While the existence of fixed points, lines
of fixed points, etc. remains conjectural in the case of
spill systcl11s 011 BI'RVRls lattices of dlIIlcllsloll d =2 01'

more, they can often be found explicitly for the corre-
sponding spin systems on hierarchical lattices. In particu-
lar, lines (surfaces, etc.) of fixed points in a suitable pa-
ran1eter space are very easy to obtain, as we shall now
show by means of an example.

Figure I jthe same as Fig. 2(c) of Ref. I] shows the ag-
gregation procedure for the lattice of interest: 8=4
prlmltlvc (order zclo) bonds lcplcsclltcd by solid lines Rnd
a noniterated bond shown by a dashed line are combined
to form a bond or order one. Next, J3 bonds of order one
and a single noniterated bond are combined by the same
procedure to form a bond of order two, Fig. 1(c), and con-
tinuing in a similar way produces bonds of arbitrarily

(a) (b) (c)
FIG. 1. Diamond hierarchical lattice with noniterated bonds

(dashed lines).
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high order. With site j we associate an Ising spin O.
J

——+1,
and with a primitive bond connecting sites i and j we as-
sociate a dimensionless interaction ( A—lk~ T):

0.50

0.45—
0'"=zoo-;0-; . (2.1)

The corresponding dimensionless interaction for a non-
iterated bond is

040—

H=h(o. ; —o.~),
i.e., a staggered magnetic field having opposite signs at
the two ends of the bond. (The symmetry of the problem
makes which end is positive and which negative unimpor-
tant).

The partition function Z~ for a bond of order N is ob-
tained by summing the restricted partition function

kB~c = l/Kc

FIG. 3. Variation of the critical exponent y=-(2 —a) ' as a
function of temperature along the critical line of Fig. 2 for the
Ising model in a staggered field.

Z~( o'i, o'2) =exp(Kiv o')o'2+ C~ ) (2.3)

over the Ising spins o
&

and o z at two surface sites (top and

bottom sites in Fig. 1) of this bond. As shown in Ref. 1

[see the discussion following (4.3}],the restricted partition
function of a bond of order N may be expressed in terms
of that for a bond of order N —1, leading to the renor-
malization mapping of the effective interaction:

e =[1+cosh(2h)] '[cosh(4K)+cosh(2h )], (2.4)

where E =K~ when E =K~
For each choice of h, (2.4) admits a single (critical)

fixed point

K'=K =K, (h )

in the interval 0 ~E & oo, with thermal eigenvalue

2(1+e ')
2K 4K

e '+e

(2.&)

(2.6)

I

2
kET = l/K

The exponent y is related to the usual critical exponents a
and y (thermal) by

y=(2 —u) '=y/d .

(As the dimensionality d of a hierarchical lattice is not
well defined, 3

y is similarly ambiguous. )

Note that since K, depends on h, the same is true of y
and o., i.e., one has a situation in which critical exponents
depend continuously on a parameter. Figure 2 shows the
inverse function of (2.5): h, /K as a function of 1/K, cor-
responding (in the usual terminology for Ising magnets) to
the critical staggered magnetic field as a function of tem-
perature. In Fig. 3, y is shown as a function of 1/K, .
The curve in Fig. 2 is qualitatively the same as one would
expect for an Ising ferromagnet on a square lattice in a
staggered magnetic field (equal magnitude but opposite
sign on nearest-neighbor sites), or, equivalently, the anti-
ferromagnet in a uniform field. It is usually assumed that
on a square lattice the critical singularity is a logarithm
(a=O} independent of h, corresponding to y having a
constant value of —,', and some indirect evidence in favor
of this comes from Fisher's decorated antiferromagnet. ' .

That cx varies continuously with h, or E, in the case of
the Ising model on a hierarchical lattice comes as no
surprise when one notes that the mapping (2.4) contains h

as a simple parameter, and thus the critical fixed point
and all its properties depend on h. By introducing other
noniterated interactions one can obtain surfaces or
higher-dimensional manifolds of fixed points. Similarly,
whenever a hierarchical lattice contains one or more noni-
terated bonds one would expect to find the critical ex-
ponents dependent on the corresponding interaction pa-
rameters. Indeed this phenomenon is already visible in
the Kadanoff bond-shifting scheme, ' where the critical
exponents depend on a parameter p which corresponds, at
least in the case in which p is temperature independent, to
a noniterated interaction on a hierarchical lattice. Still
another example of this phenomenon was discussed in
Ref. 20. However, noniterated bonds are not always
necessary to produce continuously varying exponents, as it
is shown in Sec. V below.

III. POTTS MODEL ON A NONUNIFORM LATTICE

FIG. 2. The critical line of the Ising model in a staggered
magnetic field on the diamond hierarchical lattice.

The term "nonuniform" was used in our previous pa-
per' for a lattice in which different units are assembled by
different rules of aggregation. An example is shown in
Fig. 4(a), which is to be interpreted as follows. There are
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(~*—1)(~—1)=q =(~*—1)(~—1), (3.4)

where co* and co* correspond to the interactions X* andE' on the dual lattice (which, as noted above, is the same
as the original lattice). Consequently, the "duality line"

(co —1)(co—1)=q,
is mapped onto itself by the recursion transformations, as
is the "isotropic" line

(3.6)

FIG. 4. Nonuniform hierarchical lattice.

two types of bond of order ¹
"plain" and "crossed. "

Each is composed of bonds of order N —1 in the manner
indicated in the figure. If the surface vertices of a plain
and a crossed bond of order X are identified, as in Fig.
4(b), the resulting graph is self-dual, with plain and
crossed primitive bonds on the original lattice correspond-
ing to their counterparts on the dual lattice. This lattice
is also left invariant if the plain and crossed bonds are in-
terchanged. In what follows we shall be interested in the
free energy per bond of the lattice in Fig. 4(b) as N tends
to infinity. In fact, one obtains precisely the same result
from considering either a plain or a crossed bond of order
Kin the X~~ limit.

With site j of the lattice we associate a Potts "spin" SJ.
which takes the values 1,2, . . .q, and with a primitive
plain bond connecting sites i and j we associate a dimen-
sionless interaction

H'"=2E, S(S, ,S, ), (3.1)

where 5(, . ) is the Kronecker 5 factor. The factor
of 2 makes the q =2 case correspond with our previous
notation, (2.1), for the Ising model. For a crossed primi-
tive bond, Eo in (3.1) is replaced by Eo. For plain and
crossed bonds of order N, the effective interactions are of
the form (3.1) but with Eoreplaced by E~ an'd E~,
respectively. If we define

c =e'~, r)=e'~, (3.2)

then the two transformations analogous to (2.4) are

CO = ci) co + (q —1 )(co +2coh) +q —2 ) (3.3)
co +co +2co co + (q —2 )(3'+2' +q —3 )

and an equation for B ' obtained by interchanging ~ and B
on the right-hand side of (3.3). That is, if co and co corre-
spond to E& i and E~ i through (3.2), co' and 6' corre-
spond to K& and K&, respectively.

The recursion transformation (3.3) and its counterpart
for co' commute with the duality transformation [Eq.
(2.11) of Ref. 21] for the Potts model:

The limits co=1 (E=0) and co= 1 (E=O) are invariant
lines, as are also the lines co = ~ and 8= ao.

The corresponding flows are indicated schematically in
Fig. 5. On the curved duality line the flows lead to the
isotropic critical point

~=co =1+V q (3.7)

and hence all these points (with the exception of the end
points where co or co is infinite) are in the same universali-
ty class as the isotropic point. An analogous result is
known to hold for the Ising model (q =2) on a square
(or "rectangular" ) lattice in which the vertical bonds have
the strength (E) differing from that of the horizontal
bonds (E ): the asymptotic critical behavior is the same
whatever the ratio of E and E.

On a square lattice the Potts model has a discontinuous
or first-order transition for q & 4, whereas on the lattice
of Fig. 4 the transition remains continuous for all q.
However, as q~no, there is a tendency towards a first-
order transition in that the thermal eigenvalue y in the
counterpart of (2.6) (8=5 in the present case) tending to-
wards 1.'4

IV. SURFACE TENSION

On some hierarchical lattices it is possible to define a
quantity which is analogous to the surface tension for the
corresponding model on a Bravais lattice. %e illustrate
this for the case of the "diamond" hierarchical lattice cor-
responding to Fig. 1 when the dashed (noniterated) bonds
are deleted, corresponding to h =0 in (2.2). We let y be
the surface tension and

FICx. 5. Schematic renormalization-group flows for the Potts
model on the lattice of Fig. 4.
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y=y/AT= lim IL in[ZIng(+, +)/Z~(+, —)]I (4.1)

be its dimensionless counterpart, where L~ is the
minimum number of primitive bonds which must be de-
leted from a bond of order N to disconnect its surface ver-

tices. For the diamond hierarchical lattice, I.=2. Note
that y is, equivalently, the difference in the dimensionless

free energy between the two situations corresponding to
per1od1c, o1——0'2, and antlpcr1od1c, ol ———02, boundary
conditions for the bond of order N (with o I and oz being

the surface spins), divided by the "area" L+ of the inter-

face that is produced by the antiperiodic boundary condi-

tion. It is thus analogous to one of the common defini-

tions of surface tension for an Ising model on a Bravais

lattice,
From (4.1) and (2.3) it follows that

y(K)= lim (2' K
X—+ce

(4.2}

with KO=K. The results of a numerical calculation of
y =ks Ty, with ks T defined as 1/K, are shown in Fig. 6.
Near the critical point y varies as

y-(T, —T}",
where p = 1.3383 satisfies

p = (lnL /ln8)(2 —a),
which is the analog of the Widom relation

p =d '(d —1)(2—a)

(4.3)

(4.4)

(4.5)

on a d-dimensional Bravais lattice, since L+ is the inter-

face area for a hierarchical lattice of "volume" 8 . For
T & T, (i.e., K ~K, ), y vanishes, as expected. In fact,
(4.3) is not strictly a power law; the numerical study

shows that the amplitude multiplying the power law on

the right-hand side has a small variation which is periodic
in ln(T, —T).

When K is large the recursion relation (2.4) (with j=0)
yields

E' 2K —
2 ln4

FIG. 7. Hierarchical lattice on %'hich the Ising model exhib-
its zero surface entropy at zero temperature.

with corrections of order e, and thus, up to correc-
tions of the same order,

(4.8)

foI older X, assuming L ~ 1. Consequently, the entropy
pex'unit area at T =0 is

(L —1) 'lnD

times kII, in agreement with (4.7) in the case of the dia-
mond hierarchical lattice, where D =4 and L, =2.

Not eveI'y Ising model on a hierarchical lattice has a
finite surface entropy at T =0. For example, D =1 and
L =2 for the case shown in Fig. 7. In the case of R»»ng
IIlodcl 0II a square 1Rttlcc tllc zero-tcmpcratulc suIfRcc cll-

tropy is zero for interfaces perpendicular to one of the
edges of the square, since the ground-state degeneracy
with antiperiodic boundary conditions is on the order of
the linear dimension. For an interface at 45' to an edge of
the square, on the other hand, the surface entropy is finite
at T =0.

Consequently 1y/dT approaches —ln4 as T +0, ind—icat-
ing a finite surface entropy at zero temperature. This en-

tropy arises from a degeneracy of the ground state when

oI ——+1, o2 ———1, due to the fact that there are a large
number of ways to choose the L primitive bonds which
have cr; =1 at one end and oz ———1 at the other. In fact,
if the degeneracy is D when X =1, a recursive argument
shows that it is equal to

D(L +—& )/(, I- —1)

V. DEFECT FREE ENERGY

kBT= t/K

FIG. 6. Surface tension y =y/E dependence on temperature,

AT = j. /K, for the Ising model on the diamond hierarchical
latt1ce.

Line defects in Ising models have received a fair
amount of attention. In particular, the excess free energy
associated with such a defect can show interesting
behavior near a bulk phase transition. The same type of
thing 1s easy to study 1Q h1crarchical models. As an ex-

ample, we consider the Ising model on a lattice, Fig. 8,
wlllcll Is R modlflcafI011 of tllat s110wll II1 FIg. 4. In pRI'-

ticular, a plain bond of order N is made up entirely of
8 =5 plain bonds of order X —1, while a defect bond (in-

dicated by a crossed line) of order X contains 8=3 defect
bonds and 8—8 plain bonds of order N —1. For the
priID1tive defect bond between sltcs I and J wc assume a
dimcnsionless interaction
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r0 Kc K oo

FIG. 9. Schematic renormalization-group flows for the Ising
model on the lattice of Fig. 8(b). The line E =E, is a line of
fixed points.

b, C'=hP'+B hC, (5.8)

FIG. 8. HieraI'chical lattice %'1th {a)no defect bonds and (b) a
line of defect bonds {crossed lines).

Zg~(cr i, o2) = exp[Kg~(o irr2 —1)+Cg~], (5.2)

while for plain bonds Ko replaces K~&.
%'e write thc restricted partition function for a defect

bond of order E in the form

1+2N+N Nd
exp(AP') =

Nd I +2N+N

Consequently the defect free energy is

bf(K, Kg)= lim hf~= g B b,g~X—+oe ~ 0

(5.9)

(5.10)

Zu = g QZax(~rii&z)=expCax ~

~& ~z

with an error of at most a factor of 4, and the analogous
equation Rppllcs to Z~ 1f K~ 0 0. In R defect l3ond of or-
der X, the excess defect free energy b f& per primitive de-
fect bond is given by the expression

exp(B Af~) =Zg~/Z~=e (5.4}

(5.3)

while that for plain bonds is given by deleting the sub-
script d. This only differs from (2.3) in the convention
used to define the constants C~~ and Cz. The form (5.2)
1s convcnicnt because Rs long Rs Kdz is positive~ tile parti-
tion function is

Kc K„Kgo K——g, b,Pc ——Kg K. ——— (5.11)

Whereas we assumed that E and Ed were non-negative in
order to derive (5.10), this equation remains valid for
Kd ~ 0. Alternatively, one can use the symmetry

bf( K, Kg ) =bf(K,K—g } (5.12)

to reexpress bf in terms of positive K~.
The flows corresponding to (5.7) and its counterpart

with d deleted are indicated schematically in Fig. 9. At

~dX CN (5.5)

The recursion transformation expressed in terms of the
quantities

N=8, Nd =e (5 6)

cog =cOg(1+ M2'+kg)/(M +cog+2COcog) (5.7)

for the defect bond; the same equation applies to a plain
bond if d is deleted everywhere. That is to say, if N and
Nd correspond to K~ and Kd~, then N' and Nd correspond
to E~+] and Kd~+~, respectively. %ith the same conven-
tions for prixned and unprimed quantities, we find a re-
cursion relation

02
K~~KC

FlG. 10. Dependence of the defect exponent P on the ratio
Kq/K, at the bulk critical temperature (EC =K, ).
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K =0 one finds an exact renormalization transformation
for a one-dimensional Ising model with b =8 =3, and as-

sociated fixed points at Kd ——0 and ao. With Kz ——0 (K
arbitrary) the lattice forms two noninteracting pieces,
analogous to what happens if a connected staircase of suc-
cessive horizontal and vertical bonds are removed from a
square lattice. On the invariant line Ed ——0, there are
fixed points at

K=O, K=K, = —, 1n(1+v 2), K=oa .

'The last of these is a first-order phase transition in the de-

fect free energy as Kd goes from negative to positive

values through zero [the corresponding fixed-point eigen-
value for the flow (5.7) is 8=3], and thus M f/r)Kd is
discontinuous at Kq ——0 for all K ~ K, .

The line K =K, is a line of fixed points of (5.7) and

thus one is not surprised to find that the critical ex-
ponents of the defect free energy depend continuously on
Kq. The dependence of the defect P on Kd/K, is shown
in Fig. 10. The square Ising madel with a line of defects
shows an analogous dependence of the defect exponent P
on Ed.
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