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The coefficient 7y, of the first term in a gradient expansion of the Hartree-Fock (HF) density functional

was calculated by Sham to first order in e2.

ders.

It is now known that yHF diverges if e? is included to all or-
It has recently been claimed that if the exchange energy is defined in terms of density functional

(DF) eigenfunctions, rather than HF elgenfuncuons not only is y DF first order in e? but also y PF=1yg,.m.

1t is proven in this paper that, in fact, y P! x

Sometime ago Sham! calculated the coefficient of the first
term in the gradient expansion of the exchange energy den-
sity functional.>?® He argued that since the exchange energy
is proportional to e? (where e is the charge of the electron),
an expansion in powers of e? must stop with the first term.
I4 and others®® performed the calculation to all orders in e?
and found the coefficient diverged. I pointed out* that the
exchange functional contained not only exchange energy but
also the difference between the Kkinetic energy of the
Hartree-Fock (HF) eigenfunctions and the density-
functional (DF) eigenfunctions and thus was not expected
to be proportional to e2. Perdew et al’-® noted that the ex-
change energy could be defined to be the Fock integral of
eigenfunctions of a local (i.e., DF) potential which would
eliminate the kinetic energy correction and result in an ex-
change energy proportional to e?. Local potentials which
result in a charge density identical to the HF charge density
or which minimize the total energy have been used;® empiri-
cally, they are nearly identical, but only the latter seems to
satisfy the variational property of the density functional
theorem.2 Langreth and Perdew’ assumed that Sham’s
first-order (in e?) HF calculation is equivalent to the DF
calculation and reobtained his result. In this paper I calcu-
late ypr With no assumptions or approximations and obtain
YDEF= ';'YSham~

We consider a free-electron gas to which a weak external
potential

Veu(R)e' X T4 Vo (=R)e~ X T

= 7 7 YSham-

consistent DF potential Vi-(e'?'7+e“i'?) to which

the electrons respond. Thus
o= Q-1 _a%_ﬁ%)l/zel?. T
+a_ﬁ.e1(?+i')-'r"+B_k,ei(?—T(')-'r’] o
where () is a normalization volume and
ap=Vg/+(K*+2k-K), By=Vg/3(K*-2k-K) . (2
The exchange energy of a pair of electrons
— [ F DU F D (P, (F) dry dr,
is easily evaluated to obtain
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The corrections to the |K—K’|~! term arise both from the
renormalization of the kK and kX’ plane waves and from
K—X’ momentum transfers between K+K and kK'+K
plane waves. The total exchange energy per unit volume is

(3)

E=L [B® &) rprplovomaecar . @

where f3 is the Fermi function and a factor of 2 for spin
has canceled a factor of + to correct for counting each

is applied. With no loss of generality, we take K—K' pair twice. Noting that 8¢, ¢ = —ay and substitut-
Ve (—=K) = V%, (X) to be real. This results in a self- ing from (2) and (3) into (4) yields
|
' 2+2k"-K
Eprdk+ vy [ 2K |- K 2t 01 (R)0-(R)dQ dQ’ dE dE'| ; (5)
Ea= (211')5[f 'l2 X f K-k +2k-K
where
0r(R)=(fyix "f}‘)/(%—Kz-{- K-R)=r¢'+ 5+ (K2+2K -R) fe"+ % (K2+2K -K)2fe” ©6)
r
and we have used d°k =k dQ dE. Equation (5) is exact to  and
order ¥% and in the K— 0 limit exact to order K? if the
expansion of ©¢ (K) given in (6) is used. There Ui B(E Ep)

[ =—8(E—Ep), f~————8(E Ep)

The first mtegral in (5) is the well-known free-electron gas
exchange energy. The second we write as a sum of integrals
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I1(f%, f2)=1(mn’). We have
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4rg? 2(K—K") -Rkk’
I1(1,1)= - == = dQ dQ'fe f—.dE dE’ @)
(2m)’ f K- K'|2(K*+2K-K) %/
Letting u be the cos of the angle K makes with K and w' the cos of the angle kK’ makes with kK, we have
K R=pp'— (1—p)2(1 - ) Vsin(¢p — ¢")
and
8vd keKlp—pp'— (1—p)V2(1— un2)Y2sin(¢p — ¢") ]
1(1,1)= - —=* a kpde dd' du du’
(2m) 262(1— ") (K2 + 2kp K pt) #db Ay du dp
4Vg ke 8Vikke|1 Kk  [2ke+K
= — dudu' = — ——|—— 2 _In| ===
(2n )} f 1 K+2k Han Qr) | ke 4k |2k —K ®)
|
To order K? this gives we find
8% [,_ K 3(3]"1 2T
1(1,1)=——X |1 9 wa_ _3|3| L 3 iX-T
(1,19 o )3[ 4kF2] 9 E] b= ) fd rlpo+p(K)e
Note the cancellation of the divergent (1—u’)~! in Eq. (8). +p(=R)e~iXK-T)43
Because of the integration by parts necessitated by f” and
S, the remaining /(m,n’) have more divergent denomina- 3(3 1/3
tors whose cancellation is much less obvious. Because of =-7l= [p8/3+ 205 {p(R) 12+ [p(—K)]z}] ,
the tedious nature of these integrations, we only list the m

results:
1(2,1=0, 1(1,2")=
102,2)=3ViKY Qu)*kd, 13,1 =%V%

—4VR KY )k},

K (2m)kf
and

1(1,3)=3VEKY Qm )k} .

All I(m,n’) with m + n’ > 4 are of order K* or higher.
Squaring Eq. (1) and integrating we obtain (including a
factor of 2 for spin)

4V (% 2wk?
(R)=p(-K)=—2F dk
P p (21r)3f0 TR ik o
- V?k" l’f!.‘"__.__K_ ol 2kt K (10)
(277)2 2kp 2kp——K ’
or in the K — 0 limit
4VT(’kp
- 1—— 11
p®) (2w)2[ [kr]] an

Inverting this we obtain

2
(27)* [1 _ %{k_li] ]{[p(r{)]2+ [p(-R)1} . 12)

Vi =
K 3242

Inserting this in the I(m,n’') and using kZ= (3m2pe)¥? we

obtain

1/3
i

x {[p(R) 12+ [p(—K)]Z}] .

p_2/3 PO_ 4/3K2
0 54w (372)13

3

(13)

Comparing this with the local density approximation (LDA),

(14)

where we have made a second-order binomial expansion
and integrated over the normalization volume Q. Thus

= EIPA+ Ly [ 19 p(F) s as

with y,=—1/277 (37?)3=$yg .. Since we are working
only to second order in p(K), Eq. (15) is equivalent to the
standard gradient term 3y, | p(F) 3|V p(T) |2
Sham’s calculation, based on the density response function,
is equivalent to finding an exchange potential (and hence
density functional) which produces a charge density identical
to that obtained from a HF Hamiltonian with its infinities
averaged out. Because by definition the DF eigenfunctions
yield the correct charge density, that path was not open here
and I had to calculate the exchange energy directly as a
function of the charge density. In view of these basic
differences, it is perhaps surprising that the integrals we
evaluated differ only in that Sham used screened exchange.
(I thank Professor Langreth for pointing this out to me.)
The difference in our results is a consequence of the fact
that the A — 0 limit of screened exchange is not equal to
unscreened exchange.!® Presumably then, the exchange-
only limit of Ref. 7, which is based on a screened interac-
tion, is incorrect, but the exchange-correlation y,. obtained
there is correct.

It is trivial to evaluate E; in the K— oo limit. Working to
order K~¢ Eq. (3) becomes

- 4m 1
E(k,kN)=——"| ————
o ( Q| TRowp
2rk [R-(K—K)]?
+ - - . 16
K® KK -k'|]2
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Since this has to be independent of the direction of K, the
last term can be averaged over that direction to yield a K
and K’ independent result which can be factored out of Eq.
(4). Equation (10) becomes

p(K)=8Vi(27r)"3K‘2ff7;d3k
so that

3[3)”
E(K— °°)=—1[;] pd?

~ 2 ®P+(-RP . a7

Note that the last term cancels + of the Coulomb self-
energy of parallel spin electrons. Had we considered only
the k— k' +K momentum transfer terms in Eq. (3), as is
sometimes done, the cancellation would have been perfect.
Finally, note that in general one can write for p (K) << pg

1/3
E,,=—§-i] pi P lpd+ 3 pRIPFE)] ,  (18)
77 X
where
_8 K
F(R— o)== %

2225

and
_l+_2__K2
F(R 0)_9 81 k2

F(K) can be obtained in principle for any K by substituting

(3) into (4), integrating numerically, and using (10) to
eliminate Vg in favor of p(K). Taking the variation of E
with respect to p and noting that because the number of
electrons is conserved, pg is not varied, the KS° exchange
potential is obtained:!!

yrs— _ 3

13
5 %] pr*3 p(R)F(R)e/ KT | (19)

'Y

In metals and semiconductors where the valence p(K) is
small this result should be nearly exact and can be super-
posed with a valence-core HF potential to obtain the total
exchange potential seen by valence electrons. This potential
appears to be more negative than the LDA in the intermedi-
ate wave-vector region and may correct the large errors in
semiconductor energy gaps calculated with the LDA.
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Because the charge density, and hence the energy, is independent
of the zeroth Fourier transform of potential, the zeroth Fourier
transform cannot be obtained from a variation of the energy.



