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We have performed a self-consistent numerical study, which allows each CH group in a finite po-
lyacetylene chain to relax to its equilibrium position, in order to investigate the formation of the po-
laron, soliton, and soliton lattice in the framework of Su-Schrieffer-Heeger model. The bond-
alternation order parameter, the delocalization of the gap states, the polaron-formation energy, the
soliton-formation energy, the Peierls gap, and the gap separating the valence (or conduction) band
and the impurity band are calculated as functions of dopant level. The effect of electron-electron in-

teraction is then examined in the Hartree approximation. Our results are compared with those de-
rived by other authors. Although our approach simulates a doping process, further calculation
based on the decaying of an electron-hole pair into a soliton-antisoliton pair gives exactly the same
results as those shown in this paper. In particular, our finding clearly demonstrates the single-
charge injection via polarons which subsequently combine to form soliton-antisoliton pairs, in agree-
ment with the recent experimental discovery.

I. INTRODUCTION

Polyacetylene, (CH)„, has attracted much interest from
both cxpcrimentalists and theorists because of its UQUsUal

properties upon doping with a variety of donors and ac-
ceptors. ' A number of experiments and the recent energy
band calculation indicate clearly that the material is quasi
one dimensional. A single neutral chain of trans-(CH)„
exhibits the well-known Peierls distortion. As a conse-
quence of two degenerate ground states, Rice and Su,
Schrieffer, and Heeger (SSH) have argued that the prop-
erties of trans-(CH)„are dominated by neutral and
charged solitons. While the SSH model is in the frame-
work of the single-particle model, the topological feature
of the soliton state prevails in more sophisticated self-
consistent calculations, including the electron corx'ela-
tion and the irregularity of the geometric structure of
the chain. In reality each (CH)„chain is of finite length
with proper boUndRry conditions. Howcvcf, thc boUIldRI'y
conditions are ignored when one assumes a model of in-
finite chain. The boundary conditions turn out to be cru-
cial to the interpretation of experimental data, for exam-
ple, the optical absorption.

The continuum version of the SSH model was anlayzed
by Takayanla et al. to yield tile exact, sollltloll of a soll-
ton state. Subsequently, two interacting solitons and soli-
ton lattice were also studied. Further theoretical
studies, also in the scope of the continuum limit, revealed
the polaron state, which does not have the topological sta-
bi.lity of soliton. ' ' For a finite cyclic chain containing
at least 110 CH groups, Brcdas et ah. ' have used the adi-
abatic Huckel Hamiltonian to investigate the formation of
polaron. In contrast to the soliton state, the polaron is a
common feature of excited states in many other conduct-
ing polymers. Nevertheless, recent results of opto-
electrochemical spectroscopy' and electrochemical volt-
age spectroscopy on polyacctylcIlc sUggcst R fasclnatlng
phenomenon of single-charge injection via polarons which

subsequently combine to form lower-lying soliton pairs.
Since the lattice deformation corresponding to a pola-

ron is characteristically different from that corresponding
to a soliton, an analytical solution of bipolaron decaying
into a soliton-antisoliton pair is a very difficult task. An
alternative is the self-consistent numerical solution of a
finite chain of polyacetylene. Such an approach has been
successfully carried out to study both the static proper-
ties and the dynamical processes. In this paper,
we present the results of a self-consistent numerical calcu-
lation which allows a comp/ete relaxation of all the elec
trons and each individual atom in a finite chain of po-
lyacetylene. The chain is sufficiently long to ensure that
the results obtained in this manner are almost approach-
ing the thermodynamic limit. The computation which is
s1mIlar to thc ITlcthod proposed by Shastry simulates thc
doping process and illustrates the formation of polaron,
the decaying of bipolaron into soliton-antisoliton pair, the
structure of soliton lattice, the formation energies of pola-
ron and soliton as functions of the dopant concentration,
and the variations of the bond-alternation order parameter
and optical gaps with increasing doping level. The effect
of electron interaction will then be studied in the Hartree
approximation. All our results will be compared to the
findings of other authors.

II. SELF-CONSISTENT CAI.CULATION SCHEME

We add the electron interaction to the SSH model

HO g [t 0+( t'ai uui+l) j(et+1 farci 0+et ~ci+l ~)

+—g (u; —u;+i —C)

RIld considcI' thc Hamiltonian
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2y; (3)

Let R~ =mRO+u be the position of the mth CH group.
Then thc electron-interaction c1Mrglcs arc assumed to have
the form

for a finite chain of X CH groups and N, electrons in the
m band. The values of the parameters are estimated as
X =21 CV/A, t() =2.5 eV, and a=4. 1 CV/A, and C is
determined from the condition that when U =UJ =0 and
u =0 for all i and j H gives the ground-state energy of
an undistorted neutral chain ( jV, =X). In order to mini-
mize the total energy in our self-consistent calculation, it
is convenient to define u;=a{u; —u;+)) and y=a /X,
and write (1) as

Ho —g——(to+u;)(c;+I c; +c; c;+I )

To solve the Hamiltonian H numerically, one must cal-
culate the total energy N'(Iu; j ) for given values of defor-
IIlatloIls I ut j Rlld IIII111IIIIzc 5 wl'tll rcspcct to thc whole
set I u; j. It then results in a set of jV coupled equations
which are difficult to solve as N gets large. Therefore, in
almost all the existing works the values of I u; j are either
fixed or approximated by a trial function which contains
only a few free variational parameters. Since the self-
consistent values of I u; j for a polaron excitation are en-
tirely different from those for a soliton-antisoliton excita-
tion, we must allow the whole set I u; j to vary freely in
order to see the decay of a bipolaron into a soliton-
Rnt1sol1ton pair.

For given values of C and the set I u; j, we solve the
Schl odlngcr cquatlon

V

H gcjt Bjk —c; gcj Bj;, i =12, . . . , X (5)
j J

U;;+ ——Uexp( —
I
R; —R;+~ I

)

= U exp — $ u;+j I/a —mR&
j=1

(4)

for the eigensolutions c'; and Bj;. The electron-
1ntcrRctlon terms Rfc trcRtcd w1th tlM Hartlcc approxiIDR-
tion. Within this approximation, for a given number of
electrons X, the total energy of the system is

8'{Iu; j)= —g{t()+ut) g (8;*+IJB;j+8 ~8;+I j)+ g(ug —aC)
i,a

+
2 Q g g IBk, I'IBt, I'+ 2 g g g Uj IBk, I'IBtj I',

i,o k&E(0) pCI'( —o) i j,cr, e' kEF(0) EEF(o')

where E{cr) is the set of all occupied o-spin eigenstates of H. Minimizing the total energy 8'( j u; j ) with respect to u;, we
obtain

u;=y C'+ g g (8;*+)jBj+BjB;+)j)+Z
0 jGI'(a. )

Z = g {to+uk) g ~„(Bk+),JBkj+Bk jBk+),, )
k, o j &F(n) p, o kEF(e) l&F( —e)

2 X ~„(Upj I Bk.p I

'
I Bt,j I

') .
pj, cr, cr' k EF(n) 1EF(n')

Equations (4)—(8) can be solved by iteration. The explicit
form of Z is very complicated. It is convenient to neglect
the term Z during the iteration process. The final self-
consistent solution is the same whether we neglect the
term Z or not, because when the self-consistency is
reached we have Z =0 for the system under equilibrium.
Of course, when the Z term is dropped we need more
iterations to achieve the same self-consistent solution.

To fix the parameters in (4), we set Ra=1.22 A {from
Ref. 3) and choose several values U/8'=0. 06n, where n
is an integer and 8'=@to——10 CV is the width of the m

band. Wc 1ncrease the range of electron mteract1on gra-
dually and find that the terms U~;+~ for m )3 have very
little contribution and can be dropped. %'e also use a
straight chain (with free boundary conditions) of 100 CH
groups so that the chain is sufficiently long to yield reli-
able result. Owing to the characteristic discrete spectrum

of a finite system, we found C'=1.25032 instead of
C'=4/m =1.27324, which can be derived analytically for
an infinite chain.

III. POLARON, SOLITON, AND SOLITON LATTICE

We first consider the simpler case of the SSH Hamil-
tonian Ho. Since in this case we set U = U,J ——0, the Har-
tree approximation on the electron interaction will not
come in and so the results in this section are exact. For
given number of electrons jV„ the self-consistent solution
Is obtalnecl RIlcl thc ol'clcl' paIR111ctcl 'Ip„= —( —1 )"It„ ls clc-
rived. Figure 1 shows 20 curves of order parameter in
units of 0.05 A for 20 values of~=j))t, %marked above-
the corresponding curves. Since X =100, the ratio ~/jV
also represents the dopant level. The horizontal axis la-
bels the position along the chain from e = I to 100. The
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FIG. 1. Each curve represents the order parameter g„as a function of the position of the CH group along the chain from n = 1 to
100. The number above each curve is the number of electrons ~ injected into the neutral polyacetylene chain. Gn the vertical axis
the scale is 0.05 A for one umt (the distance between any 0 reference point to its adjacent horizontal bar). The result is for the SSH
1Tlodel.

four curves in each row have a common zero reference
point for the vertical scale marked on the left-hand side.
In units of 0.05 A, the distance between each zero refer-
ence point and its adjacent horizontal bar on the vertical
axis is 1. Therefore, the value of P„ for the horizontal
parts of the curve ~=1 is 0.8 units, corresponding to
segments of perfect Peierls distortion.

When one electron is injected into a neutral polyace-
tylene chain, the curve ~=1 indicates that the added
electron occupies R polalon stRte. The polaIon-foITIlatlon
energy is calculated to be Ez ——0.57458 eV. The same en-

ergy derived from the continuum model is 0.587 15 eV. If
we add a second electron to the polaron state, the bipola-
ron is unstable and decays into a soliton-antisoliton pair
with the order parameter shown as the curve ~=2. Our
calculation gives the sohton- (or antisoliton-) formation
energy E, =0.408 08 eV, while from the continuum model
one obtains 0.40434 eV. The order parameters derived
from the continuum model

to 2(). If ~ is even, there are only soliton-antisoliton
pairs forming a soliton lattice. On the other hand, if~ is
odd, in addition to the soliton-antisoliton pairs, a polaron
appears at the middle of the chain. Let us denote uo as
the amplitude of the order-parameter curves when ~ is
even (uc ——0.04 A for ~=0 corresponding to a neutral
chain). In Fig. 2, uo as a function of X, (or ~) is plotted
as the curve A. Mele and Rice have used a trial func-

g„=uo( 1 —[tanh I (x +xo )/v 2$ j
—tanhI(x —xo)/v 2g'j]/~2)

with g =8 and u o
——0.04 A, and g„=—uotanh[(x

—xo)/g] with /=7 and up =0.04 A fit remarkably well
to our numerical solution of P„ for the polaron and the
soliton, respectively.

%'hen more electrons are injected into the polyacetylene
chain, a systematic evolution of the order parameter to-
ward that of a soliton lattice is seen in Fig. 1 from ~=1

A-
0.2-

I . s I I I I

100 105 Ne 110

FKx. 2. The unit for the vertical scale is eV for the curves

Ez, E„E„h„and Az, and 0.05 A for the curve uo. Curves
marked A are from the SSH model, and curves marked 8 are
from the full Hamiltonian (2).
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tion for the order parameter in their calculation and ob-

tained a relation between uo and M. They found a rapid
decrease of uo around ~=7 and a minimum just below
~=10. Such features disappear in our self-consistent
calculation which allows each CH group to relax freely to
its equilibrium position.

Let 8'(~) be the total energy of the ground state calcu-
lated from (6) when ~ electrons are injected into the neu-
tral polyacetylene chain. If ~ is odd, Ez(~)=$'(~)
—8'(~—1) is the formation energy of a polamn at the
dopant level ~/X, while if ~ is even,
2E,(~)=8'(~)—8'(M —2) is the formation energy of a
soliton-antisoliton pair at dopant level ~/X. In units of
eV, the behaviors of E~(~) and E,(M) are illustrated in
Fig. 2. The mean formation energy per soliton
E,(~)=[8'(~)—8'(0)]/~ for even ~ is also plotted in
Fig. 2, which agrees very well with those obtained analyti-
cally by Horovitz with the continuum model, and nu-

merically by Albert and Jouanin ' with an infinite chain.
After deriving all the eigenstates from (5), we can cal-

culate the inverse participation ratio (IPR) defined as

g I8);I

of the ith eigenstate. For an infinite system with an
orthonormal basis, the value of IPR varies from 0 for ex-
tremely extended states to 1 for extremely localized states.
Even for a finite system, IPR has been used by many au-
thors to estimate the degree of localization of eigenstates.
Figure 3 shows the eigenenergies IE;I and the corre-
sponding IPR I A; I within an energy region
—2.2 ~E; &2.2 CV around the Peierls gap. There are 18
panels for 18 different values of M from M=3 to 20. In
each panel the position of each vertical bar marks the
value of one eigenenergy and the height of the bar mea-
sures the corresponding IPR. The two eigenenergies at

0.04-

0.03-

0.02-
8 l3 t8

IIIIIIIII IIIIIII IIIIIIIIII IIIIIII IIIII IIIIIIIIIIIIII IIIII

0 IIIIIIIIIIII lllllf IIIII IIIIIIIII IIIIIIIII IIIIII llllllllll IIIIII IIIII, IIIIIIIIIIIIIIIIII IIIII

IIII IIIIIIIIIIIIIIII llll

-2.2eV ~E~~ 2.2 eV

FIG. 3. The inverse participation ratio (measured by the
height of each vertical bar) of the eigenstates with eigenenergies

tE; I in a region around the Peierls gap. The number above
each plot is the number of injected electrons ~.

the ends of each spectrum are almost —2.2 and 2.2 CV.
For low dopant levels (small values of ~) both the pola-
lon and thc soliton states arc well localized. As ~ in-
creases and the sohton lattice forms, the delocalization of
the gap states is clearly demonstrated by Fig. 3.

To avoid ambiguity let us call the aggregate of states in
the Peierls gap theimpurity states or idun ty 'band. The
impurity states are split off from the valence and the con-
duction bands. Therefore, when more states are pulled
from the valence and the conduction bands into the gap,
the Peierls gap gets wider, as illustrated in Fig. 3. In the
next section we will return to this for a quantitative
analysis. For even ~, in each spectrum of Fig. 3 there is
a well-defined gap between the top (or bottom) of the
valence (or conduction) band and the bottom (or top) of
the impurity band. This gap is denoted by 6,. On the
other hand, for odd ~, we also learn from Fig. 3 that in
each of the two 5, gaps there is a polaron state. Let bz
be tlM energy which separa'tes the lower (or upper) polaron
state and the top (or bottom) of the valence (or conduc-
tion) band. The variations of b„and bz with ~ are
shown in Fig. 2 by the two curves marked as A. Qualita-
tively, similar A, -vs-~ relations are obtained by Mele and
Rice, Nakahara and Maki, ' and Albert and Jouanin. '

The result of Mele and Rice also agrees with ours fairly
well quantitatively, but the other two results do not. %'e
should point out that in contrast to h„h~ is rather in-
scnsltlvc to thc dopant lcvcls.

Several attempts have been made to examine the elec-
tron correlation effect on the electronic states in poly-
acetylene. In these works either the ground state27'

(without polaron or soliton) or only the on-site
(Hubbard-type) correlation effect on soliton was con-
sidered. Hence the conclusions derived in this manner are
still far from the final answer. Since the electron-electron
interaction was treated in Sec. II with the Hartree approx-
imation, the results discussed in this section should be
judged as a simplified estimation. After we have obtained
the self-consistent solution of the full Hamiltonian H of
(2), it is discovered that the dominating terms are U~J. with

I
i —j I

&2. Therefore, the results shown in this section
are obtained from a calculation retaining only Ui with

I
i —j I

=0, 1 and 2. We remind the reader that the U in
(4) is treated as a varying parameter in units of the a band
width 8'=10 CV.

The order parameter g„ is shown in Fig. 4 in four parts
marked with the corresponding numbers of electrons
X,=101, 103, 105, and 107. Each part consists of three
columns for U/8" =0.06 (left column), 0.24 (middle
column), and 0.42 (right column), and three rows for
nonzero U;1 with

I
i —j I

=0 (bottom row), &1 (middle
row), and &2 (top row). The labels for both the horizon-
tal and the vertical axes are the same as in Fig. 1. We see
that the characteristic feature of g„ is preserved even
when the electron-electron interaction is taken into ac-
count within the Hartree approximation. This is because
in our self-consistent calculation each CH group adjusts
to a new equilibrium position under the influence of the
electron-electron, electron-ion, and ion-ion interaction.
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Peierls gap has a maximum when the range of interaction
is the nearest neighbor. The reason for this peculiarity
lies in the fact that soliton states have finite amplitude
only at every second CH group. If X, =101, there is no
soliton state in the polyacetylene chain.

The variation of the Peierls gap with the dopant level
has been calculated by Nakahara and Maki' using the
continuum model without electron-electron interaction.
Their result agrees with ours at low dopant levels. At
high dopant levels their value is about 20% larger than
ours.

V. FINAL REMARKS

The random field due to the charged impurities and the
interchain coupling are not included in our calculation.
Their significant influence on the electronic properties of
polyacetylene have been demonstrated by many au-
thors.

Although our calculation was performed with electrons
added to the system, simulating a doping process, we have
done a similar calculation to study the generation of
soliton-antisoliton from electron-hole pairs. The result is
cxRctly thc saIIlc Rs whRt wc hRvc shown 1n this paper.
The dopant-level-dependent formation energies of soliton
and polaron, Peierls gap, as well as A„certainly make the

optical absorption a complicated process. The optical ab-
sorption from polarons has been investigated recently by
FcsscI' 8t a/. , whcI'c thc Ruthols coIls1dc1 a S1Ilglc clcc-
tron (or hole) polaron in the polyacetylene chain. In this
paper we have shown that the gap hs is almost indepen-
dent of the dopant levels. Therefore, the conclusion
reached by Fesser et al. regarding the a~

' polaron
optical-absorption process should remain valid even for
hlghcl dopaIlt levels.

Finally, we should emphasize that the Hartree approxi-
mation for the electron-electron interaction is too rough.
For the case of a neutral polyacetylene chain, more
r1gorous results have bccIl obtalncd by Hlfsch us1ng thc
Monte Carlo method. Hirsch has demonstrated that as
the intra-atomic Coulomb U increases, the dimerization
increases first and then decreases. On the other hand, the
nearest-neighbor Coulomb repulsion always enhances the
ground-state dimerization. Such features are not found in
our simple Hartree results.
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