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Critical properties of the spin-1 Heisenberg chain with uniaxial anisotropy
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Wc usc flnltc-s1zc scaling to dctcl mine thc crltlcal propcrtlcs of spin- I chains with umaxlaI
single-ion anisotropy D. A phase diagram is obtained in the (D,h) plane, where 6 is the strength of
the interaction in the direction of the single-ion anisotropy. Critical exponents are estimated.

I. INTRODUCTION

One-dimensional quantum-spin systems have been stud-
ied widely in the past. These models were originally pro-
posed with the hope of giving a better understanding of
the magnetic properties of matter by restriction to one di-
mension, where theoretical efforts can often be taken to a
high level of analysis, sometimes even yleldlng exac't solu-
tions which can then be used as test cases for approximate
methods employed in the study of the more realistic
three-dimensional case. However, because of the absence
of long-range order' of one-dimensional systems with
short-range interactions, except possibly at zero tempera-
ture„ there are some fundamental differences between their
two- and three-dimensional analogs. Today, many ex-
amples of (quasi-)one-dimensional quantum-spin systems
are known, some of which, relevant to this paper, will be
mentioned below. Such compounds usually have 8. phase
transition at very low temperatures, where higher-
dimensional ordering sets in. Therefore, the investigation
of such models is in no way a mere academic task.

In this paper, we present a finite-size-scaling study of
the T=O properties of the spin-1 nearest-neighbor Heisen-
berg model with uniaxial and single-icn anisotropy de-
fined by the Hamiltonian

H = —J g (SpSp+)+SISI+(+ASI'Sf+))+D g (Sf)
1=1 /=1

Either periodic boundary conditions (PBC's), or free-
boundary conditions (FBC's) are imposed. In the former
case, one sets S~+1——Sl, while 1Il thc 18ttcl, onc consldcfs
a system of X+ 1 particles.

For S = —,, the last term in (1.1) reduces to a constant
and H is exactly integrablc. The phase behaviorwith
I'cspcct to varying thc strength of the Unlaxlal RIllsotIopy
6 ls well UndcIstood ln this case. FGI 6 + 1, thc gIound
state go is ferromagnetic, i.e., M =+—,, where

At 6=1, where $0 is (2N+ 1)-fold degenerate, a first-
ofdcf transition occUI's to thc plRIlar phase with oldcf pa-
rameter M=0 for A~ I. The ground state is nondegen-
erate for —j. ~ 6 ~ I, with a gapless excitation spectrum

and algebraically decaying two-spin correlation functions.
At 5= —1, R gap again opens up with RQ csscntlRl zclo,
leading to an exponential decay of the correlations. The
ground state is now doubly degenerate and reduces to the
Neel state for b.~—oo, the antiferromagnetic Ising
IIlodcl. Thc stag gcrcd Inagnctlz ation,

is nonzero for 5 & —1 and can be interpreted as the order
parameter of this "Neel phase, " thus we have

lim Ms -exp[ m /2&(1+6, )], —
5~—1

(1.2)

and there is an infinite-order phase transition from the
Keel to the planar phase at 6= —1.

However, for S= 1, model (1.1) has so far received very
little attention. This may be partly due to the fact that
this model cannot be diagonalized with the method. s
developed in Refs. 5 and 6. However, since (1.1) with
S= 1 has been used to explain the properties of CsNiC13,
RbNiC13, RbpeC13, and CsNiF3, there is a need to study
this case from the experimental side as well. Since spin-
wRvc theory has bccn Used to determine tIlc quaQtltlcs
relevant for the experiment, an independent check of this
Rppl oximation seems appropriate.

Luther and Scalapino (LS) studied the case 5=0 as a
particular representation of the two-dimensional (2D) pla-
QRr model, RIld coIlclUdcd that lt will undcI'go R p4asc
transition driven by varying the strength of the single-ion
anisotropy D, corresponding to the temperature of the 20
planar model. They find a critical strength D, ~0, below
which the transverse susceptibility stays infinite with an
exponent q decreasing with decreasing D and q = 1/v 8 at
D, . den Nijs" claims that a corrected version of the LS
theory would produce the accepted value of q= —,

' (Ref.
10) at D, . Jullien and Pfeuty' performed finite-cell cal-
CU1Rtlons fol 5=o~ Rnd found stIong evidence foI' 8, tI'Rn-

sition at some finite D, with a gap operung with an essen-
tial zero for D ~ D, and a gapless phase for 0 &D &D, .

Recently, Botet and Jullien' have used finite-chain nu-
merical calculations to determine the T=O phases for an-
tiferromagnetic (b. ~0) exchange and D=O. They conjec-
tUI"c R dI'Rstlcally dlffcI'cllt bchavlol than foI' S=

2 with a
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new phase occurring between the gapless planar and the
Neel regimes. The Heisenberg antiferromagnet (5= —1)
1s 1Il this ncw phase, wh1ch 1s characterized by R slIlglct
ground state and a finite gap. The transition to the Neel
phase is predicted to be continuous, and estimates of the
critical exponents are given. These results are consistent
with recent work by Haldane, '" who contends, on the
basis of a mapping of the one-dimensional Heisenberg an-
tiferromagnet onto ihe nonlinear 0(3)-o. model is the con-
tinuum limit, that the T=O properties for even half-
integer spins differ fundamentally from odd half-integer
spills. Bonllcr Rnd Mullcl, howcvcl', performed R flllltc-
chain analysis of the spin- —, antiferromagnetic Heisenberg
Ismg cha1n, whrch shows s1rn11ar behav1or to 1ts sp1n-1
counterpart. They conclude that the behavior of the
spin-1 Heisenberg antiferromagnetic remains questionable.
Blote' has studied the ground state of small antifer-
romagnetic Heisenberg chains for s between —,

'
and 3 in

ordcl to cxt1act thc scR11Ilg bchav1QI' Rs R fUnctlon of sp1n.
The numerical predictions for the specific heat of (1.1) ob-
tained via extrapolation of finite-system data by de Neef
and de Jonge' and Blote' have been compared to experi-
ments on many occas1ons.

While preparing this paper, we received a copy of what
was then unpublished work from Botet et a/. , in which
results on the ground-state properties of (1.1) as obtained
by finite-size scaling are reported. Our conclusions about
the different phases are basically the same as those of
these authors, but we have carried out R more careful
study in the ferrcmagnetic regime.

From this list of work, it seems evident that a major
part of research on spin-1 chains has relied on numerical
calculations. For completeness, some of the approximate
analytical approaches to this problem should also be men-
tioned: Linear" and nonlinear" spin-wave theories have
been used to calculate the spin-wave dispersion of (1.1) in
the ferromagnetic phase, where long-range -order' is
present. Mead and Papanicolaou calculated, among oth-
cI' th1Ilgs, thc gr'QUIld-state cncrgy Us1ng R varlatlonal Rp-

proximation. Recently, de Alcantra Bonfim and Schneid-
er used a path-integral approach to map (1.1) onto the
isotropic two-dimensional classicaly Xl model, allowing
them to discuss the critical properties. It should also be
mentioned that explicit examples of exactly integrable
spin-1 chains Eave been constructed by taking extreme an-
isotropy limits of certain two-dimensional statistical
models. Howcvcr, thcsc cxalTlplcs always terminate with
more complicated interactions than the Hamiltonian (1.1).
It is an intriguing fact that, although (1.1) is exactly in-
tegrable for S=—,, this Hamiltonian cannot be treated
with the same Inethods for 5 =1.

The paper is organized as follows: Section II starts
with a description of the computer used to diagonalize the
Harniltonian exactly by machine for a small number of
particles. Some results on ground-state energies are then
reported. In Sec. III we recall the hypothesis of finite-size
sca11ng Rnd phcnomcnologlcal r'cnormallzatlon-groUp
theory. These methods are then used in Sec. IV to locate
the boundaries of the different ground-state phases of the
Hamiltonian in the parameter plane (D, h). In Sec. V we
present some results corlcerning the critical exponents.

II. NUMERICAL METHODS AND GROUND-STATE
ENERGIES

A further reduction in matrix size can be achieved if
PBCs are imposed. By using translational invariance,
each state is then also classified by a wave number
k =2Irl/X, I =0, 1,2, . . . , X—1. The diagonalization
was then performed numerically within a given subspace
(M, k). Our computer (IBM 3083) allowed us to take
%=10at the most.

If one wants to obtain information about larger sys-
tems, one has to use a different algorithm. For example,
it is easy to show that, given any initial state $0, the se-
quence

(y(n)
~

y(n))
(2.2)

in the limit n moo tends t—o the energy of H, which has
the larges~ absolute value.

It is also evident that the off-diagonal matrix elements
of H all have the same value, —J. By subtracting a posi-
tive constant c from the diagonal elements of H one can
also force them to be negative. This then ensures that the
eigenvector

~
1(0), obtained by iterating (2.2) infinitely

many times, is the ground state. %'riting

(2.3)

where I ~ P&) I is the basis introduced above, all c„must
have the same sign as R consequence of the Perron-
Frobenius theorem. . Thus, by applying this algorithm to
H —c3. IIl RIly subspace (M, k), ollc obtains thc unique
ground state

~
1to) of (M, k) and the ground-state energy

Eo to arbitrary accuracy. The rate of conver'gence is
determined by the next-largest eigenvalue. The advantage
of th1s method 1s that onc docs not have to stoI'c the cntlr'c
matrix H, but only two vectors for the iteration, at the ex-

A. Methods of diagonalization

For a finite system of Ã spins, the problem of calculat-
ing the energy levels of Hamiltonian (1.1) reduces to the
diagonalization of a (2s+1) X(2s+1) matrix, where s
is the magnitude of the spin. This was first done for
s = —, by Bonner Rnd Fisher, who then estimated
ground-state and thermodynamic properties for

~
h.

~
~ 1

by careful extrapolation to the infinite system. One can
use direct products of single-spin states as basis states,
which can take three values for s=1:

~
+ ), ~0), and

~

—). The Ising and single-ion anisotropy parts of (1.1)
are then diagonal in this basis. By classifying the states
by the value of 5'= g& I SI', the Hamiltonian splits up
into 2%+ 1 blocks of magnitude IM, where M is the
value of 5' of a given class of states

~- I~ I+2,

+f
k!(k + i

M
i
)!(N—2k —

i
M

i
)!

'
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pense of not obtaining the entire spectrum of H
For k=O or ~, we have also exploited the reflection

symmetry of H. Each state is then characterized by an
additional quantum number u = + 1, according to its
behavior under reflection.

With this algorithm, we were able to calculate ground-
state energies for N=14 within a reasonable amount of
time. Also, it is not difficult to calculate correlation func-
tions once the ground state is known to sufficient accura-
cy.

~ ~
~ ~

(2.4)

where E~(s) denotes the ground-state energy per spin of
the N-spin system of magnitude s, suitably normalized,

E~(s) =E~(s)/JNs (2.5)

In Table I we have listed Ez(s) and 13(N), N even, for
s = —, (6&N &18) and s= 1 (2&N &14). The finite-size-

scaling properties of these two cases appear to be striking-
ly different. For s = —,', P is almost independent of N,
and seems to converge to 2. In fact, P=2 has been used

by Bonner and Fisher to extrapolate their data to the
thermodynamic limit. For s= 1, however, /3 is strongly N
dependent and, moreover, seems to diverge for N —+ac.
This suggests that exponential behavior is more appropri-
ate for the finite-size corrections to EG in the large-N
limit. This is a first example of a sensitive spin depen-
dence in the strong quantum limit of small spin values.

Next, we calculated the ground-state energies for the
Heisenberg ferromagnet (b, =1) with varying single-ion
anisotropy D& Q. This is of interest both experimentally,
because (1.1) was used for (h, D) =(1,0.38) to explain ex-

periments on CsNiF3, and theoretically, since many ap-
proximate ground-state calculations have been performed
for this range of parameter values. Figure 1 shows a com-
parison of our extrapolated ground-state energies with the

B. Ground-state energies

As a program check, we compared the finite N
ground-state energies E~ for the Heisenberg antifer-
romagnet (b.= —1, D=O) to calculations published by
Blote' and found agreement to all digits quoted in his pa-
per for N & 10. Blote fits the data on finite systems to
three parameters to obtain the ground-state energy EG(s)
of the infinite system for spin values between —, and 3.
One of the forms he uses is

FIG. 1. Ground-state energy for Hamiltonian (1.1) with
5= 1: {a) extrapolated finite-chain result; (b) semiclassical
bound; (c) three-term 1/s expansion; (d) variational bound.

results obtained by (i) semiclassical calculation, (ii)
three-term 1/s expansion, and (iii) variational bound cal-
culations. We expect the estimates from the finite-size
data to be accurate to 1% for all D values. Something
very interesting is revealed by Fig. 1: Calculations (i)—(iii)
are essentially based on a rather sophisticated spin-wave
approximation. We see that they yield more or less
reasonable results for small D, where spin-wave theory is
expected to be a good approximation. It is even striking
that the ground-state energy calculated from the three-
term 1/s expansion agrees to within l%%uo with our extrapo-
lated values up to D=1. For larger D, all theories overes-
timate the true ground-state energy Eo since it can easily
be shown that Eo must be a monotonically increasing
function of D, which approaches 0 as D goes to infinity.
Why then does spin-wave theory break down for larger D?
We propose that there are other excitations besides the
spin waves, which become more and more important as D
is increased, and eventually determine the structure of the
ground state. However, since we are studying a quantum
system with a nontrivial ground state, it is not easy to
identify the nature of these excitations.

III. FINITE-SIZE SCALING
AND PHENOMENOLOGICAL RENORMALIZATION

Finite-size scaling (FSS), formulated several years ago
by Fisher, has been used increasingly in many ways to

TABLE I. Cxround-state energies aud exponent P (see text) of the Heisenberg autiferromagnetic chain

(A, D) =(—1,0) for s =
2 {left three columns) and s=1 (right three columns).

1
S 2 s=1

8

10
12
14
16
18

3.737 034
3.651 093
3.612 357
3.591 594
3.579 171
3.571 148
3.565 666

2.102
2.065
2.046
2.034
2.027

2

6
8

10
12
14

4.0
3.0
2.872474
2.834239
2.818 826
2.811 593
2.807 876

2.615
2.428
2.528
2.710
2.940
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while QN( T) cannot have any singularity for any finite N
But with increasing N, the singularity of Q starts to
develop. The basic FSS hypothesis is that a scaling func-
tion F~ exists such that

QN(T)-Q„(T)+g(N/g„(T)),
where g (T) is the correlation length in the infinite sys-
tem. Since QN(T) is an analytic function even at T„F~
has to compensate the singularities of Q and g at T, .
I

g'„(T)-
i
T T,i—

then I'~ must behave like

F~(z)-z ~" for z~0 . (3.4)

It follows that at T„QN(T) depends on N as a power
law,

QN(T. )-N '. (3.5)

In fact, any derivative of QN with respect to T must be
regular at T„which can be expressed by stating that

QN(T)-N"~ Gg(N'~"(T —T, )}, (3.6)

where G~ is a scaling function which is regular at T, .
When one considers a phase transition of infinite order,
i.e., let v~oo in (3.3), one usually expresses critical ex-
ponents in terms of the correlation length,

extrapolate the information available from a finite, or par-
tially infinite, system to the thermodynamic limit. The
phenornenological renormalization (PR), introduced by
Nightingale, is a consequence of the finite-size-scaling
idea. It has yielded remarkable results for the critical
behavior of various models. ' lt has also been applied to
quantum-spin systems, where, in analogy to the
transfer-matrix formalism, one considers strips of finite
width with one infinite dimension. We shall first describe
the concepts of FSS and PR, and then explain how we ap-

ply these methods to our quantum system.
In order to be definite, we consider "two-dimensional"

systems consisting of infinite strips of finite width N. We
let one parameter, T (the temperature), be varied, and as-
sume that in the thermodynamic limit X~ Oo, the system
has a continuous phase transition at a critical temperature
T, . For a physical quantity Q, this implies typically that
in the infinite system

(3.1}

the correlation length gN(T) for a strip of width N. Scal-
ing this system by a factor of I implies a scaling transfor-
mation for the correlation length

kN(T) ~IN/L(TL, N)

The equation

(3.9)

(3.10)

can be interpreted as a renormalization transformation.
Note that a fixed point of (3.10) does not imply singular
behavior of the correlation length, since two different
functions appear in (3.9). However, the N dependence in
Eq. (3.10) is expected to be weak. This expectation is jus-
tified in view of the FSS hypothesis. These considera-
tions suggest the following procedure to calculate the crit-
ical temperature T, . Define T, (N, M) by

4N(T. }/N =4s(T. )/M (3.11)

»[QN(T. )/QM(T. )]
ln(N/M)

(3.13)

For an algebraic phase transition, v can be determined
from

ln(N/M), (3.14)

which follows from (3.2) with Q =dg'/dT.
For more general cases (transition of infinite order),

Roomany and Wyld have given a direct way to deter-
mine the Callen-Symanzik P function from finite-size
data. The functional form of the P function then deter
mines the critical behavior of g at T, . The Roomany-
Wyld approximants to the P function in our notation are
given by

and extrapolate the results to the thermodynamic limit.
Another way to calculate T, is to search for power-law
behavior in ¹ see (3.5). One considers three scripts of
width N, M, and P, and obtains T, (N, M, I') as the solu-
tion of

»f QM(T, )/QN(T. )] ln(M/N)
ln[Q~(T, )/QM(T, )] In(P/M)

(3.12)

The advantage of this method is that one can obtain T,
by examining several different physical quantities Q, and
has, therefore, an internal consistency check. The critical
exponents can then be obtained by using (3.5) or (3.8) and

Q„(T)-[g„(T)]"at T, .
It then follows from (3.2) that

QN(T, )-N" . (3.8)

ln[M/I( T)/N gN ( T)]
ln(N/M) [1+(1/2T)d /d T]ln fNgN ( T)Mg~( T)]

It is evident that the FSS hypothesis allows the calcula-
tion of critical properties of a given model to be carried
out 111 lllally dlffclcllt ways, fol' 111stancc, by cxaIIlllllllg
the scaling properties of various . physical quantities.
Phenomenological renormalization is one such way, and
it has been shown ' to be most successful for systems with
a continuous phase transition. One starts by calculating

(3.15)

Our notation has so far been based on the cases most
often treated in the literature, namely, the application of
FSS and PR to the transfer matrix of two-dimensional
classical problems. How can one now apply these con-
cepts to a one-dimensional quantum Hamiltonian'7

For a classical model, the correlation length g can be
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calculated from the two largest eigenvalues, Ao and A, „of
the transfer matrix by

/=1/In(A, )/A, o) . {3.16)

when the corresponding classical system is at its critica1
temperature. This means physically that time scales in
the same way as space. The temperature in the classical
model usually enters in the parameters of the quantum
HaIMltonlan.

Generally, in a quantum system, the zero-temperature
critical behavior is determined by the absence of an energy

gap between the ground and first excited states.
Assuming translational invariance, one can express the

relation between the vanishing of the gap co and wave
number g by

(3.20)

and z is called the dynamical critical exponent. For a
finite system of size E, the smallest nonzero q is equal to
2n/X It is there. fore reasonable to expect the gap ~z to
behave like

(3.21)

Since the Hamiltonian (1.1) has not been shown to be re-

lated to a classical model in the above-mentioned sense,
we must check that z=1 whenever the gap exhibits
power-law behavior in N in order to have justification for
using FSS and PR for an estimate of critical exponents.

The FSS hypothesis then states that, if g~ denotes the
correlation length of a finite system of size N, then, at cri-
ticality, g& must scale with system size as

(3.17)

If a quantum Hamiltonian H is obtained from the ~-

continuum limit of the transfer matrix T of a classical
system, i.e., if formally

(3.18)

then, we infer from (3.16) and (3.17) that the gap X be-

tween the ground and first excited states of 0 of a finite
system must scale as

along the entire line. The extrapolation to the thermo-
dynamic hmit is shown in Fig. 2. Of course, the curve
must go through the isotropic Heisenberg ferromagnetic,
(D,h)={0,1), where one has a (2X+ 1)-fold degenerate
ground state, Eo M, which is the same for all allowed
values of M. For large D, the curve approaches asymp-
totically the straight line E=D, which is the transition
point in the absence of the x and y components of the in-

teraction. Second-order perturbation theory in this
strong-coupling regime yields an approximate solution of
(4.1),

D= —I/2b, as D~ —ao .

We define the planar regime by that part of the (D,g)
plane for which the order parameter M of the ground
state is equal to zero. In this case, it is of interest to
determine to which subspace (M, k, u) the first-excited
state f~ belongs. We find three possibilities:

(i) g~E(+1, 0, +1) doublet,

(ii) Q~E(0, m, —1) singlet,

(iii) P) C (+2, 0, + 1) doublet .

(4.4)

The planar regime is thus divided into three parts,
(i)—{iii), whose extrapolated boundaries have also been
drawn in Fig. 2. The isotropic Heisenberg antiferromag-
netic (D, b, ) =(0,—1) lies on the boundary line between (i)

and (ii), since the doublet of (i) becomes degenerate with

the singlet of (ii) to build a triplet excitation with lowest

energy above the ground state for all values of X. The
straight line D = —b, is the asymptote for this boundary
in the limit D —++ {x), which can easily be seen by com-

paring the energy of the Neel state E~ X(D —6)——to-
the state 1tjo, which is charactenzed by S~'

~ fo) =0 for all

(4.2)

In the limit D —+ —ao, the line 5=0 is the asymptote.
We find numerically that

IV. PHASE BOUNDARIES

A. Symmetries of the ground and first excited states

For all X investigated, the ground state is either a sing-
let with S'=0 or the ferromagnetic doublet with 5'=+X.
There is a line in the (D,b, ) plane, where a discontinuous

jump occurs between these two ground-state symmetries.
Since M is the order parameter of our system, this jump is
a first-order phase transition from the ferromagnetic to
the planar phases. %'e have determined numerically the
line of this transition by implicitly solving the equation

Eo, I=o(»~) =Eo, I=x(»~) . (4.1)

Here, Eo ~ denotes the ground state of an X-spin system
with magnetization M. There is very little X dependence

D
FIG. 2. Diagram of symmetry regions of the ground and

first excited states. The thick solid line separates the region of
the ferromagnetic ground state I from the region of the planar

ground state with M=O, where 1, 2, and 3 denote the different

symmetries of the first excited state; see (4.4).
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B. Phase boundaries for 6&0

Knowing to which symmetries the ground and first ex-
cited states belong, we can now use the finite-size-scaling
methods to determine the behavior of the energy gap as a
function of the size N and the Hamiltonian parameters D
and A. In Fig. 3 we have plotted the function

(N+ 1)coN+)(D, 6)
NcoN(D, b, )

(4.5)

l, and has energy 0. The boundary between (i) and (iii) is
of less interest and has only been included for complete-
ness.

easily obtained in the thermodynamic limit. Guided by
the experience gained from the study of the spin- —,

' XXZ
model, which is exactly soluble and shows features similar
to our Hamiltonian, we finally settled for a method short-

ly to be described.
As mentioned in Sec. III, one can determine D, by ex-

trapolating the approximate critical D values D, (N, M,P)
obtained by solving (3.14) for a physical quantity Q,
which is singular at D, . Since the gap cu is such a quanti-

ty, we can define

1n[coN(b, D) /AM (A,D) ]ln(M/P)

in[co~ (A,D)

/cop�(b„D)

]In(N/M)

for N=9 in the planar regime and for b, )0. The gap
coN(D, b, ) is defined by

z (b„D,N, M)
z(b, ,D,M, P)

(4.8)

co N( Db.)=Ei (b„D) Eo (b,—D),
where E~ and Eo are the first excited and the ground-
state energies, respectively. A remarkable behavior can be
seen from Fig. 3; there is a region in the (D, b, ) plane
where RN is almost constant and equal to 1. This feature
becomes even more pronounced when Ã is increased to
larger values. Therefore, the points in this region are
fixed points in the sense of (3.13), where we have already
identified co with g, which is reasonable since RN ——1

implies that z= 1 [see (3.2)]. This figure then gives clear
evidence of the existence of a gapless phase with z= 1. It
can also be seen that RN starts to increase with D for suf-
ficiently large D. In the limit D~ oc, we have

co~ ——A /N', (4.9)

for the three N values considered. The fact that S&1
means that z (N) is always a decreasing function of N for
the sizes considered,

and look for solutions D, (5 ), for which
SN ~ P(b„D, (b ))=1. Figure 4 is a plot of
SNN (N 2(b„D) for N=10, 6=0.6, and0&D&2. This
function is always less than 1 and there is no solution to
the above equation. The same holds true if one chooses
other values for N, M, P. But there is a maximum D „
close to D=0.8, for which S=0.9985. This maximum in-
dicates that one obtains the best power-law approxima-
tion,

RN(h, D)~(N+1)/N as D~oc, (4.7) z(M) &z(N) for M )N . (4.10)

because in the absence of interaction, the gap coN ——1 for
all N. Fixing the exchange energy JA in the z direction,
one therefore expects a transition to take place at some
finite D, (b, ), separating the small-D gapless phase from
the large-D finite-gap phase.

For the calculation of the critical exponents, it is of
great importance to determine D, (h) as accurately as pos-
sible from the finite-chain data available. This task
turned out to be very difficult, because, for fixed b., there
is an entire line of fixed points; the exponent z varies only
slightly around 1, and the end point of this line is not

One also sees from Fig. 4 that for D )D,„, S starts to
decrease dramatically, indicating a different scaling
behavior in this range. We have determined D, (h) by ex-
trapolating D, (N, b ) obtained as the solution of

~SN, N —1,N —2(~~D) =0, (4.11)
BD

for X between 7 and 14. In the Appendix we describe
several methods for extrapolating finite-N data to the.
thermodynamic limit N ~ oo.

Because of the very irregular N dependence of D,. „ for

—1.02

0.5
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1.0

1.04

C3

(g 1.0
O
II
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~ 0.9
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0.5 1.0
1.0 0.8

2.0

FIG. 3. Function R&(h, D) [Eq. (4.5)] for X=9. The dashed
1ine denotes the transition to the ferromagnetic ground state.

FIG. 4. The function SN M z(E,D) [Eq. (4.8)] for b, =0.6 and

X,M, P= 10,9,8.
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that, in this case, one cannot go beyond a qualitative char-
acterization of the phase properties. Nevertheless, it
seems that this part of the parameter plane exhibits some
very interesting features. This can be seen from Fig. 6,
where we plotted the curves obtained by solving the equa-
t1OIlS

z(b. ,D,X,%+2)=1 (4.12}

fol' %=4,6,8 111 Fig. 6(R). Slmllar cul'vcs Rctually 11Rvc Rl-

ready been published by Botet et ah. , but we obtained
them independently. In Fig. 6(b) we plotted the curves
obtained by solving

(4.13)

FIG. 5. Lines of the transition from the gapless phase XY'to
the singlet ground-state phase with gap 5 for 5 ~ 0 as predicted

by (4.11) (thick solid line) and the phenomenological renorrnali-

zation (3.13) (dashed line). UppeI thin solid line denotes transi-
tion to the ferromagnetic ground-state region I.

small sizes and b, close to 0, it turned out to be useful to
have data available for X up to 14. The extrapolated
curve D, (b, ) is shown in Fig. 5 together with the line of
the first-order transition to the ferromagnetic phase.

We believe that by using this method to determine
D, (h), we have eliminated the leading corrections to
finite-size scaling for our system. This claim can be sub-
stantiated by looking at the critical couplings D, (b. ) that
would be obtained by a naive application of the basic
equation (3.13) following from PR. We believe this curve
to be wrong for the following reasons:

(1) Tllc phenomcnologlcal icliol'111Rlizatloli applied to
the antiferromagnetic transition of the spin- —, XXZ
model, which is known to be exactly at 5, =- —1, would
yield an estimate 5, = —0.4. As in our case, this is well
within the region of 6, where the XXZ model is known to
be gapless. The use of (4.11) yields estimates h, (X) which
can easily be extrapolated to 6, = —1.

(ii) Careful extrapolation of z(D, b„N) as a function of
X shows that z can have a minimum in X and increase
again for larger sizes. This is never the case for X &14,
but results obtained for the spin- —,

' XXZ model indicate
that this really can happen. This point is crucial in our
case, since at D,(¹,h), we always have z ~ 1.

(iii) Later, we shall report the results for the critical ex-
ponent y of the transverse susceptibility X „. We now
want to mention that by solving (4.11}using X~ instead
of the gap, we obtain a critical line which almost superim-
poses D, (h). Within the errors emanating from extrapo-
lation to the thermodynamic limit, one can state that the
two lines are identical.

where Sz+z z & 2(D, E) is defined by (4.8) and was used
to obtain the phase boundary in the ferromagnetic region.
Sizes X of Fig. 6(b) are %=8,10,12. For D)0.4, there
are actually additional maxima for %=10,12 and for
b, &0; these almost coincide with the line of maxima for
%=8 drawn in Fig. 6(b).

There is a fingerlike shape to the curve in Fig. 6(a) for
poslt1vc D values. MGI'covcI', thc bchavloI' with 1IlcI'cas1Ilg

X suggests that these "fingers" might actually collapse
into a single line in the thermodynamic limit. However,
we can only obtain weak support of this conjecture from
extrapolating the finite-chain data, because the size depen-
dence is very irrcgular even when one considers only even

¹ Figure 6(b) also reveals the existence of a line which is
ill good Rglcci11cnt wltll tllc flllgclllkc cllrvcs of Fig. 6(R}.
This agreement is very different from the ferromagnetic
region, where we found a considerable difference between
estimates derived from (4.12) and from derivatives of S
with respect to D.

It is clear from the data that the gapless phase extends
into the antiferromagnetic part of the (D, b, ) plane only in

a very small region indicated by the fingerlike curves of
Fig. 6(a) and, most probably, there is only a single line
with vanishing energy gap. %here then does the gapless
phase terminate as one approaches the antiferromagnetic
regions One can again obtain a partial answer to this
question by comparing the behavior of the curves of Figs.

(A)

C. Phase dlagraHl for 5 +0

There are two I'easons why we have chosen to present
the results for aniiferromagnetic exchange 6 «0 in a
separate subsection. First, the behavior of the gap seems
to be very different from the ferromagnetic case. Second,
the size-scaling behavior of all physical quantities is such

t I I

0 1 2 —'I. 0 —0,5 0 0.5
D

FIG. 6. (a) Curves obtained by solving (4.12) for 6 &0 with
X=4 ( " ~ ), 6 ( ———), and 10 ( ). (b) Curves obtained

by solving (4.13) with X=8 (0 ), 10 ( & ), and 12 ().
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6(a) and 6(b). From Fig. 6(a), one can see that for
—1.0 &D &0.4, the transition must be very close to 6=0
in Fig. 6(b). For sufficiently large D values (D & 0.4) and
for sufficiently N (X& 10), one obtains two maxima of
S~+2 ~ ~ 2(D, b, ); one for b, )0 and one for b, ~0. For
D &0.35, only OIlc maximum remains. Th1s w111 RgI'cc

well with Fig. 6(a), if one associates the lines of maxima
for b. &0 and D&0.4 with the "fingers" of Fig. 6(a). The
other lines of maxima for 5 &0 and D&0.4 should then
converge to the boundary between the gapless and large-D
phase already determined in Sec. IV 8 (see Fig. 5). How-
ever, we have used the derlvatlve of S~+2 ~ ~ 2(D, 6)
with respect to D and not A. This is nicely satisfied for
D )0.6, where one obtains good agreement of the extrapo-
lated values with the results of Sec. IV B. For
0.35 & D&0.6, the size dependence of the curves in Fig.
6(b) is rather erratic and no extrapolations are possible.

For D&0.35, where only one maximum for each X
considered 1s present, one can again reasonably extrapolate
the data and find that the true transition line must be
close to the D axis. The curves of Figs. 6(a) and 6(b) are
actually complementary for —1.0& D &0.35, because in
Fig. 6(a) the D axis is approached from negative values of
5, while in Fig. 6(b) it is approached from positive ones.

In summary, we find that for almost the entire antifer-
romagnctic region 5 &0, the ground state is separated by
a gap from the first excited states. Although it is impos-
s1blc to exactly locRtc thc phase boundaries, 1t sccIIls that
the boundary to the gapless phase is very close to the D
axis. Both Figs. 6(a) and 6(b) support this view.

These results finally lead us to propose the phase dia-
gram depicted in Fig. 7. We have a gapless phase for
low-valued D and 5 ~ 0 which terminates along the line a,

V. CRITICAL EXPONENTS

HRV1ng dctcrm1ncd thc phase boundar1cs, wc can now
calculate the critical exponents v and y, where v refers to
the power of the divergence of the correlation length, and

y to the transverse susceptibility X„„,defined by

X„„=—g (A, QZP 0) (mq —m~) . (5.1)

(A,
~

denotes the eigenvectors of Hamiltonian (1.1) with
energy mz, and ~0) is the ground state. In most cases, for
A, %'c hRvc takcIl only thc lowest cxc1tcd state which yields
a very small difference from the true value of X~. The
critical exponents were then calculated with the methods
described in Sec. III.

where the lower part of this line is somewhat uncertain,
but surely close to the D axis. At (D, b, ) =(0.35,0), a line
b emerges in the antiferromagnetic region, along which
thc Hamiltonian 1s Rlso gapless. Wc hRvc not examined
the gap beyond the lower thin line c in Fig. 7, which indi-
cates the change of symmetry of the first-excited state,
For this part of the (D, b, ) plane we refer to the very re-
cent work of Botet et a/. , who carefully investigated the
transition to the Necl phase occurring in this region.

The fingerlike shapes of Fig. 6(a) are not in contradic-
tion to the single line proposed in Fig. 7, because, for any
finite X, the function z(D, b„N,%+2) has to be analytic
in D and h. Therefore, the curve z(D, A, X,%+2)=1 can
never separate into two curves at, a point ln 'the (D,k)
plane, and the only possibility they have is to follow as
closely as possible the line of Fig. 7, turning around it and
following it again on the other side, which is exactly what
happens.

A. Ferromagnetic region

D
FIG. 7. Phase diagram of Hamiltonian (1.1). Lower thin

solid linc c dcnotcs change of symmetry of the first-excited
state. Hatched area denotes gapless phase XK Line a denotes
boundary of the gapless phase in the planar region. The dashed
line b, along which (1.1) is also gapless, separates the region
above c into two phases S and HA, where HA contains the
Heisenberg antiferromagnet (E,D) =(—1,0). F' denotes the re-
gion of the ferromagnetic ground state.

Using (3.16) we calculated vz~ along the transition line
D, (b, ) (Fig. 5) for M =X—1 and derivatives taken with
respect to D. In Table II the values for v~~ ~ are listed
for X between 4 and 12 and 6=0.6. The trend is the
same along the entire line D, (b.). One can see that v does
not converge to a finite value. Therefore, we conclude
that the correlation length g diverges faster than any
power in D D, {b,). To obtain a—more precise idea about
the divergence of g, we used the P-function approximants
{3.17) for M =X—1, and fitted them to the following
form for g- I/co:

co —exp[ —A (D D~) ] . —
Values for o.~& ~ are also listed in Table II for 5=0.6.
One can see that when the form (5.2) is correct, one clear-
ly gets a nonzero value for o.. But it is impossible to
determine o. precisely because it strongly depends on the
width of the interval of D values chosen to carry out a
least-squares fit of the P function. A, D„and cr in (5.2)
have been fitted.

Assuming v to be infinite, we evaluated y by using (3.8)
and also listed it in Table II for 5=0.6. The convergence
seems to bc very good In th1s case RIld onc can g1vc a plc-
cise estimate of y= I.7495+0.001. These good conver-
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TABLE II. Critical exponents v, o., and y as a function of X
for 6=0.6.

6
7
8
9

10
11
12

6.58
6.49
6.54
6.63
6.73
6.83
6.93
7.03
7.14

0.03
0.06
0.12
0.17
0.21
0.23
0.28
0.35
0.41

1.7741
1.7629
1.7576
1.7548
1.7531
1.7520
1.7513
1.7508
1.7505

(SpS,")—
i

l
i

From the scaling law'

V 9

(5.3)

(5.4)

we infer that r)=0.2S along D, (b, ) independent of b, . In
the gapless region, q usually decreases when D is de-
creased and tends to zero when one approaches the line of
the first-order transition to the ferromagnetic ground
state. But when 6 approaches zero, it appears that g
varies very slightly with D and is always close to 0.25. At
the point (D, b, )=(0.38,1), expected to describe CsNiF3,
we obtain g =0.11.

gence properties hold for all b, and one always obtains

@= 1.75 to very good precision. In fact, extrapolating the
lines y(D, b, N, N+ 1)=1.75 leads to a curve D, (b, ) which
almost superimposes the curve previously found in Sec.
IV B.

We have so far determined the exponent v to be infinite
and cr in (5.2) to be nonzero. Furthermore, y has been
found to be equal to 1.75 with very good precision along
the entire line D, (h). These findings suggest that the
transition taking place along D, (b, ) for b, & 0 belongs to
the universality class of the two-dimensional classical XF
model studied by Kosterlitz and Thouless. ' These au-
thors predict o.= —,, which is not excluded by our results.
For 6=0, evidence for the above conjecture has already
been presented by Luther and Scalapino, den Nijs, " and
by Jullien and Pfeuty. ' The Hamiltonian (1.1) for 6=0
is only a truncated version of the O(2) model, which has
been shown by Hamer and Barber and Roomany and
Wyld to belong to the same universality class as the 20
XF model. Recently, de Alcantra Bonfim and Schneid-
er mapped the spin-1 chain (1.1) onto the 2D isotropic
XY' model in the critical region, and therefore anticipated
our results.

In the region where the gap vanishes, the spin-spin
correlation function is expected to fall as a power of the
distance between the spins,

evaluating it at the lines z(b„D,N, N —2)=1 of Fig. 6(a).
We always took that side of the "finger" which is the con-
tinuation of the curve z(E,D,N, N —2)=1 from the fer-
romagnetic region. In Table III we have listed v~ ~ q for
X beween 6 and 14 and 6= —1.0. It seems that v tends
to a finite value for N~ oo. This trend is observed along
the entire line b, although it becomes less evident that v
converges to a finite value when 6 is close to zero. Un-
fortunately, evaluating v on the other side of the "finger"
yields different, but also finite, results.

We have listed the exponent v as obtained by extrapola-
tion of v~& 2 to the thermodynamic limit for various
values of b, in Table IV. Although we do not claim high
accuracy, we believe that qualitatively we have obtained
the correct picture. v seems to decrease from infinity at
(b,D) =(0,0.35) to 0 at (b.,D) =( —2.6,2.4), where line b

of Fig. 7 joins line c of change of symmetry of the first
excited state. Therefore, we conjecture that line b is the
line of an ordinary algebraic phase transition with a con-
tinuously varying exponent v.

The calculation of the exponent y/v from X„„also re-

veals that

(5.5)

varies along line b. We have listed q in Table IV, where
one sees that g increases from 0.2S at (b„,D) =(0,0.35) to
about 0.64 at (A,D) = ( —2.0,1.75).

Let us now look at boundary a for the gapless phase.
There are some problems in determining the critical ex-
ponents in this case. First, we can no longer let D be the
parameter which is varied and used to take the derivative
of the gap to obtain v, because the transition line is ex-
pected to be almost parallel to the D axis. Second, be-
cause we are unable with our system sizes to locate the
transition with reasonable accuracy, we can only give a
crude estimate of the exponent q.

We have calculated v by taking derivatives with respect
to the exchange anisotropy 5, and it then assumes that v
diverges in the thermodynamic limit. Furthermore, g
seems to be close to 0.25 along the transition line. This
follows from the fact that q varies little on the D axis
(6=0) and is always close to 0.25 there, and that we ex-
pect the transition to take place at 6=0 for all D & —1.
This behavior at line a has also been found by Botet
et al. and supports a conjecture of Haldane, ' who
predicts a phase transition from the gapless region into
the "antiferromagnetic" phase with a gap opening with an
essential singularity close to the D axis, and the transverse
correlation function decaying with an exponent g= —,

' at

TABLE III. Critical exponent v as a function of N for
6= —1.0.

5= —1.0
+N, X—2

B. Antiferromagnetic region

In the antiferromagnetic region we have to investigate
the single transition line b in the D~ 0 and 6 &0 qua-
drant (Fig. 7) and the boundary to the gapless phase a.
For the single transition line b, we determined v~& 2 by

6
8

10
12
14

0.811
0.933
1.069
1.179
1.249
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0
—0.5
—1.0
—1.5
—2.0

3.2
1.5
0.6
0.3

0.25
0.31
0.38
0.48
0.64
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APPENMX

the transition. This then implies that the isotropic
Heisenberg antiferromagnet (b„D)=(—1.0,0) lies within
this "antiferromagnetic" phase, and its ground is there-
fore separated by a gap from the lowest excited levels, and
1ts corrclat1ons decay cxponcnt1ally with distance. Such
behavior is very different from the s = —,

' case, where the
Heisenberg antiferromagnet1c 1s rigorously known to be
gapless.

VI. CONCLUSIONS

In this work, we have studied the critical properties of
the spin-1 Heisenberg chain with uniaxial anisotropy by
using finite-size scaling. We have found evidence for a
phase transition for ferromagnetic interaction b, ~ 0,
which occurs along a line D, (A) in the (D,h) plane and
seems to belong to the universality class of the two-
dimensional planar model. However, severe problems
arose in determining the critical couplings D, (A), which
could only be resolved by a comparison to the spin- —,

'

XXZ model, which is amenable to an exact solution and
shows similar phase behavior. We believe therefore that a
straightforward application of finite-size scaling does not
accurately locate the transition for 5 ~ O.

For antiferromagnetic coupling 6 & 0, we found a
nonzero energy gap almost everywhere except on line b of
Fig. 7, along which a phase transition with continuously
varying critical exponents v and g seems to occur. Be-
cause of the irregular scaling properties for 6 &0, unfor-
tunately we cannot go beyond a qualitative characteriza-
tion of the phase behavior.

It is interesting to observe that the behavior of the spin
chains defined by (1.1} is very different for integer and
half-integer spins.

First, we find strong numerical evidence that supports
the conjectures of Haldane' and Botet et al. ' ' concern-
ing the existence of an intermediate phase between the XF
and Neel phases, which only exists for integer spins. This
conjecture can be further strengthened by a trivial exten-
sion of a pioof of I.icb et al. , 9 who show that the
Heisenberg antiferromagnet does not have an energy gap
for s = —,'. This proof can easily be extended to all half-
integer values of s, but does not hold for integer s.

Second, wc have looked at thc bchav1o1 of thc cncrgy
gap as a function of D & 0, and for

~

6
~

~ 1 and s = —', . A
finite-size-scaling analysis yields the result that there is no
gap anywhere in this rcglon, and thclcforc there arc no
transitions of the kind we found for s=1 in this case.
Such behavior can be expected for D~ Oo, because then
one effectively reduces the spin to s = —,.

In. this Appendix we describe some methods we used to
extrapolate our finite-size data to the thermodynamic lim-
it.

Lef, Q be any physical quantity of the infinite system.
An obvious way to determine Q from the finite-size ap-
proximants Q~ is to write

X~—1

Q~ ——g a((1/N), (A 1)
1=0

where Nz is the number of different system sizes for
which one has calculated Qz. Then

{A2)

This approach supposes that Q is an analytic function of
1/N around 1/N=O (ol N = oo ), which unfortunately ls
in contradiction to the finite-size-scaling hypothesis when-
ever Q becomes critical. However, there are cases where

Q remains an analytic function of N even at the critical
point, which of course requires the critical exponent of Q
to be an integer.

Fol example, thc cncrgy gap M~ bchavcs llkc

m~ ——tan{n/4N) (A3)

at the critical point of the s =—, transverse Ising model,
which is analytic at 1/N=O.

One might also expect the critical exponents themselves
to have an analytic N dependence. A check for the use-
fulness of the method is to calculate Q by taking different
N values in (Al), which should yield the same results. A
second method we used is to solve the equation

(A5)

for Q, A, and u by taking three different N values, which
allows for a real exponent a. This method turned out to
be useful for the ground-state energy where the infinite-
system estimate is almost independent of X.

Finally, we mention a method recently introduced in
this context by Hamer and Barber. Using it, one imple-
ments a one-parameter family of sequence transforma-
tions invented by Van den Broeck and Schwartz. Given
a sequence of values Q~ which converge to some limiting
value Q =lim~ Q~, one forms a table of approximants
to Q denoted by [N,l.], where
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and the (L+ 1)th column of approximants is generated
from the Lth and (L —1)th columns via the formula

1

[M,L +1]—[M,L] [M,L —1]—[M,L]

(A6)
[M + 1,L]—[M,L] [M —1,L] [M—,L]

with the auxiliary condition [M, —1]=ac. For a=i,
Wynn's e algorithm for generating the Pade table is
recovered, while for a=0 the transformation is equivalent
to an iterated Aitken-Shanks table. We used this
method mostly with a=1 or O. Other u's do not usually
yield very different estimates in the cases where conver-
gence seems to be good.
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