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Mode-coupling calculations of electron-spin resonance in long-range spin-glasses
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A full discussion of mode-coupling theories as applied to electron-spin resonance in long-range
spin-glasses is presented. High-temperature linewidth and line-shift calculations, using the method
of Kubo and Tomita, are presented and compared to results previously reported [P. M. Levy, C.
Morgan-Pond, and R. Raghavan, Phys. Rev. Lett. 50, 1160 (1983)],which used the Mori-Kawasaki
formalism for all T & Tg Justification for the decoupling procedure used and further work neces-
sary for improved agreement close to the glass temperature T~ and in high resonance fields are dis-
cussed.

I. INTRODUCTION

Electron-spin resonance (ESR) experiments have been
used for some time to investigate spin-glasses. ' We
present here a theoretical interpretation of some recent ex-
periments on AgMn. A brief account of the results has
been reported earlier. We focus our interest here on
AgMn (2.6 at. %) (Ref. 2), because the high-temperature
susceptibility is Curie-like rather than Curie-Weiss-like,
and results are available at different frequencies. The
long-range model for spin-glasses predicts Curie-like
behavior above the glass temperature Tz and is thus in ac-
cord with the results for AgMn (2.6 at. %). Results at
different frequencies allow a more stringent test of the
theories. The salient features of the data of Mozurkewich
et al. are the following. (1) As the temperature is
lowered toward the glass temperature Tz, one finds an in-
crease in the linewidth of the resonance over the expected
linear (bottlenecked Korringa) behavior (see Fig. 1 of Ref.
2). (2) For temperatures close to Tg ( T/Tg ) 1.5), the in-
crease in linewidth becomes larger the smaller the measur-
ing frequency, and it seems as if the linewidth would
diverge at Tg for a zero-frequency resonance. (3) This
divergence has been fitted to a power-law behavior
AH=At r, where t =T/Tg —1 and y-1.5, and is rela-
tively independent of the concentration of Mn in the
range studied. (4) A shift in the field for resonance or g
shift occurs for temperatures below a crossover tempera-
ture t*, where one finds the increase in linewidth depends
on measuring frequency. (5) The temperature t* decreases
as the concentration of Mn ions increases. (6) Adding an-
timony impurities, which act as spin-orbit scatterers of
the conduction electrons, increases the linewidths and
shifts.

The increases in linewidth of the ESR resonance as T~
is approached is understood as follows. At high tem-
peratures, t && I, the linewidth comes from the relaxation
of Mn ions to the lattice through the conduction electrons.
This is described by a residual width of EH=a+bT,
with a bottlenecked Korringa rate b. Another contribu-

tion to the linewidth comes from the broadening of the
resonance by anisotropic pair interactions between Mn
ions. This is usually called dipolar broadening, but for
transition-metal spin-glass alloys it is believed that the an-
isotropic Dzyaloshinsky-Moriya (DM) interaction rather
than the dipole-dipole interaction dominates. At high
temperatures these DM broadened resonances are nar-
rowed by the isotropic exchange interaction between Mn
ions and, as we will show, make a small contribution to
the linewidth. However, as the temperature approaches
T~ the Mn spins slow down and the exchange-narrowing
mechanism becomes inoperative. Then the full DM
broadened linewidth appears in the resonance.

Previous analyses of resonance in spin-glasses fall into
two categories. Barnes has adapted the Bloch-Hasegawa
theory for the ESR of magnetic alloys and extended it to
spin-glasses in the entire paramagnetic regime. In the re-
gion close to the glass temperature he adopts Huber's
theory of critical divergences of the spin-spin correlations
for conventional antiferromagnets. In the second category
of analyses attention is solely focused on the region close
to Tg, and one describes the ESR properties in terms of
the dynamical correlation functions of the spin-glass.
This interpretation of the resonance behavior of spin-
glasses was first made by Salamon and Herman' and more
recently by Seeker. Salamon and Herman decoupled
their four-spin correlation functions and obtained some
results which are at variance with extant data. Becker did
not decouple his four-spin correlation functions but went
on to the next-higher-spin correlation function. While the
qualitative aspects of his solutions are in agreement with
the experiment, unfortunately he is unable to obtain quan-
titative results.

In this paper we narrowly focus on explaining the in-
crease in the linewidth and resonance shift in the region
immediately above the glass temperature. We use the
Mori-Kawasaki and memory-function formalisms as did
Salamon and Becker. However, by adopting a different
decoupling procedure from Salamon's, and by using the
Dzyaloshinsky-Moriya interaction appropriate to spin-
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glasses, we are able to show that the magnitude as well as
the temperature dependences of the resonances linewidth
and shift in AgMn can be understood on the basis of the
slowing down of fluctuations in the spin system as it ap-
proaches the glass temperature.

In Sec. II, we introduce the Mori-Kawasaki and
memory-function formalisms and discuss the approxima-
tions made in order to calculate resonance linewidths and
shifts over the entire paramagnetic regime, and in particu-
lar close to Tz. In Sec. III, this formalism is applied to
the calculation of the linewidth and shift due to the aniso-
tropic DM interactions present in spin-glasses. A new
decoupling procedure is used and justified, and we also
use and justify the Kirkpatrick-Sherrington (KS) and
Kinzel-Fischer (KF) formulas for the time-dependent
spin-correlation functions for spin-glasses. To check the
validity of our results in the high-temperature limit, we
compare them in Sec. IV to the linewidth and shift calcu-
lated using the Kubo-Tomita method which is exact in
this limit. In Sec. V we obtain quantitative estimates for
our calculated widths and shifts and compare our results
to the recent data on AgMn. We discuss the essential
differences between resonance in spin-glasses and reso-
nance in uniform systems, and point out what effects
must be accounted for to obtain better agreement with ex-
periment in the region very close to the glass temperature.
We summarize our results in Sec. VI.

—i'(z)=(A
~ ~

A)
1

z —L (2.2)

is related to the frequency-dependent susceptibility in
linear-response theory as follows:

X(z)—X(z =0)
Cq(z) =-

z
(2.3)

1
iCg(z) =- +A

z —wo+X(z)

X„=(A ~A),

wo= —(A IL IA»A',

(2.4)

(2.4'a)

(2.4'b)

X(z)=(A iLQ QL
i
A)Xg', (2.4'c)

where

The properties of C(z), called the relaxation function,
and X(z) along with their time-dependent versions were
discussed by Kubo. The imaginary part of the suscepti-
bility gives the absorptive response and is related by the
fluctuation-dissipation theorem to the correlation func-
tions seen in scattering experiments.

With these developments the analog of the Wigner-
Weiskopff formulas' may be immediately written

1 —Q=
i

A)Xg'(A
i

(2.4'd)

II. THE MEMORY-FUNCTION FORMALISM

so that

eiHt/AA (0)e iHt/s—
=e ' 'A(0)

(2.1'a)

(2.1'b)

—A (t) =iLA (r) —= [A (r), II] .
d . 1

dt i%

In this notation

(2.1'c)

In this section we review the memory-function formal-
ism for the dynamics and decay of fluctuations in a sta-
tistical system and the simplified version of it that we use
in our calculations.

Mori, following Kubo's earlier work, observed that
the structure of linear operators in Hilbert space and of
the Wigner-Weiskopff theory of line shape in quantum
mechanics may be taken over to statistical mechanics by
formally defining a space of dynamical variables or
Heisenberg operators and defining the scalar product as

P
X~s =—(A

~

B):JdA, Tr[pA (—i A, )B"]

—PTr(pA)Tr(pB ), (2.1)

where A(iA, )=e Ae, p is the inverse temperature,
p= 1 lks T, p is the (equilibrium) density matrix, A and B
are Heisenberg operators, and e is used for the Hermitian
adjoint. The Kubo correlation function X~s is an entry in
the static isothermal susceptibility matrix. The operator
analogous to the Hamiltonian H is iL, the Liouville
operator which satisfies

Unlike the case in quantum mechanics the "states" are
not orthonormal. Also, although we have written the for-
mula for a single label A, more generally C, X, co, and X
are matrices and the various multiplications, inverses, etc.,
must be considered as matrix operations. This is a neces-
sary complication in the case of statistical dynamics. We
also assume stationarity so that iL is Hermitian just as H
is, i.e., (A

~

iL
~

A) =(iLA
~

A).
The formula we shall use is a perturbational approxi-

mation to (2.4). In fact this approximation was used ear-
lier than the general formalism to discuss spin dynamics
in ferromagnets. " We write

XA~(z) (A ~L]Q QL(
~

A)
1

z —Lo
(2.&)

which implies a separation of the Hamiltonian into two
parts: one which commutes with 3 or results in a sys-
tematic conserved motion and another causing it to decay
in time. In our case (see below) A will be the component
of the total spin in a given direction (appropriate to an
ESR experiment), Ho the isotropic Ruderman-Kittel-
Kasuya- Yosida (RKKY) interaction, and H

~ the anisotro-
pic Dzyaloshinsky-Moriya interaction. The Liouville
operatorLO is related to Ho and LI to H~ as L is to H in
Eqs. (2.1'a) and (2.1'b).

Using the definitions of the Liouville operator and the
Laplace transform, Eqs. (2.1'a) and (2.1'b), we see, ignor-
ing the Q's, that

X(z)=X~ ' I dre"'( (A)~ rA(0)), (2 6)

where the overdots denote time derivatives as usual. We
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notice that X(z) in Eq. (2.5) is also of the form of a diago-
nal matrix element of a modified resolvent. It is therefore
obvious that X(z) has a representation analogous to (2.4'c)
resulting in a continued-fraction expansion of C(z). '

We are now in a position to discuss the various approxi-
mations used in treating spin systems. The Hamiltonian
of interest in our paper is

Ho+ H„+Hz (2.7)

where Hp is the isotropic RKKY interaction, Hz the an-
isotropic Dzyaloshinsky-Moriya term, and Hz the Zee-
man term due to the static field for resonance in the ESR
experiment. As explained in Sec. III, these may be con-
sidered to be the relevant terms in the temperature ranges
we consider. The explicit forms for the terms above are
written there, Eq. (3.1).

Whether we use the "exact" formula (2.4) or the ap-
proximate one (2.6) for the self-energy, the chief difficulty
is in calculating (A

~
(z I.)

'
~

—A) or (A(t)
~
A(0)) (our

interest is in the ESR line shape whereas we have set
A =S"„,=QSJ"). In order to calculate (A(t)

~
A(0)), we

need to compute a four-spin time-correlation function in
the presence of many-body interactions. In the past
mode-mode coupling theories were invented to deal with
this problem. " In uniform-spin systems, the four-spin
correlations were decoupled in the random-phase approxi-
mations (RPA).

In attempting to adapt the mode-coupling approach to
the present problem we encounter several problems. The
equations of motion in a random system do not justify the
RPA decoupling in momentum space. In a uniform sys-
tem the RPA decoupling is justified as an approximation
by invoking momentum conservation and the exactness of
the RPA decoupling for the spherical model.

A possible decoupling using the space of the eigenvec-
tors of the interaction matrix is suggested' by the
infinite-range model for spin-glasses. ' The spectrum of
Ho is not that of the RKKY interaction matrix, owing to
the many-body nature of the spin operators and the con-
straints they have to satisfy. However, in the spherical
model where we dispense with the constraint
S; =S(S + 1 ) for each i in favor of the single constraint
QS; =NS(S+1), the diagonalization of the interaction
matrix does yield the spectrum of Ho. It is easy to show
that the decoupling becomes exact in this space. ' It is in
fact this procedure we follow (see calculations in Sec. III).
This is inexact for a Heisenberg-type model but is expect-
ed to be better the higher the dimension and the higher
the temperature.

Even though we have potentially identified the ap-
propriate space in which a decoupling may be performed,
there are two essential complications related to the nature
of the spin-glass transition and to configuration averaging
in disordered systems.

Unlike magnetic transitions in uniform systems, the
spin-glass transition even in the KS limit is not dominated
by one mode. Rather all modes contribute with more or
less equal significance near the transition. ' Thus in the
decoupling procedure we cannot include only one mode in
the two spin correlations resulting from the decoupling, as

was done in the RPA decoupling for uniform systems,
and in earlier work on spin-glasses.

Salamon has previously implemented such a decoupling
for the ESR problem. ' However, as we show in Sec. III
he neglected an O(N) term in the decoupled correlations
in favor of an 0 (1) term. This error is related to the fact
mentioned above; namely, that no one mode can be identi-
fied as the critical mode in a spin-glass transition. One of
the central results of this paper is to show that Salamon's
ideas properly implemented can lead to a quantitative
understanding of metallic spin-glasses.

We also perform the configuration averaging of the
DM interactions and the spin correlations separately.
This is a good perturbative approximation in the ESR cal-
culation. If we could not make the separation of the
Hamiltonian H into Ho+Hz where Hz is small and en-
tirely responsible for the decay, we could not make this
approximation.

We are thus left with the evaluation of (S~(t)
~
S~ (0))

where A, refers to an eigenvalue of the interaction matrix.
We return to this point later, after first discussing the ap-
proaches of Becker and of Barnes in the context of the
general formalism.

Instead of decoupling the four-spin correlations, Becker
proceeds to write the next term in the continued fraction
for X(z), involving eight-spin correlations, which one may
decouple in favor of lower-order correlations. He uses the
structure of the resulting equations to predict the struc-
ture of the ESR line shape in spin-glasses. Our paper is
concerned with a quantitative calculation, without adjust-
able parameters, and so we have not included "two-spin
variables" in our basis. It is inevitable that near the spin-
glass line of the phase diagram' our description is inade-
quate. Nevertheless, it would be premature to attempt the
more difficult calculations without first exploring the
simpler consequences of the theory.

It is also important to distinguish between streaming
(reversible) and dissipative (irreversible) dynamics. Al-
though from a microscopic point of view one writes the
equations of motion as arising from a Hamiltonian, this is
sometimes not a useful point of view. One is interested in
fluctuations of thermodynamic variables which are de-
fined in terms of ensembles of possible configurations in
the limit of large systems. Thus the relevant equations of
motion are derived from free-energy functionals, ' since
one always works with a reduced Hamiltonian that disre-
gards many degrees of freedom. In this case the equations
for slowly relaxing variables may be predominantly dissi-
pative, predominantly streaming (Hamiltonian), or a mix-
ture.

In uniform systems the choice between dissipative and
streaming dynamics near a phase transition is more easily
made. The existence of dynamic scaling, together with
the different exponents arising from reversible and ir-
reversible behavior for the relaxation of important vari-
able, often results in an unambiguous choice from experi-
mental data. Near the spin-glass transition, which may
not even be a phase transition, we are not so fortunate.
Barnes has discussed ESR in metallic spin-glasses from
the dissipative point of view.

Our initial formulation of the equations of motion is
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from the Hamiltonian dynamics, with the decoupling
mentioned. The remaining step is to evaluate the two-spin
correlations. The Hamiltonian dynamics that results
from Ho is complicated and perhaps incomplete for a
description of the time correlations. We use a dissipative
description for the above time dependence and use the re-

sults of Kirkpatrick and Sherrington and of Kinzel and
Fischer. ' We then identify an arbitrary flipping rate in
the KS dynamics with the strength of the RKKY ex-

change constants to make the resulting calculations free of
unknown parameters. A partial justificiation of this is of-
fered by our high-temperature calculation (Sec. IV).
Again this procedure is somewhat arbitrary but we feel
that the resulting quantitative agreement implies that me-
tallic spin-glasses do indeed experience the precursor of an
KS-type transition. Let us summarize our discussions
and indicate the calculations that are performed explicitly
in Sec. III.

If the oscillating field in the ESR experiment is in the x
direction, we wish to calculate the dynamic response of
Sk o. From the general relation between the relaxation
function and the dynamic susceptibility it is sufficient to
calculate the former.

We use the Mori-Kawasaki formula Eq. (2.5) or (2.6),
which is a perturbational approximation that involves
neglecting the mixing of various times scales. In particu-
lar the formula is not valid at long times unless the relax-
ation rate is much smaller than the frequency of measure-
ment.

To compute S„(t) we use the Hamiltonian, neglecting
dissipative dynamics. This can only be justified by the re-
sults, although it can be argued for by separation of the
time scale of the spin and the other degrees of freedom.

To decouple the resulting four-spin correlation, we go
into the eigenbasis of the RKKY interaction matrix. We
have already discussed this as the analog of the RPA im-
plemented for a random spin system. This involves
neglecting the dynamics for the replica variables.

To evaluate the two-spin correlations we use the
Kirkpatrick-Sherrington and Kinzel-Fischer results.
Again, this involves neglecting the Poisson bracket or
commutator constraints among the spin variables.

We have not included Hz (the Zeeman term) in
evaluating the dynamics of the spins. This is not valid
near a spin-glass transition, for resonance in high applied
fields.

We have discussed the meaning of these approxirna-
tions in the preceding, and we do so again in Sec. III. The
point of the various assumptions is that they allow an ex-
plicit calculation to be performed with no free parameters.

III. CALCULATION

The ESR resonance comes from the excitation of an
essentially uniform, k =0, mode of the spin system. As

I

such the linewidth and shift of this resonance is calculated
by using Eq. (2.6), and the following Hamiltonian:

H—= —, g J;JS; SJ.+ —,
' QD,J

S.; xSj

+gjJJJ"'ext g Si~ . (3.1)

Here the J,j are randomly distributed according to a
Gaussian distribution with a zero mean, and the D;J
represent the DM coupling between Mn ions as given by
Fert and Levy. ' The Mn spins lose their energy to the
lattice mainly via the conduction electrons because the
direct spin-lattice coupling for s-state ions is very small.
This mechanism produces the bottlenecked Korringa
linewidth seen at high temperatures, which we will not
consider in this paper. The justification for the various
approximations has been mentioned in Sec. II.

Here we focus on the broadening due to the DM in-
teractions, and find

Stot ——(i /R) [HDM, Stot]

=(I/tyr) g(D;, xS;)xSJ . (3.2)

By replacing this result in the expression for the Kubo-
Mori inner product we find

f"(a,P, y )f"(a',P', y')DJ Dki
i jk, l a, p, y,

a*,P', y'

x(SP(t)sy(t) itsy ), (3.3)

where f"(a,P,y) is defined by

[(D;,XS;)XSj]"=g f"(a,p, y)D;, SpSJy .
a, P, y

(3.4)

For transition-metal spin-glass alloys, such as AgMn,
the anisotropic interactions are small compared to the iso-
tropic and the D;J's are not correlated to the Mn spins.
Therefore we immediately average over the product of
DM pair couplings in Eq. (3.3) and find

& DJDkl &. = 3 &D'&. (& k&jl 4&Jk)('2—

where

(3.5)

j a

and the angular brackets represent the configurational
average over a random distribution of the DM couplings.
This average will be performed in Sec. V. By using Eq.
(3.5) in the relaxation function Eq. (3.3) we find

D2
(s» (t)

i

s& )
l ' y ($ gp $ $p )($,gp„—$ $p, , ) y (sp(t)SJy(t)

~

spsJy )—y (sp(t)SJy(t)
i sJ sy )

/, J
i,y''

D2
g [(S;"(t)S,(t)

i
S;"S, ) (S;"(t)S,(t)

i S; S,")] . —
a=+~z l,j

(3.6)
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To make the calculation tractable we decouple the
four-spin correlations. We do this in the basis which di-

agonalizes the RKKY interaction matrix

1
+

HRKKY 2 p ~ij Si sj 2 g JA, SA, SA&

l,J

(3.10) are of order 1/N compared to the first terms (dou-
ble sum over A, , A, ') and we will neglect them. By placing
our approximation for the four-spin Kubo-Mori inner
product in Eq. (3.6) we find the self-energy due to the DM
interaction Eq. (2.6) is given as

J;,=g Ji„(i
~

A, ) (A,
~
j),

(3.7) k, v
I (co, T)=—

where

SP=+Sj'(X
~

i.
& .

T

e ' ' S& t S& t (3.11)

By using the above transformation and the orthonormali-

ty of the eigenvectors

using condition (3.9c). For a homogeneous system where

q space is used the above condition is valid only when one
assumes isotropic pair interactions. The spin susceptibili-
ty in the denominator of (3.11) can be written above T~ in
the A, basis as'

we find (Sioi lStoi)=&(S~ lSP (3.12)

g(sP(t)s~(t)
~

sfs)") =g(s,'(t)s', , (t)
~

s~s,", ) .

(3.8)

= g(s„(t)s, )

+ g ((s"„(r)s,(t)s",s, &
—(s„(t)s,&'), (3.9a)

g (Sg(t)sg (t)sgsz ) -=g (Sz(t)sg(t)sgsg ) .
A, A'

(3.9b)

It is at this stage that we decouple the four-spin prod-
ucts in Eq. (3.6). The basic idea is that variables which
are weakly correlated can be separately evaluated. If the
modes A, are eigenmodes of the interaction Hamiltonian
then the expectation values entering Eq. (3.8) for different
modes are evaluated independent of one another. Even
where the A, 's are not eigenmodes we can make the as-
sumption the different modes are weakly correlated and
find that for thermal averages, denoted by ( ),

g (S (t)S"„(t)SS" )

The noteworthy point in the expression for the self-energy
Eq. (3.11) is that we find the term

f g X„(t) 'e '"'dt -, (3.11'a)

while in the equivalent expression for homogeneous sys-
tems one finds

gA„J [Xk(t)]2e '"'dt .
0

(3.11'b)

To complete our calculation we will assume the time-
dependent spin correlations in Eq. (3.11) are governed by a
Langevin equation with a flipping rate for the exchange
field, b, —ks 'rs =Os. This assumption is physically
reasonable, and similar to the assumption made by Ander-
son and Weiss' for exchange narrowing in ferromagnets.
The approximation is better at high temperatures, see Sec.
IV, but in the final analysis our approximations can only
be justified by the results. The correlation functions we
use should become incorrect for T close enough to Tg in
that mean-field theory breaks down. The region where
corrections to mean field are important may extend up to
r- —„' in AgMn (2.6 at. %), based on a recent estimate by
Morgan-Pond. '

The Langevin equation for the time dependence of the
SP1nS 1S

where a =y, z and we used the fact that S, (t) =——A[S, (t) —y
—'X,h; (r)],

i
(3.13)

(3.9c)

for a random system with cubic symmetry. We may
decouple the Kubo-Mori inner product in a way analo-
gous to the decoupling of the simple averages in Eqs.
(3.9) by making the assumption that

T

(S~(t)sx (t) ~sgsg )=kgT g(sg(t) ~sg) . (3.10)

where Xo is the single-ion susceptibility, y the gyromag-
netic ratio for a spin, h; is the field on the ith spin due to
the others and 5 is the flipping rate. In Sec. IV we will
determine its value by comparing our results using Eq.
(3.13) to the linewidth and shift found by the method of
Kubo and Tomita. From the work of Anderson and
Weiss we can identify the 5 ' as the characteristic time it
takes the exchange field from other Mn spins to change,

By replacing the sums over A. in Eq. (3.9) by integrals
and by recognizing that for spin-glasses all modes contri-
bute' we find that single sums over A, in Eqs. (3.9) and

S(S+1)—
A=gpgH, = J,

where for a spin-glass the effective coupling J is

(3.14)
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J—:g J,2J

J

1/2
(3.15) 1+— +p'(J')' (S, (t)

~

SJ. }=0g J,"k(sk(t)
~ SJ },

k

If we define the glass temperature as

ktiTg ——Og
———,

' S(S+1)J
we find that the flipping rate is

b, =Og/R.

(3.16)

(3.17)

When we make the additional assumption of neglecting
the relaxation of the energy fluctuations in the time scale
of interest, i.e., when we do not keep the energy in our
basic set of dynamical variables (which is consonant with
our decoupling procedure) we find

(3.19)

where J'= —,'S(S+1)J=Og, and Jk= —,'S(S+1)Jk.
This equation is identical to the linearized random kinetic
equation for the decay of spin correlations above Tg de-
riued by KS (Ref. 13}for a spin- —,

'
Ising system. We con-

clude that within the approximations made the relaxation
function (S2 (t)

~
S2 } for a Heisenberg spin-glass,

representing the time decay of spin correlations, is given
by the equivalent function found by KS, '3

(S (t) ~S„)=—,'PS(S+1)
(1+P Og —A, )

(S; (t—) SJ )~y 'Xp(It; (t) SJ ) . (3.18) (3.20)

By using the mean-field approximation with the
reaction-field correction term' to write the field h; (t) in
terms of exchange fields coming from other sites and
recognizing that for T & Ts the susceptibility Xo is pro-
portional to S(s+1)/3k' T we find (with P= I /kz T)

where on the right-hand side A, =pJ2 = —,
' ps(S+1)J2,

and we set J ' equal to 8~.
To determine the linewidth and shift [Eq. (3.11)] with

this time-dependent function we must evaluate the follow-
ing integrals:

f e '"' g(S2(t) Si) dt

, N p [S(—S+1)]f 2 2 f 2 f expI —6[2(l+p Os) A, A, '+ic—o/b—]t]dt . (3.21)—"I+P Og
—A, —"1+P28g —A,

'

When we use the semicircular density of states appropriate to a Gaussian distribution of random pair interactions JJ,
we find for the susceptibility in the denominator of Eq. (3.11)

(S"... i S...) = —,'NPS(S+1) . (3.22)

By using this density of states, integrating over time in Eq. (3.21) and by placing the result Eq. (3.22) in Eq. (3.11) we
find for the linewidth and shift

I (co, T)= /I OI (co, T),
where the amplitude is given as

2N(, D ),S(S+1)
Ap ——

9A' 6
and the frequency and temperature dependence is given by

(3.23)

(3.24)

T 2

I(co, T)= 2 i i (I x2)i/2(1 2)1/2
Gx 8y

(2POg)3
f—i —i (a —x)(a —y)

2a —x —y
(2a —x —y) +co (2a —x —y) +co

(3.25)

where

and

1+(POg )

2POg

N

b, 2POg

The real part of I determines the linewidth, and the
imaginary term the second-order (in the anisotropy) line
shift. The first-order shift coming from the presence of
anisotropic interactions vanishes for a spin-glass, see Eq.
(5.2).

The integrals in Eq. (3.25) may be written formally as a
combination of rational functions and elliptic functions of
complex parameters. At high temperatures and for
co/b, « 1
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1 Eco
I(pJ, T= oo ) =—1—

2 2A
(3.26) (4.4a)

so that there is both a temperature-independent linewidth
(which would appear in phenomenological equations as
part of the residual linewidth) and a shift that is linear in
frequency and leads to a positive g shift. Also for zero
field, i.e., at zero resonance frequency,

and

SPaIIz
Nz=

fi

(4.4b)

(4.4c)

(4.5)

where

(3.27)
(4.6)

1 1K ——E
a a

m/2 sin PdP (a' —sin P)' '

and K(1/a) and E(1/a) are elliptic functions. Finally, at
the glass temperature T =Ts, we find the linewidth
diverges as the frequency goes to zero as

I(co~0, Ts) = —27r lna7+const (3.28)

while the line shift (imaginary part) remains finite for all
frequencies.

In concluding this section, we may point out that it
would be interesting to have an experimental determina-
tion of the time-dependent spin-correlation functions (via
neutron-diffraction), similar to what has been published
for Cu-Mn. ' This would serve as a useful check on the
validity of the assumed spin-correlation functions.

IV. HIGH- TEMPERATURE CALCULATION

y=O, +,—
2

CTyf y ~ (4.1)

In order to check our estimate of the flipping rate for
the exchange field, b-kJJTz/fi, we may calculate the
high-temperature linewidth using the method of Kubo
and Tomita. This method uses a different form for the
time correlations, not the Mori-Kawasaki form, so the ra-
tio of the line shift to the linewidth differs from our ratio.
This difference is not a constant factor, but depends on
the value chosen for the flipping rate. In this section we
will calculate the value of b, needed to given the same
linewidth in the high-temperature limit as is given by the
Kubo-Tomita method, and the value of 6 needed to give
the same line shift. We expect a choice of b, in between
these two limits to give the best parametrization fitting
both linewidth and line shift in the high-temperature lim-
it.

We use Kubo and Tomita's expressions for the
exchange-narrowed linewidth hco, and line shift 5, in the
limit of high temperature and low applied field. These
are

The brackets [ ] stand for commutators, and ( ) stand
for configuration averages over lattice variables and ex-
pectation values for spin operators. p7z is the Zeeman fre-
quency for the applied field Hz and the above expressions
for b,co and 5 are correct only for a7z &&co,&, for any y
such that or&0. H,„ is the exchange Hamiltonian that
does the time-averaging of the anisotropy:

1Hex= 2 g~ijS;'Sj ~

27J

and the anisotropy is given by

HDM T g DiJ Sl X SJ
27J

H, ,
y=O +—

where

Hp ———,
' g D,J(S;"SJ Sfsj"), —

l7J

H+ = —,
' g(D J iDfj) [(S(—SJ S,'Sj~)—

/7J

+i (S,'S"—S;"Sj')],

(4.7)

(4.8)

(4.9)

(4.10)

H = —,
' g (D(~)+iDfj)[(sfsJ' SSJ)—

E7J

—(S S"—S;"S')] . (4.11)

M is given by

M = —,
' (M„iMY ) = —,'g—iMs g (SJ" iSJ) . (4.1—2)

J

Since [M,H ]=0 and o =0, the sums will include
only the terms y =0,+. For the y =0 term, we have

[M,Hp ]= g™g D7'J [i (S;"Sj' SSj")—
f7J

(4.13)

5= $ ( orrr), —
y=O, +,—

where

(
~
[M,Hr] ~

~)

A'( (M /2)

(4.2)

(4.3)

In the high-temperature limit, the expectation values of
the spins are independent of the D;J, and averages over
different components may be taken separately, using
((S; )) =0 and ((S; ) ) =S(S+1)/3. We may calculate
(

~
[M,H0]

~
) by squaring Eq. (4.13) and taking the ex-
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2 2

(
~
[M,HO]

~

)= g IDJ ~

S (S+1)
E,J

(4.14)

We expect that D;~ will not be preferentially orientated
along any axis in a random sample, so we may define an
average anisotropy (D )„such that

NZ (D ),=3 g (DPg ) (4.15)

for a=x, y, or z, where N is the total number of spins,
and Z is the number of interacting neighbors per spin.
Using (D ), we have

2 2

(
~
[M,HO]

~
) = NZ(D ),S (S+1)

In a similar way, we may derive the following results:

(
~

M
~

) = , Ng Piis—(S+1),

( i [H,„,[M,HO]]
i

)

,', g '~—',Nz'(D'), (J'),s'(s+1}',

(4.17)

(4.18)

pectation values of the spins and the configuration aver-

ages of the D's independently, noting that

(D,zDgj ), (S; Sz~sgst ) =0 unless either i =k and j = l or
i =l and j = k. This gives an additional factor of 2, and
the sum over i, j, k, and I reduces to a sum over i and j:

S (S+1) Z(D )
6 9fiktt Ts

Z(D ),S (S+ 1)2toz5=
108(kii Tg )

(4.26)

(4.27)

We note that a positive value of 5 corresponds to an in-
crease in the resonance frequency for a particular applied
field, to this line shift is in the same direction as the line
shift we have calculated using the Mori-Kawasaki formal-
ism. For the Mori-Kawasaki results, we have taken
Z =N. If we assume S =2 for AgMn, and set the Kubo-
Tomita high-temperature linewidth equal to the Mori-
Kawasaki value 20/2 [Eq. (3.26)], we will need
fih =kti Ts I~'/ =0.56k' Ts.

In the limit of a strongly exchange-narrowed line,
where (D ),«(J )„at high temperature the Zeeman
frequency toz is approximately the resonant frequency co,
because the line shift is small. In this case, if we set the
Kubo-Tomita high-temperature line shift equal to the
Mori-Kawasaki value 2,co/4b. , we will need
fib, =k+Ts!W2. The general expressions for general S are
A'b = [6/[S(S+1br]]' k&Ts for equal linewidths, and
Ab = [12/[S(S+1)]j' ktiTs for equal line shifts. As we
stated in the beginning of this section, a value of A'b inter-
mediate between these two values should give the best fit
to both linewidth and shift in the high-temperature limit.

where we have defined

NZ(J ),=g J2J . (4.19) V. DISCUSSION OF RESULTS
AND COMPARISON WITH EXPERIMENT

(4.20)

(
~
[H,„,[M,H+]]

~
) = ,', g p~(D2), N—Z

x (J'),s'(s+1)' . (4.21)

Substituting these values into Eq. (4.3) and (4.4), we get

z(D'), s(s+1)
(70=0+ 9'

1/2

(4.22)

3'
8

t I
Tp —7 + Zi/2( J2) i/2si/2(s + 1)i/2

(4.23)

We have kept only the lowest-order terms in 1/Z in Eq.
(4.18), ignoring corrections of O(NZ).

For y = +, we have

2 2

( i [M,H+] i ) = NZ(D ),S (S 1)

From the general result Eq. (3.25}, the solutions in vari-
ous limits Eqs. (3.26)—(3.28), and Sec. IV we obtain the
following description of the ESR behavior for Mn spins in
a metallic host such as silver. Mori and Kawasaki as-
sumed a time dependence

tot
—S"„,(t)= [ito —I (co, T)]S"„,(t)

=(i [co—Im[I (co, T)]]

—Re[I (to, T)])S"„,(t) .

From this equation one can see that ImI is the line shift
and ReI is the linewidth. As

Im[I (co, T)]-co,

3A ~z
4Z(J'), S(S+1)

(4.24a)

(4.24b)

one finds

Ap
N =co 1+

(J2) I/2S(s + 1 )Z i/2

kg Tg ——
3

(4.25)

By using Eqs. (4.1) and (4.2) for linewidth and line shift
we find

We may simplify Eqs. (4.23} and (4.24) by making the ap-
proximation

or

Ap
geff g 1+

In other words, at high temperatures, the part of the self-

energy coming from anisotropic pair interactions contri-
butes a temperature independent linewidth and a positive
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g shift, which we have calculated:

~o
6H =

2 Ap~ gegf =g 1+
4A

(5.1)

These contributions are in addition to the "normal"
linewidth and g shift coming from the local-
moment —conduction-electron —lattice mechanisms de-

scribed by the Block-Hasegawa equations which we have
not considered.

As the characteristic temperature T~ is approached, the
contribution from the anisotropic pair interactions in-

creases. The increase in the linewidth appears sooner than
the shift in the resonance as the temperature approaches
Tz. At temperatures close to Tz, i.e., T/Tz —1.3 the
width becomes frequency dependent and it diverges in the
limit as co~Oat T=T~, or as T~Ts at co=0. The shift
of the resonance beyond the high-temperature value given
in Eq. (3.26) appears at temperature close to Ts. For low

frequencies co~0 the shift is zero except for temperatures
very close to T~, where it rapidly increases. At higher
frequencies the shift appears at higher temperatures; its
increase is more gradual and at T~ it reaches a value
smaller than that for lower frequencies. In contrast to the
width, which diverges at Ts, the shift remains finite at the
glass temperature.

The results for ReI(co, T) and ImI(co, T), see Eq. (3.25),
were plotted in Ref. 3 as the linewidth and shift, respec-
tively, for two different frequencies, 0—=co/5=5X10
and 5X10, corresponding to co=1 and 9.3 GHz for
AgMn with 2.6 at. % Mn, where we made the identifica-
tion 5=—Oz. The curves reproduce the qualitati Ue behavior
of the linewidth and shift observed in AgMn remarkably
well, given the severity of our assumptions. However, our
results for the frequency dependence of the linewidth and
the line shift showed only trends and not the shape of the
experimental curves, since we have not correctly con-
sidered higher-frequency effects. We could better repro-
duce the experimental data at 9.3 GHz by using values of
0=co/5=1, which corresponds to either 200 GHz for
b =Os, or b, =0.058s for co=9.3 GHz. Neither of these
seems physically correct and we are inclined to conclude
that our result, Eq. (3.25), is incorrect at temperatures
close to Ts and at high frequencies. There are several

possible reasons for this. First, we took a mean-field ap-
proach and used the KS correlation function. As estimat-
ed by Morgan-Pond, ' corrections to mean-field theory
which we have neglected may enter for T- 1.25Ts.
Second, we have neglected the two spin (replica) variables
in our solution and they Inay become important as T ap-
proaches Tz. Third, our naive scheme of decoupling the
spin operators in A. space, see Eq. (3.9), breaks down when

mixing of states with different A, by the Zeeman term be-
comes important. Finally, we should include the Zeeman
term in our Eq. (3.13) for the time dependence of the
spins. However as soon as we do this an extra term enters

Eq. (3.19) and when we write the function (S; (t)
~ Sz ) in

terms of (Si,(t)
~
Si ) it does not decouple, i.e., terms with

A, '+A, exist.
There are two noteworthy differences between the reso-

nance properties of a spin-glass and that of a homogene-

ous system where the ordered state can be identified with
one mode, e.g., the k =0 mode of a ferromagnet. First,
since in an ESR experiment on a spin-glass one does not
couple directly to an order parameter, we do not expect
the excess linewidth I(co, T) I(—co, oo) to have a simple
power-law behavior in t (t=T/Tz —1) as t +0.—The
linewidth, as given by Eq. (3.11), is represented by a dou-
ble sum over al/ modes A, ; see Eq. (3.11'a). For homogene-
ous systems, see Eq. (3.11'b), only one mode goes "criti-
cal" and the exponent of the susceptibility (Sk

~
Sk) to-

gether with the dependences of the diffusion constant and
dipole sums on the wave vector in the critical region
determine the power-law behavior with temperature of the
linewidth. In a spin-glass, one cannot single out one mode
and we do not predict a power-law behavior of the
linewidth as t —+0. Nevertheless, when we plot our results
for the linewidth on a log-log plot we could approximate
them for —, & t &4 by a straight line with y —= 1.4. This is
close to the observed exponent, see Ref. 2, however the ob-
served linewidth has a power-law behavior for tempera-
tures closer to Tz, i.e., down to t —

3 .
The second difference in the ESR behavior of spin-glass

is that the line shift first enters in second order in the an-
isotropic interaction HDM, whereas for homogeneous sys-
tems an anisotropic pair interaction could contribute to
the shift in first order of H, „.For homogeneous sys-
tems, anisotropic pair interactions can produce an aniso-
tropy of the susceptibility and therefore produce a shift to
first order in H,~„. However, for random systems the
first-order contribution of II, „vanishes if we average
over the random anisotropy vectors D,z independently of
the spin averaging, as we have done in our calculation.
The first moment of the frequency spectrum, as given by
Mori and Kawasaki, " is

too ——X ' f dt(S(t)
i
S(0)) . (5.2)

D,J ——

where

Visin[kF(R;+RJ+R& )+P]R; RJ(R; XR.J)
R;RJ.Rtj.[1+a(R;+RJ+R,J )]

(5.3)

'd ~5
V& ——15 sin ———S V

EF 5 2
(5.4)

a = (5/2+EF )kp (5.5)

We readily see that when we average over the D;J we ob-
tain coo ——0 because the configurational average over the
D;J-'s vanishes.

Finally, we calculate the amplitude Ao, Eq. (3.23), by
estimating (,D )„see Eq. (3.5). In spin-glasses involving
S-state ions as Mn the major contribution to the anisotro-

py comes from the spin-orbit coupling of the conduction
electrons induced by a Mn ion or by a ternary impurity,
such as antimony in the experiments of Mozurkewich
et al. As shown by Fert and Levy, ' the anisotropic pair
coupling between two Mn spins induced by the spin-orbit
scattering of the conduction electrons by a third ion is of
the Dyzaloshinsky-Moriya form with the coupling con-
stant
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Vo is the RKKY interaction constant, and we used, for
the phase shift rt2 of Mn, g2 ——(~/5), ( —,—S). The posi-

tion vectors R are referred to the ternary site as the ori-

gin. By using this coupling constant and assuming a ran-
dom distribution of Mn and impurity ions, we can write
the configurational average of D?, Eq. (3.5), as

N(D ),= Vi(sin [kF(r+R+
~

r —R
~
)+P]),

Mn imp f dR 4 Rp f d f d8 8 2mr cos 8sin 8

r R (r +R 2rR—cos8)[1+a(r +R+
~

r —R
~
)]

2 2 CMnclmP 1 x (1—x')
=8m Vi 2 dr —ds

(1+s —2sx) 1+a gR
(5.6)

where we have used gR =r+R+
~

r —R ~, s =r/R,
choosing always r to be the smaller of r and R, and multi-
plying the whole integral by 2 to include both the case
where the Mn is closer to the origin and the case where
the impurity is closer. Also, (sin [kF(QR)+P] )-=—,, v~
denotes atomic volume of a host ion, i.e., for a fcc lattice
vz ——a /4, and CM„,C; p are the concentrations of Mn
and impurity ions. The radial integral over
[I+a(QR)] is approximated as

1

1+a gR
2

R 1
dR —+ dR

(3aR) R

R,=ln
ro 2 (3aR, )

= —,
' +in(R, /ro), (5.7)

where ro is the nearest-neighbor distance on the host lat-
tice, and where R, is defined as that value R for which

a+R=a(r+R+
~

r——R~ )=3aR .

is comparable to the other term in the denominator, i.e.,

3',=1 .

The remaining integral is written as

x(1—x) 8
ds dx

1+s —2sx

By placing these results in Eq. (5.6) we find

N(D ),= 2 ln
32~' Rc

ro

(5.8)

(5.9)

X [(Vi "
) x + ( Vi ) xy ], (5.10)

where x is the concentration of Mn and y is the concen-
tration of the ternary impurity, if any.

We use A,~ 0.03 eV as the spin-orbit coupling strength,
EF——5.5 eV as the Fermi energy, Vo/vg ——2, 32)& 10 G pg
per Mn, ' and estimate S =2 for the Mn spin value. In
Eq. (5.10), we use ro=2. 89 A, x =0.026, y =0, and
R, =38.7 A, estimated using the values kz ——1.19 A ' as
the Fermi wave vector, and 5=0.25 eV as the width of

I

the virtual bound state. This gives us a final value of

N(D ),=1.51X10 (Gpii)

By using Ts ——10.3 K for 2.6 at. %%uoM n inA g, S=2, and
identifying the flipping rate b, as 8s=1.53X10 G}Miilirt
we find Ao, Eq. (3.24), is given by

Ao ——1320Gpii/%=660 G (5.12)

in units of field, using g =2.
As discussed in Ref. 3, this value represents an upper

limit on Ao, since we have used S =2. From considera-
tions of the screening of Mn 3d electrons, we expect
SM„&2 and we see from Eqs. (5.4) and (5.10) a rapid
reduction of AD. Since Ao"p' ——312 G, we find that the
DM interaction is amply able to explain the observed
magnitude of the low-frequency linewidth.

As a function of ternary impurity concentration we
predict on the basis of Eq. (5.10) that the linewidth and
shift scale linearly with the concentration of a ternary im-

purity y, provided the concentration is not so large as to
alter Tg. This is in agreement with the data on AgMn
with antimony. Although from simplest considerations
of the RKKY interaction one expects Ts to increase
linearly with the concentration of Mn, experiments have
shown, and Walker and Walstedt have given the ra-
tionale ' for, a less rapid increase. Causes similar to those
which produce this deviation from linearity will change
our dependence of (D ), on x. Therefore it is not
surprising that the experimental variation of Ao with Mn
concentration found by Mozurkewich et al. is also sub-
linear.

VI. SUMMARY

In conclusion, we have attempted a microscopic theory
of the ESR resonance in AgMn and have found quantita-
tive agreement, at low frequencies, for the linewidth. The
line shift, the high-frequency linewidth as well as the con-
stant high-temperature value found, see Eq. (3.26), all
await further developments to receive satisfactory ex-
planation. In particular, the mechanism explored here
must be integrated with other mechanisms indigenous to
spin-glasses. It is inevitable that near the spin-glass tem-
perature our description is inadequate, i.e., we cannot sim-

ply decouple considering only single-spin variables.
Nevertheless, before attempting more difficult and at this
time intractable calculations, it was worthwhile exploring
the simpler consequences of the theory presented here.
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