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The coefficient y~ of the first term in a gradient expansion of the Hartree-Fock (HF) density fUnctional

%'as calcolated by ShalTl to first order ln e . It 1s now knostI(t/n that. p~ d1verges lf e 1s lnclUded to all ol'-

ders. It has recently been claimed that if the exchange energy is defined in terms of density-functional

(DF) elgenfunctions, rather than HF eigenfunctions, not only is yxn" first order in e2 but also yxn" = l s»~.
It is proven in this paper that, in fact, y~DF =

7 ys»m.

Sometime ago Sham' calculated the coefficient of the first
term in the gradient expansion of the exchange energy den-
sity functional. ~ He argued that since the exchange energy
is proportional to e (where e is the charge of the electron),
an expansion in powers of e must stop with the first term.
I" and others performed the calculatIOA to all orders In e
and found the coefficient diverged. I pointed out4 that the
exchange functional contained not only exchange energy but
also the difference between the kinetic energy of the
Hartree-Fock (HF) eigenfunctions and the density-
functional (DF) eigenfunctions and thus was not expected
to bc proportional to e . Pcrdcw et QI. noted that thc ex-
change energy could be defined to be the Fock integral of
eigenfunctions of a local (i.e., DF) potential which would
eliminate thc kinetic cncI'gy correction Rnd I'csUlt in Rn ex-
change energy proportional to e2. Local potentials which
result In a charge densIty identical to the HF charge density
Gt' whIch minimize thc total cncI'gy have bccA used; cITlplI'I-

cally, they are nearly identical, but only the latter seems to
sRtisfy thc variational p1 opcI ty of thc dcnslty fUnctlonal
theorem. 2 Langreth and Perdew7 assumed that Sham's
first-order (in e2) HF calculation is equivalent to the DF
calculation and reobtained his result. In this paper I calcu-
late yDF wIth. AG assumptions or approximations Rnd obtain

YDF ++Sham.

Wc consIder 8 fIce-clcctI'on gas to wh1ch 8 weak cxtcrA81
potential

V (R)e' ' '+ V ( —R)e

is applied. With no loss of gener ality, we take
V,„,( —R) = V,"„,(R) to be real. This results in a self-

consistent DF potential Vg(e'" ' " + e '" ' ' ) to which
the electrons respond. Thus

g —1/2 [ ( 1 n2 p
2 ) 1/2 et k ~ r

ei(k+ K) ~ r +P ei(k —K) ~ r ] (1)

whcrc 0 is 8 normalization volume and

-= vz/r(Jt2+2k R) p-= v-/~(z2-2k R) . (2)

Thc cxchaAgc cncrgy of 8 palI of clcctrons

yk(1 t)0„'( I t)rt2'4k( 1»4„(r»d'rt d'r2

Is easily cvalUatcd to obtaIA

4' 1 —(n- —n-, )' —(p- —p, )'
A

(n-„+p-„.)' (n-„+p-„)'
Ik —k'+R)2 fk —k' —R)2,

The corrections to the
~
k —k'~ ' term arise both from the

renormalization of the k and k' plane waves and from
k —k' momentum transfers between k+ R and k'+ R
plane waves. Thc total cxchBAgc cncI'gy pc1 UAIt volume is

E„= ~i E„(k, k')f k f-„.[f12/(2m )6]d3k d3k', (4)

where f-„ is the Fermi function and a factor of 2 for spin

has canceled a factor of ~ to correct for counting each

k —k pair twIce. NotlIlg tllat p k + K
= —n k aIld sullstitut-

111g fror11 (2) and (3) 11lto (4) yields

whcl'c

0 k (R) = (f-„+y —f-„)/(~Jk 2+ k R) = f-„'+~ (E2+ 2k R)f-„"+T4-( Jk2+ 2 k R)'f-„"',

and we have used d'k= k dO dE. Equation (5) is exact to
order V-„and in the R 0 limit exact to order Ã2 if the
expansion of 0-„(R) given in (6) is used. There

f-'= —g(E —E,), f-" = — 5(E—E,)k dE

f-"' — o(E —Et:)dE'
The first integral in (5) is the well-known free-electron gas
exchange energy. The second we write as a sum of integrals

30 2223



2224 BRIEF REPORTS 30

I(f-„,f"-„)= I(m, n'). We have

k —k' '(K'+ 2k. )
(7)

Letting p, be the cos of the angle k makes with K and p,
' the cos of the angle k' makes with k, we have

k' K =Jtl, I4' —(1—pl)I 1{1 —p, 'I)1~1 sin(rtr —rtr')

and

2

I(1,1') =- ,

" k K[p, pp, ——(1 —p, ')'~'(1 —p, ')'~'sin(P —@')]
'dp, dp,

'
(2Ir)' " 2k'(1 — ') (K'+ 2kFKp, )

4 VK IkF 8 VK kF ) ~ 2kF+&
dp, dp, '= — — — ln(2Ir)1 ~ —I K+ 2kFp, (27r) kF 4k 2kF K—

To order E2 this gives

I(1,1') =—8 VV 1— (9)(2m)' 4kF

Note the cancellation of the divergent (1—p. ') in Eq. (8).
Because of the integration by parts necessitated by f" and
f'", the remaining I(m, n') have more divergent denomina-
tors whose cancellation is much less obvious. Because of
the tedious nature of these integrations, we only list the
results:

I

we find

i/3

E DAJ 3 3 1 -e4. 0 d r[p +p(K)e'" ' '
0

+ ( K)e —IK r ]4j3

r

pIt '+ ~po ' '([p (K) ]'+ [p ( —K) ]'}

(14)
I(2, 1') = 0, I (1,2') = —4 VK KI/(2n )3kF'

I(2, 2') =
7 Vg~KK /(2Ir) kF, I(3, 1') =

9 VgK/(2n ) kF

where we have made a second-order binomial expansion
and integrated over the normalization volume Q. Thus

and E„=E„"+—,
'

y„po +' f
~
9p( r ) Pd r (15)

r

2kF
(2m)' K

2kF+K
( )2k, '"2k-E '

or in the E 0 limit

4VgkF
(2n )' l2 kF

Inverting this we obtain

1 —— [[p(K)]'+ [p( —K) ]'} . (12)
32k,' 6 kF

1IlsertlIlg tllls Ill 'tile I(nl, n ) and usIIlg kF = (37r po) we
obtain

I(1,3') = T V K KI/(2m )1k'

All I(m, n') with m+ n' & 4 are of order K or higher.
Squaring Eq. (1) and integrating we obtain (including a

factor of 2 for spin)

4V r kF
p(K) =p(-K) = ", , dp, dk(2Ir)' " o

2 K + kKp

with y„= —1/27vr(37r )'~ = ~ysh, . Since we are working

only to second order in p(K), Eq. (15) is equivalent to the
standard gradient term ~y„„r p( r ) 4~1~0p( r ) ~Idler.

Sham's calculation, based on the density response function,
is equivalent to finding an exchange potential (and hence
density functional) which produces a charge density identical
to that obtained from a HF Hamiltonian with its infinities
averaged out. Because by definition the DF eigenfunctions
yield the correct charge density, that path was not open here
and I had to calculate the exchange energy directly as a
function of the charge density. In view of these basic
differences, it is perhaps surprising that the integrals we
evaluated differ only in that Sham used screened exchange.
(1 thank Professor Langreth for pointing this out to me. )
The difference in our results is a consequence of the fact
that the X 0 limit of screened exchange is not equal to
unscreened exchange. ' Presumably then, the exchange-
only limit of Ref. 7, which is based on a screened interac-
tion, is incorrect, but the exchange-correlation y„, obtained
there is correct.

It is trivial to evaluate E„ in the K ~ limit. Working to
order K 6, Eq. (3) becomes

4 7r 6 ~ 547r(37r )'~

t

&& [[p(K)]'+ [p( —K)]'}, (13)

E„(k,k )
k —k' I

Comparing this with the local density approximation (LDA),

VK [K (k —k'))'
(16)
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Since this has to be independent of the direction of K, the
last term can be averaged over that direction to yield a k
and k' independent result which can be factored out of Eq.
(4). Eguatlon (10) becomes

, t f p (K) P+ lp ( —K) I'I

Note that the last term cancels T of the Coulomb self-

cnclgy of parallel spin clcctroAs. Had wc consldcfcd only
the k —k'+K momentum transfer terms in Eq. (3), as is
sooletlITlcs done, thc cancellation wou1d have bccn pclfcct. .

Finally, note that in general one can write for p(K) &( pq
' I/3

pc-"'[p)+ g'
I p(K) I'I.(K)1, (&8)

4 m
K

F(K- 0) = —+2 2 E2
9 81 k~2

F(K) can be obtained in principle for any K by substituting
(3) into (4), integrating numerically, and using (10) to
eliminate Vt~ in favor of p(K). Taking the variation of E„
with respect to p and noting that because the number of
electrons Is conserved, po Is not var~ed, the AS3 exchange
potential is obtained:"

' 1/3

Vxs p-2/3 X'p(K)P(K)ei K ~ r (19)
2

k

In metals and semiconductors where the valence p(K) is
small this result should be nearly exact and can be super-
posed with a valence-core HF potential to obtain the total
exchange potential sccA by valcncc clcctI'ons. This potential
appears to be more negative than the LDA in the intern1edi-
ate wave-vector region and may correct the large errors in
semiconductor energy gaps calculated with the LDA.

I. thank PlofcssotJohA Pcrdcw for enlightening corre-
spondence. This work was supported by the National Sci-
ence Foundation under Grant No. DMR-80-19518 and by
the Robert A. %elch Foundation.

~L. J. Sham, in Cornputationa/ Methods in Band Theory, edited by
P. J. Marcus, J. F. Janak, and A. R. Williams (Plenum, New
York, 1971), p. 458.

2P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964).
3W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
~L. Kieinman, Phys. Rev. 8 10, 2221 (1974); 12, 3512 (1975).
5A. K. Rajagopal and S. Ray, Phys. Rev. 8 12, 3129 (1975).
60. J. %. Geldart, M, Rasolt, and C. O. AmMadh, SoHd State Com-

mun. 16, 243 (1975).

7D. C. Langreth and J. P. Perdew, Phys. Rev. 8 21, 5469 (1980).
8V. Sahni, J, Gruenebaum, and J. P. Perdem, Phys. Rev. 8 26, 4371

(1982).
9J. P. Perdew and M. R. Norman (unpublished).

In par tlcular, %e have evaluated the 1~ 0 lImlt of a scfeened
I (3, 1') and obtained I„q(3,1') = —

2 Iq q(3, 1').
~IBecause the charge density, and hence the energy, is independent

of the zeroth Fourier transform of potential, the zeroth Fourier
transform cannot be obtained from a variation of the energy.


