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Kinetics of conserved multicomponent systems
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Kinetics of multicomponent quenched systems is studied with the use of a Monte Carlo simula-

tion technique. By employing Kawasaki spin-exchange dynamics, we investigate the time evolution
of systems quenched from a high-temperature equilibrium state to low temperatures ( T & T, ). For
"early" times, we find that the mean-cluster radius R for three- and six-component systems grows
as R = t", where n is approximately 0.2 as observed in binary alloys.

I. INTRODUCTION

There has been considerable recent interest in the field
of kinetics of quenched systems undergoing phase separa-
tion and/or ordering. ' Both theoretical ' as well as ex-
perimental' investigations have revealed interesting
and novel physics. Until recently, these studies have been
carried out on simple Ising systems quenched from a
high-temperature equilibrium state to low temperatures
( T & T, ). The system is thus in a state far from equilibri-
um, evolving toward its equilibrium state correspon. ding
to the final quenched temperature. This evolution is gen-
erally characterized by the time dependence of some
relevant length, for example, the mean radius R of the
clusters or the position of the peak in the static structure
factor. This mean radius R seems to follow a simple
power law, 8 =t". For two-component conserved sys-
tems, the exponent n has been shown to be equal to 0.2
for "early" and —, for late times. ' ' For two-
component nonconserved systems, a number of authors
have shown that n is equal to —,

' both analytically ' '
and numerically, ' in agreement with experiments. Re-
cently, we ' ' have studied ordering in nonconserved mul-
ticomponent systems and found that the exponent n de-
pends upon the number, Q, of the components present in
the system. For large Q it approaches a constant value of
0.41 which has been shown to be relevant for grain
growth in metals. ' This interesting study has motivat-
ed us to investigate the kinetic behavior of the conserved
multicomponent systems which we report in this paper.
Apart from fundamental interest, our simulations of the
conserved multicomponent systems should be relevant for
the phase-separation process in a number of metallurgi-
cal and surface systems (or thin films).

II. MODEI AND MONTE CARI.O METHOD

The kinetic behavior of multicomponent systems is
studied by considering the Q-state ferromagnetic Potts
model which is described by the following Hamiltonian:

0= —Jeans, .s,.
NN

where S; is the Q state of the spin on site i (1 &S; &Q)
and 5,J is the Kronecker 5 function. The sum is taken
over all of the nearest-neighbor (NN) spins and the ex-
change constant J& 0. In all of the simulations, we start
with a high-temperature equilibrium state of spin configu-
ration with a known fraction of each component Q and
rapidly quench to T & T„where T, depends on Q. To
reduce the boundary effects, we perform the simulations
on a large square lattice, X =90&90 sites, and use period-
ic boundary conditions. To conserve the number of spins
of a given component or species, we employ Kawasaki
spin-exchange dynamics. We randomly choose a pair of
unlike spins and carry out an exchange provided that the
transition probability 8',

exp( AE Ikz T)—8'= r
[1+exp( —AE jktt T)]

is greater than or equal to a random number r (0 & r & 1).
For W&r, the old spin configuration is retained. The
spin configuration is stored for analysis at regular inter-
vals. We define the unit of time as one Monte Carlo step
(MCS) per spin, which corresponds to N microtrials or
spin-exchange attempts, where N is the total number of
spins in the system. The results quoted below are aver-
aged between three and six runs.

We have studied the growth kinetics of Potts model for
Q =3 and 6 for T =0.6T„and Q =3 for T =O.ST,. To
compare our results with simple and well-understood sys-
tems, we have reinvestigated the growth kinetics of the
binary alloy, ' which is a two-component system and
which corresponds to the Q =2 Potts model. The
binary-alloy simulations are carried out with —, concentra-
tion of one species and —,

' concentration of the other
species in order to have a proper comparison with the
Q =3 case in which each species has a concentration of

In Fig. 1 we display spin configurations for Q =3 for
different times during the evolution. Notice that at early
times, the clusters are compact and grow with time by
coalescing with the clusters of like species. In this
manner, the system minimizes the surface boundary or
surface energy as can be seen from Fig. 1.
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t = 2000 MCS/spin t = 4000 t = 8000

t = 16000 MCS 'spin t = 20000 t = 24000

t = 40000 MCS/spin t = 45000 t = 50000

FIG. 1. Spin configurations for the Q =3 Potts model on a square lattice that was quenched from high temperature to T =0.6T, .
Kawasaki spin-exchange dynamics were used.

E =bt", (3)

where b is a constant. We obtain the exponent n by plot-
ting logio(E) vs logio(t). In Figs. 2(a) and 2(b) we display
these plots for Q =3 and the binary alloy, respectively.
After the transients are over ( & 8000 MCS's), the analysis

The growth kinetics of the system can be studied by
monitoring the surface energy or number of surface bonds
as a function of time. In d =2, the average surface ener-

gy is proportional to the mean perimeter of the clusters
from which one can obtain the mean radius of the clus-
ters. In other words, the mean energy is proportional to
the mean radius of the clusters. To obtain the mean ener-

gy, we have averaged our data over six runs for Q =3 and
three runs for the binary alloy, and fit the average energy
with a simple power law

of the slope gives an exponent n —=0.21 for Q =3 and
n-=0. 17 for binary alloys. To check the temperature
dependence of the exponent n, we also carried out three
runs for Q =3 at T=0.8T, and obtain n —=0.19. We be-
lieve that for early times the exponent n is very close to
0.2 for Q =3, as observed in the case of binary alloys for
other number fractions of the minority species. For
binary alloys, Binder and Stauffer ' interpreted this
early-time growth exponent as resulting from a growth of
clusters due to coalescence and dissociation of smaller
clusters which move with an effective diffusion constant.
To verify this point, we plot the cluster configurations in
Figs. 3 and 4 for Q =3 and the binary alloy, respectively.
For display purposes, we embed the clusters of one com-
ponent into the sea of the other two components. This
clearly demonstrates the occurrence of such events. We
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FICr. 2. Plot of log&0(E) vs log~o(r) for (a) the Q =3 Potts model and (b) the binary alloy that was quenched from high temperature

to T =0.6T, . Dots represent data that has been averaged over six runs for the Q =3 Potts model and three runs for the binary alloy.

The exponent n is extracted from the slope of the long-time-fitted line. The concentration of the minority species for the binary alloy

is 3, while the fraction of each of the three components for the Q =3 model is also —, .

find that this growth mechanism persists as late as 50000
MCS s, which is the maximum time of our simulations.
Until this time, the clusters are not sufficiently large or
sufficiently far apart that the second growth mechanism,
namely, growth due to evaporation and condensation of
monomers, becomes the dominant mechanism. Many

years ago, Lifshitz and Slyozov discussed the growth of
clusters due to evaporation and condensation for very late
stages and showed that the exponent n = —,'. Owing to
computer-time limitations and finite-size effects it is diffi-
cult to simulate very late times to observe" this —, ex-
ponent. We should point out that we do see growth

t = 16000 MCS/sP)n t = 20000 t = 24000

1 = 4QQQQ MCS/spin t = 45000 l = 50000

FIG. 3. Spin configurations for the Q =3 Potts model on a square lattice that was quenched to T =0.6T, . Here, we embed the
clusters of one of the components into the "sea" of the other two components. Clusters which grow due to coagulation and dissocia-
tion are clearly seen.
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t = 22000 MCS/spin t = 26000 t = 30000

t = 34000 t = 38000 t = 42000

FIG. 4. Spm configuration for the binary alloy quenched to T =0.6T, . The concentration of one species is chosen to be —in order

to compare them with the results for Q =3 in Fig. 3.

occurring due to association and dissociation of mono-
mers, however, the dominant mechanism of growth at
early times is coagulation-dissociation of small clusters.

In Figs. 5(a) and 5(b) we also display, for Q =3 and the
binary alloy, histograms of the cluster-size distribution
function F(x), where x is equal to A/A, A being the
mean domain area. %e have checked the time invariance
of the size distribution function and the data exhibited in
Fig. 5 is averaged over several different times between
15000 and 45000 MCS's. Both of the distribution func-
tions are very similar and exhibit two peaks, one corre-
sponding to large clusters and the other to small clusters
(monomers, dimers, trimers, etc). We notice that the area
under the peak of small clusters is larger in the case of the
binary alloy than that for the Q =3 case, which indicates
the existence of more small clusters for the case of the
binary-alloy system than for the Q =3 case.

We have also simulated the Q =6 Potts model, mainly
to check if there is any dependence of the exponent n on

Q as observed in the case of a nonconserved Potts
model. In Fig. 6 we display a double logarithmic plot of
the mean energy versus time, and from the slope we find
that the exponent n =-0. 18. By keeping the statistical er-
rors of the Monte Carlo simulations in mind, we believe
that this exponent is also very close to 0.2, as seen for
Q =3 and the binary alloy. In the Q =6 case the clusters
of a given specie (with total concentration of —, ), are
found to be very small and distributed far from each oth-
er. The growth of these clusters also occurs mainly via a
coalescence-dissociation mechanism ' since clusters are
sufficiently small to diffuse.
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FIG. 5. Averaged size distribution function F(x) for (a) the

Q =3 Potts model and (b) the binary alloy with concentration 3

for one component.
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simulate this late-stage kinetic behavior. The "crossover
time" associated with the transition from the first growth
mechanism (coalescence-dissociation) to the second
growth mechanism (evaporation-condensation) is also im-
portant. This crossover time should depend upon the
value of Q and will most probably increase with increas-
ing Q. It is also possible that for Q )3, the long-time ex-
ponent is less than —,', similar to our earlier results on non-
conserved Potts models. However, for the small values of
Q which are physically interesting in the conserved-spin
case, we do not expect the deviation in the long-time ex-
ponent from the value of —,

' to be significant.
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FIG. 6. Plot of log~p(E) vs logip{t) for the Q =6 Potts model
that was quenched from high temperature to T =0.6T, . Dots
represent data that has been averaged over three runs.

We would like to address the question of whether or not
one will ever see the Lifshitz-Slyozov regime (or —,

' ex-
ponent) in Q-state Potts models. We believe that for very
late stages, when the clusters are sufficiently large that
they cannot readily diffuse, the only plausible mechanism
of growth is evaporation-condensation, which will give
n = —,. However, at the present time it is not possible to

III. CONCLUSIONS

In summary, we have studied the kinetic behavior of
the conserved multicomponerit (Q =3 and 6) systems and
find that the early-time-growth exponent is very close to
0.2, as observed in the case of binary alloys. From cluster
configurations, we conclude that the main growth mecha-
nism is the coagulation and dissociation of smaller clus-
ters. At present, we are not aware of any experimental
study on the kinetics of the conserved multicomponent
systems and we hope that this work will motivate experi-
mental investigations.
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