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Computer simulations are reported for the average number of lattice sites falling under a localized wave
function as a function of concentration for a model binary system with ‘‘infinite disorder.”” Novel struc-
tures are found near classical and quantum percolation thresholds which are explained using scaling argu-
ments. It is also pointed out that extended states may appear even at infinite disorder in two-dimensional

binary systems.

Classical percolation provides a useful framework for ob-
taining an intuitive understanding of Anderson localization
in binary systems.! This analogy, however, does not hold in
a strict sense. Localization being a quantum-mechanical
phenomenon, conduction sets in when an extended state is
formed.>=® This we take as the definition of ‘‘quantum per-
colation.”” A striking feature of this model is that as ex-
tended state appearing at the quantum-percolation thresh-
old, x, cannot be destroyed even by infinite disorder.>3

A direct estimation of localization is done in terms of ‘‘in-
verse participation number,” £, the inverse of number of
lattice sites participating in a wave function. We report nu-
merical simulation results for £ in two- and three-
dimensional systems using equation of motion method.>%’
Novel features are found near classical and quantum per-

colation thresholds.
scaling arguments.

Plausible interpretation is given using

COMPUTER SIMULATION FOR £ IN QUANTUM
PERCOLATION FRAMEWORK

We work with the Hamiltonian
Hu= 3 VI0i) Gl 6))

which mimics a system with infinite disorder; ¥V, the hop-
ping integral between atoms of type A4 situated at nearest-
neighbor sites i and j, takes a fixed value. The states are
confined to A4 sites only and the other type of atoms are for-
mally removed from the picture. In such a system we shall
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FIG. 1. Computer simulation results for (a) square and (b) and (c) cubic lattices.

(b) and (c) are obtained using different random

number generators. Points in the uninteresting region, x < x,, are not shown—monotonic decrease is found.
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study the effect of increasing concentration x of A4 atoms.
We shall denote by x., the percolation threshold at which an
open cluster of 4 atoms connected by nearest-neighbor
bonds is formed in an infinite system, and by x,, the
quantum-percolation threshold defined above.

The numerical method used is described in Refs. 3 and 6.
It involves the calculation of the time dependence of a ran-
dom trial-wave function and yields averages of the quantity

N N 2
lEItIl,-l“/[le,-lz

where ¢ is an eigenfunction and the summations are over
all sites. This is N~! times the inverse participation ratio,
i.e., Z. Band averages of (2), denoted by (Z?) are related
to time averages of a suitably chosen random wave func-
tion, according to’

, 2

N
(2)=(N/2) 2(26,?—6,7) , 3)

where Q, is the time-averaged probability associated with
site i. In (£?) we have used polynomial weighting about
the center of the band.® Results for fairly large square and
cubic lattices are shown in Fig. 1. Two dips are seen which
should be attributed to x. and x,. A sharp rise just above x,
is found which attains a maximum followed by a sharp fall
to a minimum. After this minimum there is a small ten-
dency to rise or to remain almost constant. We find x,
=0.59 and x,=0.73 for square lattice, and for cubic lattice
xc=0.37 and x,=0.47. The values for x, are in very good
agreement with earlier rt’:sults,8 in particular the value for
square lattice.

INTERPRETATION OF FEATURES IN &

We shall study three successive regions (x < x;; x, <x
< Xg; X = Xx,) individually.

(i) x < x.. The wave function is confined entirely to fin-
ite, isolated clusters of sites. States of energies near the
center of the band will have comparable amplitudes
throughout the finite cluster; they would be extended but
for the limitation to the extent of the cluster. This should
be understood as follows. The only tendency towards locali-
zation of a state to part of the cluster comes from those
sites with reduced coordination number. This forces the en-
ergies of states of large amplitude on such sites towards the
center of the band where they will overlap in energy with
states associated primarily with sites of higher coordination,
reducing the tendency towards localization beyond that re-
quired by the cluster size. Thus (£) for a given cluster is
the inverse of the cluster size v, where {( ) denotes average
over band energies. (£ ) for the entire sample is given by

(@Y= [vwrdv @

where w(v) is the cluster size distribution normalized to
one. As x. is approached, more and more of w(y) is
pushed towards large v until at x, the mean cluster size
diverges,

SJowrdve (e —x)7 x— x" )

Consequently, the integral in (2) decreases monotonically as
X — x. but remains finite at x,.

(i) x.=x <x;. Above x. there is an infinite cluster.
The fraction of sites in the infinite cluster, Pg, is the per-
colation probability. The normalization of w(»), which
refers to finite clusters only, is now

Jwrav=1-p . 6)

The percolation probability grows monotonically with in-
creasing x ( > x.),

P (x —x.)B; x— x,* . @)

It is convenient to introduce a normalized cluster size distri-
bution for x > x.,

v =w)/A-PH; [v()av=1 . ®

Classically, the infinite cluster does not contribute to ().
However, quantum mechanically the states in infinite clus-
ter may be localized for various reasons.* Denoting by v,
the number of sites under the localized wave functions in
the infinite cluster and assuming a normalized distribution
W (v.), we can write () as

(2)=-F) [ lav+P; [Wvitdv, . O

As x increases above x., the larger clusters merge with the
infinite cluster. The weight in v(v) shifts down towards
smaller clusters, whereas the weight in W (v.) shifts to-
wards larger localized states until an extended state appears
at x,, i.e.,

fv(v)vduoc (x—x)""5 x—x* , (10)
and
fW(vL)devLoc (xg=x)7% x—x; . an

Thus the second factor in the first term on the right-hand
side of (9) increases singularly in a monotonic fashion with
x as the mean size of the finite cluster decreases; the first
factor (1—P;) remains close to unity for x near x. but
monotonically decreases with increasing x. The second term
decreases monotonically to a finite value at x,~. Thus there
is a maximum at some x > Xx..

(iii) x =x,. At x, an extended state appears in the infin-
ite cluster. A fraction P/ of the sites in the infinite cluster
falls under the extended state and is defined as quantum-
percolation probability. The normalization of W (v.),
which pertains to localized states (in the finite cluster) only,
is now

fW(vL)de= 1-P7 .
The P grows monotonically with increasing x > x, like
P (x —x)™0; x— x;* . 12)

The normalized size distribution for localized states in infin-
ite cluster for x > x, is

V)= W)/ =Py [Vv)dv, =1
Thus (&) is finally given by
()= (1-P) fv(v)v—ldv

+(1=POP; [V vitdv, (13)
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The first term, after having shown a peak at some x > x, is
now dercreasing monotonically for x > x,. In the second
term the weight in ¥ (v;) shifts down towards smaller local-
ized states, i.e.,

JVvoovidvie (c—x) =" x = x* . a4

Following similar arguments which were applied to the first
term in (9), we would expect another maximum at some
x > x,. This maximum is expected to be weak because (a)
the overall magnitude of (£) shall be small at such large
values of x and (b) the probability of finding small localized
states in greatly swollen infinite cluster shall be very small.*
Putting all of this together, we have obtained the following
results for (£) which are also depicted schematically in
Fig. 2:

(1) x < x.: a monotonic decrease due to growing cluster
size; (2) x =x.: a minimum due to ‘“‘divergent’’ mean clus-
ter size; (3) x > x.: an initial increase due to decreasing
mean cluster size of finite clusters; (4) x > x.: a maximum
and subsequent decrease due to infinite cluster containing
an increasing number of sites. Localized states in the infin-
ite cluster contibute to (£?) and add to its magnitude which
is otherwise steadily falling; (5) x =x,: another minimum
due to divergent mean size of localized states; (6) x > x,: a
slow decrease for a weak maximum at x = x,. This is in ex-
cellent agreement with what the simulations have revealed
in the previous section.

The peaked structure in (£ ) should show up in an ex-
perimental study on conductivity as a function of concentra-
tion. They may prove to be of significance in metal-oxide-
semiconductor (MOS) devices.® It may be interesting to
calculate the exponent 8, and connect it to the conductivity
exponent.>!1® The observed structure may yield further in-
sight into the percolative approach to spin glasses and the
recent novel studies on superconducting networks.!!

Attention should be paid to the low value of x, for square
lattice which may be significant in connection with the con-
troversy!? over complete localization in two-dimensional sys-
tems at small disorder. Tendency towards localization keeps
() large and formation of extended states or very large
localized states reduces the magnitude of (Z). If we ex-
clude the possibility of extended states and very large local-
ized states, then P/ will be nearly zero and we will expect a
monotonic decrease in () after the maximum at x = x, to
a negligible value at x =1 ( shown by dash-dot line in Fig.
2). But the numerical calculations show a large departure
from this behavior; (&) instead steeps down to a very

<Z>

X—

FIG. 2. Schematic plot of (£) vs x as expected from Eq. (13):
Dashed line denotes classical contribution coming from the first
term in Eq. (13). The difference between dashed line and solid line
is the contribution coming from localized states in the infinite clus-
ter. Dash-dot line is for the case when P§=0.

small value much earlier than x =1. This could indicate ei-
ther that extended states have appeared, or that very large
localized states are formed at x, which grow in size as the
size of infinite cluster grows for x > x, but are never con-
verted into real extended state. The difference between the
two possibilities would be beyond the scope of numerical
simulation to detect. However, while one could imagine the
latter to be possible at very large disorders, it would be
strange if it happens at infinitesimal disorders over a large
concentration range (70-100%). Thus our results showing
extremely small values of (£) for x >x, do not favor
complete localization at very small disorders.
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