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%C present the solution of Maxwell's equations for an arbitrary distribution of heterogeneous

spheres taking into account cluster geometry, retardation effects, all multipolar (electric and magnet-

ic) order interactions, and any arbitrary light incidence. The fields are expanded in terms of the usu-

al spherical wave-vector functions. Usual boundary conditions are applied at each interface. The

problem consists in obtaining the appropriate microscopic effective susceptibility for the heterogene-

ous sphc1cs, and thc appropriate Icwr1tlng of thc 1ntcI'act1on and field terms. In so do1ng thc solu-

tion of the problem is similar to that for homogeneous spheres [Phys. Rev. 8 25, 4204 (1982)]. We

specialize the boundary-condition problem to the case of a Inetallic nucleus containing plasmons and

of a dlclcctrlc shell. S11Tlplc1 cases arc also examined: thc plasmonlcss limit, thc slnglc sphere, the

hollow sphere, and the long-wavelength limit. Numerical results are presented to show various pa-

rameter effects; the field expansions are limited to, but inlcude, the octupolar terms.

I. INTRODUCTION

In a previous paper, hereafter referred to as I, we have
presented a theory of infrared- (ir-) absorption spectrum
of (ionic) powders through the solution of Maxwell's

equations up to a given 2' polar order in the long-
wavelength limit. ' At topical conferences, we have illus-

trated the results and discussed effects due to quadrupolar
and octupolar field distributions in the particles. 2 " In all

eases the particles are supposed to be spheres, but
spheroids can be easily treated in the same framework.
Although removal of the long-wavelength approximation
and of restrictions on the assumed spherical shape of the
particles, as well as the neglect of retardation effects,
would have likely improved the theoretical description of
the experimental data on ionic powders, we have pre-
ferred, when rewriting the general theory, to apply it to
metallic inclusions in some matrix.

Therefore, in paper II of this series, we have examined
the optical properties of spherical "metallic" particles.
We have taken into account finite-wavelength effects, a
plasmon-dependent dielectric function, retardation effects,
and multipolar' interactions between particles in contact or
not. In so doing we have in fact generalized Ruppin's
theory for isolated metallic particles. Notice that the
percolation transition was not part of such a theory.

Next we want to treat more realistic cases. It is ap-
parent from published work (in particular from various
papers found in conference proceedings '0) that homo-

geneous particles are exceptions rather than rules, due to
particle production processes. Therefore, in this paper
(III) we intend to describe the infrared absorption and re-
lated properties of heterogeneous particles. The model in
n1ind is that of concentric shells.

%'e admit that much theoretical and experimental work

has already been presented in the literature on the subject,
On homogeneous (metallic) particles, a recent review arti-

cle by Perenboom et al. is available. " No complete re-

view of work on heterogeneous particles is attemped here,
but one can recall that the first applications of Mie theory

to the scattering of electromagnetic waves by (two) con-

centric spheres are due to Guttler' and Aden and Kerk-
er. ' The latter work was expanded by Kerker' and vari-

ous collaborators in order to describe many different as-

pects of concentric (or confocal) particles. ' ' In the
same framework, let us mention work by Bohren, ' Gor-
don and Holzwarth, ' and Latimer and %amble. ' The
flist wolk deals wl'tll R spllcrlcal sllcll llav111g RI1 RI11sotro-

pic index of refraction, while the third considers particles
of a dimension that is larger than the wavelength of light,
and in particular hollow spheres. In addition to such
work related to the description of aggregation processes of
colloids, let us mention another nested model of layered

spheres (for phosphorus-derived smoke) by Milham
ct al. ' and in the same spirit by Blum and Frisch.

Another ensemble of papers ' is more related to
work on percolation aspects than on colloidal aggregation,
and therefore has considered to a greater degree surface
effects as well as effects due to the inner metallic core as

opposed to those due t'o a polymeric shell. Nevertheless,

jll Refs. 21—23, jI1 the first theoretical Rttc111Pts Is a dIs-

cussjon of the posjtjons of plasma resonances in particles

containing a dielectric seed or nudeus, followIng obser-

vations by Cienzel et al. I'his was followed by a de-

tailed calculation of the optical-absorption coefficients of
metallic shells on dielectric cores by Granqvist and Hun-

deA.
The optical properties of fine metallic particles covered

by an oxide, sulfide, etc. , pellicle were discussed by
Granqvist et al. , following other observation of surface
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modes in oxide-coated metal spheres by Martin, and
their prediction by Ruppin, on isolated particles. In the
same line of investigations let us recall an "intermediary
case:" that of small silicon particles with oxide over-
layers. Such work intended to obtain an effective dielec-
tric constant through a description of the polarizability of
the particle. Since a Maxwell-Gamett description was at-
tempted, the particles were supposed to be randomly dis-
tributed in the matrix.

Independently, Clippe et al. were the first to
lccoglllzc tllc llllportaIlcc of sllort-1RIlgc order Rlld of par-
ticular clusters in describing optical properties of aggre-
gates. Their theory based on a simple dipole-dipole cou-
pling (between homogeneous spheres) had shortcomings
already discussed elsewhere. ' Nevertheless, such recogni-
tion and its experimental interest * ' motivates work in
the area bounded by the "isolated particle" on one hand
and the "random medium" cases on the other hand.
Hence our theory attempts to fill this gap. We wish to
conclude this review by mentioning other related work on
the effective-medium theory of optical properties of small
heterogeneous particle composites.

Nevertheless, we want to stress that our main goal is to
describe the functional dependence of the observed (or ob-
servable) light on the state of aggregation of heterogene-
ous particles irrespective of percolation phenomena.
Furthermore, we do not look for criteria allowing one to
select appropriate aggregation or aggregate models, but we
hope to present a (useful) theory from which such criteria
might be derived, and thereby answer a complaint, e.g., in
Ref. 18, that "for real random aggregates, the direct solu-
tion of MaxwelVS equations is impractical. " Our theoreti-
cal results are in a form which can be used on a computer,
as we will demonstrate, and are available for more com-
plex problems or more general systems.

In Sec. II we explicitly give the full theory generalizing
that of Ref. 5, at the level of more complicated boundary
conditions, i.e., supposing that plasmons exist in one of
the materials (here taken to be the nucleus). In Sec. III we
consider the plasmonless case. In Sec. IV we show that
we recover the isolated spherical particle case from our
general expressions; we also consider the hollow sphere.
In Sec. V we take the long-wavelength approximation for
the main results of Sec. II and recover well-known expres-
sions. In Sec. VI we particularize our results to a simple
case in order to present numerical results; in so doing, we
can discuss various effects, in particular, that of
multipole-multipole interactions. In an appendix, we con-
sldcI thc case in which t4c nucleus is a dielectri and thc
layer is metallic, in order to bc able to usc an anRlogy fof
understanding the qualitative properties of clusteI's con-
taining such a type of particle.

II. THEORY

Our theory follows that of Ref. 5. We strongly reduce
the generality of our investigation fmm the beginning.
Howcvcr, ln thc linc of our p1cvious work it is clcaI'
that several assumptions can be removed, but one must
then resort to much more complicated algebra and nota-
tion. We expect that our results may be of general in-

terest, however, and hope that they suggest areas of fur-
ther investigation.

We consider a simple geometry for the heterogeneous
particles. They are supposed to be made of two concen-
tric spheres. The inner material is called the nucleus (X);
lt ls surrounded by R sllcll ( S). Tllc Illlclclls rRdlus Is
called 8@. The nucleus and the shell materials are
characterized by their respective dielectric function
e(k, co) and magnetic permeability p(co). We wish in the
main theoretical section to take into account the possibili-
ty of plasmon excitations, and to consider a very general
«rm «e(k, co) as long as X and S have a metallic char-
acter in the bulk limit. Therefore, we introduce the nota-
tions e„', esr, e„', e,', p„, and p„where L, and T refer to
the longitudinal and transverse part, respectively, of the
propagating wave in the particle. The matrix characteris-
tic functions are supposed to be frequency independent;
they RI'c called E~ Rnd p~.

Several combinations of N and S materials can be en-
visaged. A metallic particle can be grown from an insula-
torlike nucleus, or a metallic particle can be coated by its
oxide, by a nitrite layer, or by a totally different material
(such as a dye). The layer-coated metal particles seem to
be of interest. One "restriction" is thus made at this
point: Only the nucleus has metallic character. There-
fore, we assume that there is no plasmon in the shell.
Such restrictions can be removed when appropriate exper-
imental work has to be analyzed. From examples treated
in Refs. 1—5 and our unpublished work, it appears that
the distinction between metallic or dielectric spheres is
only of quantitative nature when discussing the mode po-
sitions and the overall shape of an ir-absorption spectrum.
The above restriction on the character of N or S thus has
a mild importance.

The solution of the electromagnetic problem (Laplace's
equation) consists of obtaining the correct coefficients for
the field expansions in the various media by applying ap-
propriate boundary conditions. (We avoid writing thc
time dependence e' ' in the following. ) Let the electric
field in the shell of particle 8 be given by

S —+ 5 5E~ =E X('.,q~.q I+b., q n.q I+&~,q I.q I

P~C

S ~ S S+cI qmI ql+dp q npq3+ jI, q
1 I q 3) (1)

wlml c thc 111'y llpq, RIld Ipq fllIlc'tlolls Rl'c tllc sPllcl'lcR1
wave-vector functions defined in Ref. 5; the indices 1 and
3 indicate, respectively, the Bessel jq(x) or Neumann

hq "(x) function. We have not indicated in Eq. (1), nor in
the following, the variable r in the functions as long as
there is no confusion. The magnetic field is similarly ex-
panded,

T-s «~E s - s-
HII g (bp qlllpq I+Qp q Ilpq

E COPg

where c is the speed of light.
%'e do not consider the case where longitudinal rnag-

nons would be present, that is why the 1~ function does
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not appear in Eq. (2}. The electric and magnetic fields in

the nucleus (EII and H I) ) are given by, respectively,

X ~E~ =~ X ('p, qmpq I+bp, q "npq I+'p, q '
pq I )

PIC

SHg& lR ——Hg& lR
+

~SE8 l RN ~WEB l RN ' (1 lc)

T
ckIq E

H II = . g (bp qrnp I+ap q npq I )
E APP~

These fields cannot be expanded in terms of the m~r,
npq3, and lpql functions because of the smooth behavior
prevalent at the center of the sphere.

The external field (due to the scattering on the jth
sphere) is expanded accordingly in the matrix,

(j)
E$'=E g (cpqrnpql+dp qnpqI), (5)

p~ 9'

(j)(') kE M~ M~H $ g (dp q Illpq I+cp q 11pq I ) (6)
E MP~

where ks, k&, and k is the wave number in the shell, nu-
cleus, and matrix, respectively. For transverse waves it is
given by the solution of the dispersion relation,

k c =co~c (k,co)p(m),

with the appropriate c' function. On the other hand,
longitudinal WRvcs cail plopRgatc ill tllc nllclcus if

s 1 d
bp q

-- xjq(x)
Xs X XS i&

X)v dX ~~ X)v
J

Equatloll (1 lb) silnilai'ly leads to

The first two conditions lead, after some algebra, to
four equations involving the defining coefficients
apq, . . . , cpq of Eqs. (1)—(4). Each equation can be
separated into two relations according to the angular
dependence. Equation (1 la) leads to

S S (1)
ap qJq(xs)+cp qhq (xs) =ap qJq(x~),

c (k,a))=0.

Solutions of Eqs. (7) and (8) are chosen such that k has a
posl tive 1Il1aglnary part.

The coefficients dpq and cpq, as well as the functions

n~3 and m~z in Eqs. (5) and (6), are supposed to be de-
fined in the j frame centered on the jth sphere. The total
field in the matrix is a linear superposition of the total
scattered (EIt'i, HQ') field and of the externally applied
field defined by

(i)
Eo 2 (ap, qmpq I +bp q npq I }

PIV

fbp', qjq«s)+dp, qhq
"«s}lj= bp, qjq(XIq)

PS Px

1 S d
ap q xJq(x) +cp q xhq (x)

a q xjq(x) . (18)
p~ dX

The third BC, (1 lc), leads to

bp qq(q +1)jq(xs)lxs+dp qq(q+1)hq '(xs)lxs

=II,,,q(q+1V, (XIq }~XIq+e,",,kIq
dg

(i)
H()=HO g (bp qrnpql+ap q npql)

p~c

where we recall that the coefficients and variables depend
on the reference (i) frame. In doing such a summation
any retardation effect is automatically taken into account.

A. Nucleus-shell boundary problem

From (12) and (18}one can obtain ap q and cp q as R func-
tion of ap q in terms of proportionality coefficients which
can be called "2q polar-interface susceptibilities, " i.e.,

S ~(l) X
P.q 9 PI 6'

S ~(2)Cpq= q apq ~

with

The boundary conditions (BC's) have been recalled by
Ruppin following a discussion on the correct set of BC's
for a conducting medium by Melnyk and Harrison. The
BC's are the continuity of tangential E and H and normal
displacement current, the condition on the normal
magnetic-flux density being superfluous. Hence at the
inner interface, one requires

(1)
(, ) hq (x~)

j (xs)

(2)

h (1)( )XS

hq"+(xs) (ps ~iIIq Vq+«~ }—
hq

"+(xs ) —jq+ (xs )

(Ps~P)v Vq (x)v } Jq (xs)—
h"'+(x ) —j+(x )

(21a)

(21b)
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wllcl'c RIly g (z) fllllct1011 ls dcflIlcd by

g+(z) = 1
zg(z) . (22)

g(z) dz

Notice that these I «" functions are "mere" generaliza-
tions of that I q found in Ref. 5 [Eq. (12d) in the case of a
metal-particle —matrix interface]. Notice also that Eqs.
(20a) and (20b) are mere pmportionality relations and do

not involve convolutions.
We still must obtain bz «and dz q

from the other equa-

tions. After some algebra one finds

S (1) Nb.«=~» b~, «

S (2)
~~,«=~«b~, «

ks jq (x~ )

k~jq(xs )

ksjq(xx)

k~hq '(xs)

«~ «s)[j«+(xs) f«0—~)] J«+(x—I»)+f, (xI»)

(&x/&s)[I q
+(xs) fqbx)l jq+(xs)+f 4'w)

(&I»/&s)liq+(xs) fqbI»)] jq+(xx)+fqb'x)
(&~«s) i~» '+(xs) f«(X~) l —J,+(xs)+—f,4~)

(24a)

f,(X~)=e(a+1—)j,0 ~)

Here, we do not write cz q in terms of bz q, but it could be obtained by combining Eqs. (23) and (24) with Eq. (13). On
the other hand, notice that y~ (related to longitudinal plasmons) does not appear in the "magnetic" susceptibilities 5«' .

B. Shell-matrix boundary problem and solution
for the external coefficients

The description of the scattered field by an ensemble of
heterogeneous spheres interacting with each other follows
the method described in Ref. 5 step by step (Sec. IIB).
The idea is to express the mutual interactions of particles
by a projection technique in order to obtain matrix ele-
ments for interaction terms. Then writing the BC at the
shell-matrix interface, one is led to a set of linear equa-

tions between the coefficients of the applied field expan-
sions and those of the scattered fields. The main diff'er-
ence with respect to the system of equations (22) found in
Ref. 5 consists in the formal expression for the scattered
field coefficients which take into account, here, the
heterogeneous nature of particles. Therefore, here we only
give the appropriate modifications, i.e., those defining thc
1111kllow11 vcctols c Rlld d 111 tcrIIls of R Rlld b

F01' cxRIIlplc, tllc corresponding sct of cquatlolls rclRt-
ing the field coefficients in the matrix to those in (on) the
shell is found from the BC on the electric field to be

yy I[,,(j)(M ~M);+d, ,(j)&& ~M&;]&,"'(;)+ "'
', j (;)I= ", ( )j (;)C ( ),

g g I [cz «(j )(M
f X);+dz «(j )(N [

N);]II»"(x;)+e 'bI ~j~(x; )[j +(x; )lil"'+(x;)]I
JA& Ps+

=bI m(I )(X~ /XSI )jm «Si )[J~(XSI)/~m"+(X; )P4(I')

where in order to simplify the writing, we have already used (23) for expressing the right-hand side of Eqs. (26) and (27).
In so doing we have directly related the "matrix coefficients" to the "nucleus coefficients. " Nevertheless, some word on
the notations is necessary. We have used a notation such as (M

~

N ); such that

( M
~
N ) I

= (m~, (j)
~

11I~,(i) &,

with the usual definition of the brackets (
~

) [Eq. (17) in Ref. 5]. Such notation is unambiguous with respect to
the indices indeed because of the orthogonality and completeness relations given by Stratton as discussed in Ref. 5.
Furthermore,

(29)
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and

xs; =—ksR), (30)

where R; is the total radius of sphere i, and k ( ks ) is as before the wave vector in the matrix (shell).

In order to calculate matrix elements no particular reference frame has to be singled out. However, the overall

geometry must be defined in order to be able to define the "external field. ** Therefore, the origin of axes must be chosen.

It seems natural to refer to some particular sphere 0 in the sample as being at the origin of axes. Another sphere, for in-

stance, i, will, according to theory, be located at (r„r2,r3 ). One defines

z;=kr3 . (31)

Furthermore, the incident field phase is supposed to be zero at the center of the 0 sphere. Therefore, we let

aq q
——aq q(0) and bp q

=bp q(0). Finally,

jq(x)v )

hq
"+{x~) —jq {x~)

h'"+{x )Xg

j (xs)
jq xs Ps.+ 1 1

rq(xs—) — Jq (x)q) . rq(—xs) (, )
q xs) px jq xs hq (xs)

xs Jq(xx)
x)v hq '+(xs) jq+(xs)—&s

h,"'+(x, )

jq{xs)

jq+{xs)—sq{xs) (, )
hq (xs)

[Jq (xN) fq~J N)]—. sq(xs) —(, )Jq(xs) hq "(xs)
(33)

in which the index of sphere i has been omitted, and where we have introduced the functions

rq(z) =.hq"(z)/j, (z) (34)

s (z)=r (z)h'"+(z)/jq+(z) .

Similarly, the magnetic BC leads to a set of equations which after some algebra reduces to

2 X['. (j)&M IM& +d, V)&&IM& ]h'"{x)+e 'br', j (x;)=b)", (j)(xs;)(@~/ps)(x~;/x;)E (i),
J=& P~C

J+l
N

2 X[cpq(&)&~ I&& +d, ,V)&&
I &&;]h,'"(x;)+e 'a(', j (x;)[j+(x;)/h"'+{x,)]

J=& P~C

J+g

(35)

(36)

=a~,„(i)(pMfps)J' (xs;)[J'+(xs;)/h(')+(x;)]F (i) . (37)

The definitions for E (i) and E (i) are given in short by the following correspondence laws:

E (i)=D (i) where s (xs)~r (xs)

E~(i):—C~ (i) where r~ (xs)~s~ (xs) . (39)

The system (26), (27), (36), and (37) can be solved for the exterior (matrix) coefficients in terms of the external field
coefficients by eliminating those describing the nucleus. It may be of interest to write such a solution under a rather
compact form. On one hand, this allows a better visual comparison with the system of Eqs. (20) and (21) of Ref. 5. One
has, after some algebra,

g g[c, {j)[~ (i)&~ l~& —~ (i)&~ l~& ]+d, (j)[~ (i)&M I~& —~ (i)&& IM&.1]
J =& P~f
J+g

=e"a( T (i)j (x;)/h"'(x;), (40)

g g l{dJ,qV)[i~«)&~ I&& —~ «)&&
I
M& 1+cJ,qV)lp (i)&& I~& —& (i)&~ I~& ]]

J=& P~C

J+l
=e"b~ K (i)j (x;)/h"'(x;),

where (omitting the reference to the sphere label)
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oq =(p, I@M)hq"+(x),

q.
q

(&——
q /Cq )j q+(xs ),

pq = (p—M Ips)o'q

vq = (e—M /as)(Dq/Eq )jq+(xs)

(42a)

pq(i) =trq(i),

crq(i)=~q(i) . (46)

The resonances due to the particle-matrix interface are,
on the other hand, obtained from the determinant of the
fundamental set of equations (40) and (41). Inspection or
dlrcct calculation leads to thc rcsonancc condltlons

Tq =~q (i s—/i ~)J,'(x),
Kq xq +——jq+( x) . (42f)

It is then clear that only a numerical solution can be
pursued after precising a cluster geometry and calculating
the interaction matrix elements. In principle, such terms
can be obtained analytically. %"e have given all the neces-
sary information for calculating them up to the i =p =4
in Ref. 5.

III. PLASMONLESS CASE

In this paper we do not write the above system of equa-
tions when the nucleus is a dielectric and the shell has a
metalliclike character. However, it is of interest to con-
sider an intermediary" case in which one can neglect
plasmons in the nucleus: either a heterogeneous particle is
made of two dielectrics, or the frequency of the radiation
field is much below the bulk plasmon frequency r0~. We
have shown in paper II that the absorption spectrum can
be divided into two regions, one on each side of co&. For
the low-frequency region, surface modes exist superim-

posed on the tail of surface-plasmon resonances (of the
bulk material) which peak in the ultraviolet region, far
above mz. On the other hand, the Ruppin ripples at
co & co& have almost no influence on the co & co~ resonances.

From the above derivation, it is easy to see the plasmon
influence in the theoretical results. The first remark ap-
plies to the writing of the set of relations (20)—(23) be-

tween the shell and the nucleus coefficients. It readily ap-
pears that the magnetic part of these relations does not
contain plasmon effects. The second point to be em-

phasized is the importance of the function fq(z). As not-
ed in paper II when there is no (or a few) longitudinal
plasmon(s) in the material, this implies a very large value
of Imk, and hence

lim fq(k~Rtq)= i/(k~R—~) 0. (43)
kL ~op

It is therefore extremely easy to rewrite the plasmonless
case from the above results. The coefficients Dq, Eq, and
hence aq have a more simple form which will be found at
the end of the next section; they also pertain to the
single-particle case.

IV. ISOLATED-SPHERE CASE

A. General case

As can be observed from Eq. (23), internal interface res-
onances appear where the denominator of the electrical
susccptlbllltlcs Aq vanlshcs, l.c., when

jq+«s) fqb'x)—
&g= &S-

hq+(xs ) fq (y~)—

The latter equation leads to

D h"'+(x)
&s= — .+

Eqj q+(xs)
(47)

2&s+&~+2Q (&& &s)—
&eS = Eg,

2es+ex —Q (e'x —es)

Q =1 (t/R)=R—~/R

if t is the thickness of the shell ( t =R —R~).

(49)

B. Plasmonless limit (co «co~)

Let us consider thc "most interesting" region, i.e.,
below co&. The following asymptotic expressions are very
useful:

jq (z) -zq/(2q + 1)!!,

hq "(z)——i (2q —1)!!/zq+',

jq+(z) -q +1,
h"'+(z)- —q .

(50)

rq (z) — i (2q —1)!1(2—q + 1)!!Iz q+ ',
s (z)-i (q/q+1)(2q —1)!!(2q+1)!!Izq+' .

(51a)

(51b)

Immediately (again omitting the label i for the ith
sphere),

2q +1 kg

R+
X q+(q+1) +

p~

and

Gne could similarly obtain the "magnetic resonance" con-
ditions.

Let us note that such formulas generalize the Frohlich
condition (@+2aM=O) for the surface-mode resonances
and the Van de Hulst effective dielectric constant of a
coated sphere,
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2q+1 k~

pg
X .q+(q+1)

) 2q+1
RN

E

(53) kN

2q +1 ks

T

(q+1)+q
Cs

' 2q+1

T

(q+1)+q

T
~N

&s

{S5)

One observes that C» =F»=1 if the sphere is homo-
geneous (pz ——ps). For a small shell thickness one has

2q+ 1 T
&N

C» -(k~/ks)»,

F»-(Vs/Vt»)(kt» lks)'. (54b)

Consider next the "electrical coefficients, " and a
plasmonless nucleus. In the low-frequency limit, one has

which, for a small coating thickness, become

D» —(k~/ks )»

E» -(et» /es )(kt»/ks )»

Gn the other hand,

(56)

(57b)

a ——qi s/S~

Pq-q ~

q +(q +1)(ps/pt» ) q(Rt» IR)—"+'(I ijs lp~)—
r»-(q+1)

q + (q +1)[(pslp~)+ (RJ»/R) '+'(1 ps/pt» )]-
(q +I)+q(et» /es )+q (R~ /R )'»+'(1 —eJ» /es )

x» ——(q + 1)
(q+1)+q(et»/es) —(q+ 1)(Rt»/R)»+ (1 e~/es)—T T 2+1 T T

In the limit of small shell thickness, r» and x» reduce to

g +1
Ic» —(q + 1 )eM /es

(58b)

{58d)

(59b)

Therefore, in this limit the coating plays a negligible role, and the resonances are those of a pure nucleus, i.e., from
(4S), and (58) and (59), one has

qps/pM =(q +—1)ps/pt»

q = —{q+1)&M/&x .

One easily observes that the latter relation reduces to the Frolich condition when q= 1.
For a finite thickness one findsq+{q+1)[{ps/tent»)+(Rx/R)"+'(I

i s/t t»)] q—+1
PN 2 +1

= — PM{q+1)+q[(ij~/Vs)+(Rx/R)"+'(1 ijx/Vs)]-
r q+(q+1)[(esle~)+(Rt»/R)»+'(1 es/e~)] — q+1

(q+ I )+q[(et»/es)+(Rx/R)»+ (1 eTvles)] —q

(60a)

{61)

which can be explicitly rewritten in the case q=1; the
left-hand side of Eq. (62) is then seen to be identical to
the Van de Hulst expression (48) for e,s. These expres-
sions thus generalize to, for all polar orders, well-known
eqlvalent formulas for homogeneous spheres. In order to
observe the first correction term to (60) it is easy to take
the small-thickness limit in (61) and (62), i.e., for

3—5( 1 —p~/ps )

3 —25(1—ps/p~)
'

(63)

(64)
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We wish to recall that the above formulas are valid in
tlm plasnlolllcss 111111t [duc to (55) Rlld (56)] wlllch Is
equivalent here to ~ &~~~.

C. Hollow sphere (in vacuum)

A particular case of technical interest is that of a
dielectric bubble. ' Although it would be more realistic to
consider it suspended in a polar matrix (e.g., water), let us
observe the interest of the previous formulas when
c~ =c~= 1. The resonances are found at

(es —1)'

(&s+2)(2&s+1)

Although we have observed elsewhere' that the
long-wavelength limit leads to quite erroneous values in
some cases (typically, of course, when the size of the par-
ticles is large) we will illustrate our general theory from
results obtained from the long-wavelength approximation.
This implies that the radius of the particles is less than
500 A, but this is often quite sufficient (see Refs. 1S—18
for exceptions).

Owing to the long-wavelength limit, the nucleus dielec-
tric function can be considered to be plasmonless. We
could choose a realistic dielectric function from experi-
mental data, but will only present results when

while Clausius-Mosotti relation reads for an empty shell,

~cS —&

(1+2es )(c's —1)
&cs+2 g&s

111 Ulllts Of C~ = 1.
Furthermore, the dielectric shell will be characterized

in the small-thickness limit.
The solution of Eq. (66) indicates that resonances exist

for Es ———a+[(a' —1)]'~, where 4a =(4Q'+5)/(1
—Q ). If tllc dlclcctrlc coIls'tRIlt ls R single-valued fUllc-
tion, there is thus a direct and single correspondence be-
tween co and the shell thickness, while the right-hand side
of (67) gives the polarizability of an empty shell.

When the size of the particles is sufficiently small, one
can consider that the fields do not vary greatly either in
the nucleus or the shell. One can use a long-wavelength
approximation, which here corresponds to x&, xq, yz,
and x~0. One can either rewrite the system of linear
equations for the unknown field coefficients starting from
(40) and (41) or repeat the calculation, but starting instead
from the expansion of the potentials in terms of spherical
harmonics. This procedure is less tedious than the theory
presented in Sec. II because of the decoupling between the
electric and magnetic modes in such a limit.

In fact, the long-wavelength limit is similar to the
plasmonless limit on onc hand bccausc 1t 1s cqu1valcnt to
the simplification arising from the co &co& approximation.
One can therefore observe that all expressions are avail-
able (see above) in order to calculate absorption spectra in
the long-wavelength limit.

Furthermore, if only the dipolar terms are included, the
theory leads to formulas derived by others oI' to results
readily obtained from the above sections. Notice, howev-
cl, thRt, cvcll In tllc long-wavelength llnllt lt ls of llltclcst
to include multipolar effects, in particular, when one con-
s1dcI's dcnsc clustcls. Thc Ictardation cffccts RI'c automat-
ically included in the interaction matrix elements, and are
calculated as in I.

1n the usual notation.
In clusters we expect a large number of modes to ap-

pear (as in Refs. 28 and 29). The spectrum shape depends
on the variation of several parameters: In addition to the
characteristic parameters entering the dielectric function
expressions, each particle radius, each layer thickness, and
the particle separation can be modified. In general, even
for the "simple" binary cluster, five parameters can be in-
dependently varied (four in the long-wavelength limit).
Therefore, either cluster parameters and dielectric func-
tions are selected to reproduce known experimental re-
sults, or an arbitrary selection of parameter variation is
made, where we expect that sufficient information can be
gained for further comparison with experimental data;
analogy, IIltult1011, Rnd cxtI'RpolRtl011 alc llscfill lllctllods
to be followed then. Notice that in the Appendix we
present a brief discussion of the case in which a metallic
shell covers a dielectric nucleus.

A. Single-particle spectrum

It is of interest to first recall the position of particle res-
onances, and thereby introduce notations. Equation (48)
can be rewritten

e,s ——es(1+2Q Z~/ZD)/(1 —QIZ~/ZD), (70)

where Z~ ——e& —ez and ZD ——e~+2eq. Obviously, the
numerator of the fraction in the above equation is larger
than the denominator if Z~ &0, i.e., if e& is greater than
e~. Owing to the form of these dielectric functions, the
positivity of Z~ is always satisfied, except for a frequency
region between d'or and the particular frequency at which
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There is no such simple approximate value for cos~, but
since re~~ is below uT, one may take the limits

cop ))coT cog~—alid eo ))e ~ alld flild (cvT =cijr/Ajar )
2 2

1 —2
(aisH )'—= (cvs~)'/(cvT )'= 1+2eo 3- (coT )'

1+2Q

(71c)

The validity of these approximations (71) is compared to
exact values for a particular Q value in Table I. One
may finally obtain the range of "interesting regions" from
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FIG. 1. Variation with frequency m of the dielectric function

cs of an hctcrogcncous particle made of a metallic nucleus ( Ã
and of a dielectric shell (S) in a vacuum matrix. Curve (c) is ob-

tained by finding the zeros of Z~ —Q3Z~ [curve (a)] aud those
of Zv+2Q Z~ [curve (b)], the latter ones corresponding to
singularities of e„. ZD ——e„+2m~; Z~ ——e~ —e,. The frequen-
cies u; (i=1 to 6) are thus easily defined. The spectrum of an
isolated heterogeneous particle contains three peaks at ~~H, ~~a,
and coq~. The frequency scale is arbitxary.

The behavior of e,s can be easily obtained
therefrom: (i) The zeroes of e,s occur at es ——0, i.e., at
coL, and when ZD+2Q Z~ ——0. (11) Tile slliglllai'ities of
e,s occur at coT and for ZD ——Q'Zz. These (six) frequen-
cies are called cv;(i = 1, . . . , 6) and are ordered such that
coi ~c0z& &cvs. A sketch of e,s is given in Fig.
with the appropriate definition of each co;.

One a posteriori observes that three solutions exist for
the equation e,g+2EM ——0. They are called Qpg~, 6)gD, and

cozen
in increasing order. The notations are obvious: These

are resonance frequencies due to the heterogeneous, dielec-
tric, or metallic character of the particle, respectively.
Indeed,

(71a)

(cosD )'—=cosD /co~ =(eo+ 2)/(e„+ 2) .

TABLE I. Position of characteristic frequencies ~*;=~;/~~
and of an isolated heterogeneous-sphere surface modes from Eq.
(71) and from Van de Hulst (long-wavelength) theory. The par-
ticle is a metallic sphere, with plasmon frequency m~, surround-

ed by a dielectric shell with dielectric function parameters eo and
The metallic core is 60% of the total particle volume.

(eo——9,8; e„=2.95; Q'=0.6).

0.108
0.190
0.200
0.3645
0.4075
0.732 cogp

——0.532

mgH
——0.2075

c'@AD =0.3087

cogp =0.577

B. Binary clusters

In order to display relevant information on the absorp-
tion spectrum of small clusters, or of a powder, either the
absorption coefficient defined in terms of the imaginary
part of the averaged complex susceptibility, or the total
absorbed power can be calculated. '

The absorption coefficient is the weighted sum of each
individual sphere absorption coefficient. Since the
denominator of Eq. (48) and the left-hand side of Eq. (62)
vanish at more than one frequency, in order to present the
frequency dependence, we cannot write an expression as
trivial as Eq. (35) of Ref. 1. Therefore, we prefer to recall
that the total power absorbed by a sphere 8 of volume ve

1s

TABLE II. Parameter values for the metallic core surround-

ed by a dielectric shell for heterogeneous particles hereby con-
sidci cd.

Metalhc Dielectric
shell

Vacuum
matrix

eb ——1.0
y=10
m~ = 1.0

eo ——1.0408
e„=1.0
o)T

——0.380 85up
y=2 7203X 10-2

uI. ——0.388 54m~

0=10
e„=1.0
coT =0.0

y =0.0

the following observations: (i) cv~ &&cot. & coT,
' (ii)

c03—co, & col. —cvr. Therefore, cluster spectra have to only
be displayed between the following frequency bounds:

(cvi, cv2), (co3=coT,cv4==cvt. ), and (co5,cos). In absence of
damping effects [y =0 in (68) and (69)] the remaining fre-
quencies are part of "spectral gaps. "

At this numerical stage, a choice of the core, coating,
and matrix nature is in order; we have taken material
characteristics to be those of sodium, rhodamine 8, and

vacuum, respectively. Table II gives the relevant parame-
ter values. Table III lists all the characteristic frequencies
for different layer thicknesses.

The above results have to be contrasted here with those
of Ref. 26, where only one spectral line (corresponding to
costi) was found. This is due to tile approximate dielectric
function chosen by Ruppin; he chose e~ ——ao for the me-

ta111c core.
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TABLE Igl. values of bound frequencies and of surface-mode frequencies for a single heterogeneous particle of radius 8 in a vac-

uum matrix for parameter values given in Table II: the core is metallic and the dielectric shell has a thickness t Q =1—t/R. All

reduced frequency values are multiplied by a factor 10 .

0
0.1

0.2
0.5
1.0
2.0

1.0
1.0
1.2
1.5
2.0
3.0

1.0
0.909
0.833
0.667
0.500
0.333

1.0
0.7513
0.5787
0.2963
0.1250
0.0373

27 711
34368
37218
37566
37 665

38 042
37 995
37 877
37 779
37 723

38085
38 058
38 030
37 949
37 847
37 754

38 669
38 560
38426
38 372
38 351

57 735
57 887
57 991
58 157
58 256
58 306

10'
91 440
84 924
73 121
69 956
60360

and to sum each term in order to obtain the total absorbed

power for X spheres occupying a volume U,

W(co)=(1/U) g W(8, co} . (73)

I

l

I

1

I

Ql "- RN 1 IRl

FIG. 2. Definition of geometrical parameters for a cluster of
two spherical heterogeneous particles in an electrolnagnetic field

of wave vector k.

The active power Im8'=—W", and the reactive power
8 =RcR can bc fclatcd to Usual optical properties. Thc
reactive power being a linear function of the real part of
the dielectric constant e,s(~) can be related to the
imaginary part through KrarneI's-Kronig relations.

The reactive power (in fact, its logarithm) is thus
displayed below. It presents the qualitative features to be
Obscrvcd experimentally.

Only linear clusters have been investigated. It is known
from the theory of Clippe et al. ' and applica-
tions ' ' ' that such chainlike systems give a suffi-
ciently good Rppl oximRt10n to scvcI'Rl powdcf systcIDs.
This analysis does not consider the actual presence of glo-
bulcs 1n R powder.

Also, note that only the variations of the resonance
modes as a function of the various parameters are usually
pI'cscntcd. Hcfc wc show thc Whole special'DPl bchavlof

which necessitates the solution of the matrix equation de-
rived in Sec. II, since the (square of the field expansion)
coefficients themselves are necessary in order to calculate
W(co). Mutatis mutandis, such a lengthy expression has
been given in I [Eq. (40}]. Furthermore, only two angles
of light incidence are considered: The k vector is either
parallel or perpendicular to the chain axis. Intermediary
cases are superpositions of such spectra with the appropri-
ate (cos O, sin 8) weight, where 8 is the angle between the
k vector of the light and the cluster symmetry axis (see,
e.g., Fig. 2).

%C have selected to examine binary clusters here, look-

ing for limiting cases that are likely to encompass many
situations. The binary cluster examined consists of a
homogeneous particle (for instance, 1) of fixed radius R &,

a second particle (for instance, 2) of radius Rq, and vary-

ing layer thickness tz. In Figs. 3(a)—3(i) we show the
variation of ln(Re 8') as a function of ~"—:~/co~. The an-

gle a of the electric field Eo (of the incident light), with

the z axis on which the cluster is aligned, is chosen to be 0
or vr/2

It is indeed known that in the long-wavelength limit the
absorption effects may be simply discussed for such cases

only, irrespective of the light incidence and position of the

Ho vector (hence of the k vector). The shadow effects
which appear when the incident wave vector is parallel to
the center to center axis, and both Eo and Ho are perpen-
d1CUlar to th1s axis, RI'c not discussed hcfc. Qnc might

just admit that we take k perpendicular to both z and Eo.
An extra (small) peak at lower energy would occur other-
wise when the spheres have the same radius, and only
then. Owing to the complication of carrying such an ex-

tra particular case, we have left it out of our computer
program herc.

We show effects which result from only taking into ac-
count terms to the dipolar [Figs. 3(a)—3(c)], quadrupolar
[Figs. 3(d)—3(f)], and octupolar [Figs. 3(g)—3(i)] order in
three cases, i.e., R& ——1 and R2 ——1.1, 1.5, and 2.0, thus
with t2 ——0.1, 0.5, and 1.0, respectively. In each case the
particles are supposed to be in contact such that

a]2 ——81+R2. In this case indeed, the high-order polar
terms are of importance, as shown elsewhere in the case of
homogeneous spheres. ' ' ' The logarithmic scale for
W' renders the spectrum to be slightly awkward at first
sight. Nevertheless, in the dipolar approximation one
easily recognizes the three regions mentioned above, corre-
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(a)
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h' tallic spheres, one of them being coat yed b a dielec-FIG. 3. Variation of the reactive power of a bina yr cluster of two touc ing me a ic
e of the article radius R, as a function of reduced freque ynctric material, for different values o ys of the la er thickness t, and hence of the partic e ra ius, a

—c di olar, (d)—(f)/ h co is the plasmon frequency. e bcurves are obtaine y imi
'

b
'

d b l'miting the interactions to the {a)—c 'p

l s of light incidence are considered,s and b taking the ion -wavelength limit. wo ang esquadrupolar, and {g)—{i) octupolar terms, and by ta mg e on-
t=0 lin (a), (d), (g.); t=0.5 in (b), (e), (b); t= 1.0 in (c), (f), (i).
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when octupolar terms are taken into account [Figs.
4(g)—4(i)]. For small layer thicknesses, several of these
modes RI'e weakly Rbsorbmg~ and thus appear Rs shouldeI's

only on the main peaks.
The clearest mode-distribution figure is again that for

an intermediate thickness value t2 ——0.5. In such a case,
the core modes are similar to those discussed in Ref. 28.

It is interesting to note that regions I and II do not ap-
parently contain more modes when high-order polar terms
are included [see Figs. 3(e) and 3(h), for example]. We
have seen in Ref. 1, that the inclusion of such terms for
binary clusters of ionic spheres did not lead to strong
values of the absorption spectrum, but to very small
shoulders. As noticed later, the structure is masked by
the (large) dipolar peaks, and the multiplicity of peaks is
11kely unobservable then. Furthermore, wc may point out
that we have checked the effect of smaller or larger damp-
ing factors than those used here (Table II). There is no
great change in the precision of the data if the core damp-
ing constant y~ ——10 is replaced by y~ ——10 . On the
other hand, to take y =0 would lead to unrealistic 5 func-
tions for the power spectrum. Therefore, we have not
shown enlargements of regions I and II, nor do we show
any spectrum with values other than those given in TaMe
II. We do not claim, however, that to examine these spec-
tral regions is uninteresting. On the contrary, it might be
useful to do so in order to understand the nature of coat-
ing layers. However, fine-resolution experiments would
have to be done then.

It is obviously apparent that the narrowness of regions I
and II is due to the small value of cuL —coT (and of col and
coT with respect to the plasmon frequency

co&
). The struc-

ture in these regions might be made more apparent if the
core and layer dielectric functions were more similar.

D. Other effects

If a matrix other than vacuum is chosen to support the
clusters, it is expected that due to the larger value of ez,
the modes will pile up at lower frequencies. This was
checked. It might be of interest to consider the case of a
matrix with a frequency-dependent dielectric function as
for colloidal suspensions in water. An interesting com-
plex case would be that of magnetic cores. ' We intend to
pursue some work in such a direction. Of course, our
theory must then be generalized in order to take into ac-
count that the k vector in the matrix has an imaginary
part. The geometry of the incident wave would have to be
modlf led as well.

Finally, it has been noticed in the literature that the ab-
sorption of small metal-particle composites can be of
several orders of magnitude above theoretical calculations.
It is likely that such a remark holds true for isolated ag-
gregates. It has been proposed that size-distribution ef-
fects ' greatly influence the absorption coefficient
value. Chylek and Srivastava have considered the effect
of magnetic dipole absorption for composites. Such ef-
fects are of course included in our theory. We have
indeed noticed that the extinction cross section (obtained
from the ratio of the power W" to the power flow per
unit area of the incident wave) contains such effects, or
that the main peak of the absorption spectrum of small
clusters of homogeneous particles grows in value when
high-order polar terms are included. It is expected that
such effects remain as noticeable in the case of hetero-
geneous particle clusters.

In conclusion, although we have examined the most
simple generalizatoin of a binary cluster, i.e., with only

High-order polar terms are known to be more relevant
when particles are in close contact. On the other hand,
when particles are greatly separated, they respond in-
dependently to the incident field. A great amount of
work has been done in such a case (see also Sec. VIIA).
Therefore, we may expect that separation effects can be
simply discussed from previous work. '

The number of resonant modes is, of course, unchanged
with respect to the touching-sphere case. The multiple-
peak structure is conserved for a rather large separation
a;J', typically, for a;J greater than 5 times the largest ra-
dius, the mutual interaction is negligible, and the particles
can be said to be independent: This is due to the fall of
the interaction VI~

' which decreases as 1/(ka, z) . Notice
that such a value gives an idea of how dispersed a system
must be in order to be considered as diluted, i.e., ihe con-
centration must be lower then I/2, viz. , 3%. Interpreta-
tions of experimental results on heterogeneous particles
with a higher concentration must be taken with caution.
Obviously, powdeI' systems must include some analysis
based on high-order polar effects and statistics of clusters.
This is outside the scope of the present publication, how-
ever. Also, note that at higher separation the information
contained in the polarization (or the angle a) is then lost
due to the independent-particle response.

I

t

t

I

I

,'U3T

I

t
t

t

I

I

t

I

I

t

th)

t

I

t

'4)

t

I

1

t

I

t

I

I

t

I
t

t

I

I

I

t

I

Sp
I

t

t

l

I

I

I

I

f

I

t

I

FIG. 5. Same as Fig. 1, but when the heterogeneous particle
is made of a dielectric core surrounded by a metallic shell.
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TABLE IV. Same as Table III but for a dielectric core and a metallic shell.

0.0
0.1

0.2
0.5
1.0
2.0

1.0
1.1
1.2
1.5
2.0
3.0

1.0
0.909
0.833
0.667
0.500
0.333

1;0
0.7513
0.5787
0.2963
0.1250
0.037

SH

23 994
31 785
37670
37 942
37 997

35 806
37 519
37 903
37 978
38 004

38 085
38 073
38062
38 042
38 027
38018

37 343
38 455
38 732
44 504
51545
55 741
57735

38 854
43309
53796
68 823
76 590
80294

95 796
92 767
87 587
84291
82 549

97035
94656
89 836
85 870
83 183

10'

one heterogeneous particle, we expect to have shown that
we have extended theoretical work on optical (infrared)
properties of small particles in an aggregate state, and
have included all relevant parameter effects in order to
consider cases where heterogeneous particles are found.
We hope that this can be useful in experimental work on
specific cases.

APPENDIX

In this appendix we briefly discuss the case of particles
with a dielectric core and a surrounding metallic layer.
Although this might appear at first unusual, it is a better
representation of metallic particles in fact: Owing to the
chemical production process, metallic particles are in fact
grown on a dielectric seed. Thus, we may exami. ne the
representative case as that of Fig. 2, remembering that a
large thickness t is a realistic limit.

The single-particle spectrum is slightly different from
that reported in Sec. VII since there is an interchange be-

tween es and e&. Therefore, the variation of e,s with co is
that sketched in Fig. 5. The interesting spectral limits are
now (O,~, ), (~,,~, ), and (~„l). No~ice tl at a sha~ tine
is further expected at coT, while the position of costi with
respect to eT and uL greatly depends on parameter
values. A table (Table IV) of the characteristic frequen-
cies is given for the symmetric case of that studied in Sec.
VII, even though we realize that sodium grown on rho-
damine 8 is most likely a very particular caseI

Concerning the spectrum of clusters of metallic parti-
cles with a dielectric core, the same discussion as that
made in Sec. VII may follow. Let us note that coslt is
very close to m~, since region I is very narrow. In region
II, which becomes rather large with increasing metallic
content, cosn almost reaches the value —, when R=3t/2.
Region III obviously shrinks with increasing t Theref. ore,
for such particles in clusters, the interesting region to ex-
amine is region II. Mutatis mutandis (in particular the
frequency bounds), the spectrum in such a region II is
similar to that shown in Fig. 4.

'Present address: MMCT, rue des Franglais 216, B-4300 Ans,
Belgium.
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