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Complete and incomplete wetting by adsorbed solids
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%e carry out two calculations which show that a substrate which attracts a solid adsorbate too
strongly prevents that adsorbate from wetting it. In the first, the adsorbed film is modeled micro-

scopically as a set of layers in registry with one another. The appropriate thermodynamic potential
is minimized at zero temperature with respect to the common lateral spacing and the individual

layer heights for systems of up to 20 layers. For Xe, Kr, and Ar adsorbed on graphite, we find that
the film thickness should exceed 20 layers, in agreement with experiment. A similar result is found

for Ne, in disagreement with experiment. For atoms attracted very strongly, we find a thickness less

than 20 layers, and therefore incomplete wetting behavior. In the second calculation, the film is

modeled as an elastic continuum. We show that strain caused by the substrate potential induces a
long-range force which, in general, prevents complete wetting of a solid film.

I. INTRODUCTION

There has been much interest recently' in determining
the circumstances under which an adsorbate, at its bulk
gas-solid coexistence, will wet a substrate (i.e., form a film
of macroscopic thickness upon it). In almost all current
descriptions, and most pertinently in lattice-gas models,
the question of whether the adsorbate will or will not wet
is directly correlated with the strength of substrate-
adsorbate interactions relative to adsorbate-adsorbate in-
teractions. Strong substrates lead to wetting (sometimes
denoted complete wetting), and weaker ones do not (in-

complete wetting).
Recent experiments to determine t4e wetting behavior

of several adsorbates on a graphite substrate gave results
which were unanticipated by these descriptions. While a
change in behavior from incomplete to complete wetting
was observed as the ratio of interaction strengths was in-

creased as expected in such theories, further increase in

strength brought a return from complete to incomplete
wetting. In particular, while Ar, Kr, and Xe were ob-
served to wet graphite at the low experimental tempera-
tures, Ne, which by any reasonable measure feels a
stronger substrate potential, did not. It was suggested
that this "reentrant" incomplete wetting must be due to
compressional effects which are absent in the simplest
lattice-gas calculations, those which only describe two
phases. A lattice model which included three phases was
able to produce the effect.

In this paper we carry out two very different calcula-
tions of the adsorption of structureless atoms, such as the
noble gases, on graphite. Both of them should be more
accurate than those of simple lattice models. In Sec. II we
calculate m.icroscopically the zero-temperature energy
e (h) of an adsorbed film of thickness h of up to 20 layers.
From this and a calculation of the chemical potential at
the bulk gas-solid coexistence, the equilibrium value of the
thickness there can be obtained. We do find that as we in-
crease the ratio of the adsorbate-substrate potential to the
adsorbate-adsorbate potential, the initial incomplete-

wetting behavior changes to complete wetting and then
back to incomplete. Much microscopic information can
be obtained from these calculations, such as the strain the
adsorbate cxlllblts. Uslllg thc best po'tclltlRls RVR11abic fol
the noble gases, we find very good agreement with the Ar,
Kr, and Xe data.

In Sec III.we treat the adsorbate film as an elastic con-
tinuum and apply linear elasticity theory. This yields the
interesting result that a strain produces a long-range force
that prevents the system from wetting. This effect also
leads to the sequence of incompletely wet„wet, and in-

completely wet behaviors as an increasing substrate poten-
tial first produces in the film a lateral expansion, then no
strain, then a compression. We show that the elastic
theory can be made quantitative if the asymptotic form of
the potential and one bulk elastic constant are known as
well as the actual strain in the first few layers of the film.
The latter can be obtained from calculation or experiment.
In particular for Ne, we find a finite equilibrium thick-
ness but one which is much larger than obtained experi-
mentally. However, we also find that this thickness is
changing rapidly with interaction strength so that small
changes in the potential, or the inclusion of quantum ef-
fects, could bring the result into agreement.

II. MICROSCOPIC MODEL CALCULATIONS

Tllc dctcrmlnatlon of tllc zcl'0-tcIIlpclRtul'c wcttlllg
behavior of an adsorbed film proceeds in two stages. The
first consists of calculating the chemical potential po of
the bulk rare-gas solid at zero temperature and pressure.
In the second, the energy per area e(h) and areal density
n (h) of a model of a solid film of h layers adsorbed on
the substrate is calculated. The equilibrium thickness of
the film at coexistence is determined from the condition
that the chemical potential de /dn be equal to po.
Equivalently, the minimum of the auxiliary function

Q(h) =e (h) yon (h)— (2.l)

occurs at the equilibrium value. The substrate is wet if
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the minimum occurs for infinite values of h and is incom-
pletely wet otherwise. Thus the wetting behavior is obvi-
ous from a plot of Q(h). The minimum value of this
function is simply the grand potential Q(po).

The calculation of the bulk chemical potential is
straightforward. The interaction between rare-gas atoms
is assumed to be pairwise additive, and a particular form
of this interaction is chosen. We have used both the usual
Lennard-Jones potential and the more accurate Aziz po-
tential. The bulk energy is obtained by performing the
appropriate sums over the face-centered-cubic lattice, and
the chemical potential follows from differentiation.

The calculation of the energy of the film is less simple,
Rnd wc proceeded Rs follows. Thc ln'tcl'Rctloll between tllc
noble-gas and substrate atoms was taken to be of the
Lennard-Jones form. We used the parameters of Cole and
Klein but ignored anisotropy terms. The effects of the
substrate symmetry were first investigated by simulating
the adsorption of particles on a structured substrate.
Tlllls thc substrate potential was Obtalllcd by performing
the necessary sums oveI' the three-dimensional graphite
structure, Particles were added and the minimum of the
energy per area obtained by an iterative procedure.
Periodic boundary conditions were used to contain the
atoms parallel to the substrate. The system could contain
I6 atoms per layer at close packing. The calculation was
lcpcatcd with R substI'Rtc potcntlal which was Rvcragcd
over the unit cell. There was little difference in the values
of e(h), as expected, and no difference in the behavior
with h. From then on we employed the simpler structure-
less substrate potential.

To speed the process of energy minimization, we
modeled the adsorbed film of h layers as one in which all
layers were in registry with one another in an fcc stacking.
The minimization parameters werc then the one common
lattice spacing in the lateral direction of all h layers and
the h different heights above the substrate of the h layers.
This model assumes that dlslocRtlons Rrc cncI'gctlcally uIl-
llkcly, Rs ls R sllloo'tll varlRtloll of latcl'Rl 1Rttlcc paranlctcl
with layer height. Both of these assumptions are justified
in the appendices.

Our results for the calculation in which the adsorbate
atoms interactcd via an Aziz potential are shown in Fig.
1. T11c functloll Q(h) ls plotted vclslls h fol Xc, Kl', Al,
and Ne. Both quantities are measured in units of the ap-
propriate RdsoIbatc-atolIl interaction parameter. It can be
seen that the function Q(h) is monotonically decreasing
out to 20 layers. From these results for h &20, it might
appear that the minimum of this function is at infinite
values of h, from which one would conclude that these
noble gases wet graphite at zero temperature. Actually, as
wc will scc 111 Scc. III, Rll of tllcsc fllllctlolls 11Rvc 8
minimum at a finite value of h so that, strictly, the sub-
strate is incompletely wet. However, this minimum
occurs for sufficiently large values of h that current ex-
periment would be unable to detect the finite thickness of
the film. The above results agree well with experiment
for the cases of Xe, Kr, and Ar. This agreement is not a
trivial result in the case of Xe, for which the Xe-graphite
interaction appears to be so weak compared with the Xe-
Xe interaction that an incomplete wetting might be ex-

layer number

FIG. l. The auxiliary function Q(h}, in units of e/o, is
shown vs layer number of noble gases adsorbed on graphite. In
the lower portion of the figure, the vertical scale has been shift-
ed by an amount ~ different for each gas to facilitate compar-
1son by eye. The atoID-atom 1nteractlon 1s the Aziz potential.

pected. In fact, if the cruder Lennard-Jones potential is
used instead of the more accurate Aziz potential, one ob-
tains the results of Fig. 2, which show that in such a
model Xe clearly exhibits nonwetting behavior. Further-
more, as seen in the figure, one obtains the same result for
Kr and Ar, and obtains wetting behavior only for Ne.
Thus use of this potential gives results for each of the
gases which disagree with experiment. In retrospect this
is due to the overestimation of the strength of the poten-
tial tail by the Lennard-Jones potential. %'bile the results
of our calculation using the Aziz potential are in good
agreement with experiment for Xe, Kr, and Ar, they are
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FIG. 2. Same as Fig. I except that the interaction is given by
the Lennard-Jones potential.
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in disagreement in the case of Ne. As we shall see below,
the equilibrium thickness of the Ne film changes rapidly
with changes in the interaction strength and it is possible
that quantum effects, which would alter the strength of
an effective classical potential, could be responsible for
the observed incomplete-wetting behavior.

It is straightforward to extend our calculations to arbi-

trary structureless gases adsorbed on graphite. %'c show
in Fig. 3(a) the results for the equilibrium thickness h

versus the ratio of the integrated strengths of the atom-
substrate and atom-atom potentials. As a measure of this
ratio~ wc have Used

~ elastic

( model

where the densities of substrate and adsorbate have been

dcnotcd /gg Rnd 8g ~ and thc stI'cIlgth and range paI'RGlc-

ters of the potentials, taken from Ref. 7, are e and o,
respectively. The subscripts identify the atom-atom or
substrate-atom potential. The results show clearly the se-

quence of nonwetting, wetting, and nonwetting behaviors
with increasing substrate strength. The ratio appropriate
for Nc is 2.6 which, with Fig. 3, indicates that the Ne
thickness is very sensitive to the potentia1 strength. The
abrupt jump in h seen for very weak potentials occurs
when the value of Q(h) at the minimum exceeds Q(0) =0.
Then the equilibrium state corresponds to no adsorption
whatsoever.

Another result of interest which can be extracted from
these calculations is the lateral strain of the film relative
to the bulk. This is shown in Fig. 3(b). Note that Xe, Kr,
and Ar are dilated with respect to bulk, while Ne is
compressed.

It is interesting to note that the lateral dilation or
compression [Fig. 3(b)] is rather small. This being the
case, one can Rsk how well a simple lattice-gas calculation,
which ignores this difference between film and bulk, does
in predicting the wetting behavior of the noble gases. The
answer is that it does surprisingly mell. In the lattice-gas
model, the function Q(h) has the zero-temperature form

Xe Ar Ne
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FIG. 3. (a) Equilibrium layer number of film adsorbed on

graphite vs integrated potential strength. Solid lines are the in-

terpolated results of microscopic calculation; dashed line is the
result of elastic ca1culation. Layer number for the lattice is h in

units of 0.9o appropriate for fcc stacking. (b) Lateral strain of
film adsorbed on graphite at equilibrium vs integrated potential

strength.

Q(h)= g $(l), III. LINEAR ELASTIC THEORY

where P(t) is the difference of the interactions between an
adatom which is a distance I from a half-space of sub-

strate and one which is the same distance from a half-

space of bulk adsorbate. If this expression is evaluated by
replacing sums by integrals (using the bulk for the film
density) and employing the Aziz potential for the atom-
atom interaction, then one finds that Q(h) is a decreasing
fUnct1on of A with 1ts rl11MHluill at lnf1nitc A foI thc foUI'

noble gases considered. That is, the simple lattice-gas cal-
culation gives the saIne result as the more elaborate one
for the cases of the noble gases For ca-ses in. which the ra-
tio of potential strengths is much larger than that encoun-
tered in adsorption of noble gases on graphite, the simple
1Rttlcc-gas IHodel 1s 1nRdcquatc, 81Ilcc 1t cannot ploducc
the reentrant incomplete wetting behavior which is ob-
tained by the more complete calculation.

+n„ f ei(z')dz'
dz

+ngP(z) (3.1)

In this section, the adsorbate is modeled by a continu-
ous system of height h in the presence of a substrate. As
in the preceding section, we take the vertical strain ei to
be z dependent while the lateral strain e~~ is constant.
Since the film is considered to be of fcc structure with

principal axes parallel and perpendicular to the substrate,
the stress and strain tensors are diagonal. The auxiliary
function Q(ei, e~~, ji) is
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Qo=llg dZ — dZ ~

2(2@+A,)
2

S= Ply Z — Z
2p+3k, 0 4p

(3.2)

8 =2@(2p+3k,)/(2p+ 1,),
and P(z) = —C/z' for large z.

MiiiiIIiizatioii of Q(E~~, A) wi'th icspcct to E~~ foi R givcII
h determines the lateral strain E~~(h). For h large, we ob-
tain

(3.3)

Note that the lateral strain is negative corresponding to
compression for effective potentials P whose integrated
strength is negative (strong substrates), and is positive cor-
responding to expansion for effective potentials whose in-
tegrated strength is positive (intermediate substrates).
SubstitiitioII of E~~(II) IIito Q(E~{,Pl) yields thc aiixiliaiy
function Q(h). At large A this function has the form

(3.4)

The asymptotic value of Q(h) is approached from below
so that the minimum of this function is not in general at
infinite values of film thickness; that is, the solid film
does not wet the substrate. Another way to state this re-
sult is t4at the strain induced by the potential produces a
long-range attraction between the film-vapor and film-
substrate interfaces which decays as 1/h. Such an attrac-
tion ls always asymptotically sti ongc1 thaIl thc van dcI'
Waals and thermal forces, which favor wetting.

where p and A, are Lame constants and nz is the density
of the unstrained film. The potential P(z) is the continu-
um generalization of the lattice-gas potential of Eq. (2.2}.
The conditions of equilibrium, that the body forces bal-
ance the external forces, yields the equation

dp
n~ —(2p+A, } =0,

dz dz

wliicli determines thc z dependence of tlic vertical strain
accord1ng to

(2p+ A, )EI(z) nzp—(z) =const .

The boundary condition of zero pressure at z =h deter-
mines the constant so that

(2P+ ~)EI(z)= II~ [y(z) —P(II ) l —2~E~
~

.
This form of the vertical strain is substituted into Eq.
(3.1) to yield Q(E~~, h). The dependence of this function on
II d

ii
fo 11

ii
d 1/h

'

Q(E~(, II ) =Ac+8 (2E(~S+E(~h)

The equilibrium value of the thickness for large thick-
ness is

(3.5)

This result shows that reentrant incomplete-wetting
behavior is obtained for effective potentials P, which are
asymptotically attractive (C~O), but whose integrated
strength can be varied from positive to negative. In such
a case, the film is initially expanded, and the strain causes
incomplete wetting. As the substrate potential is made
more attractive, the strain becomes smaller and will van-
ish for some potential. The adsorbate now wets the sub-
strate. As the potential is made even stronger, the film
becomes compressed, and once again the strain causes the
wetting to be incomplete.

%e now ask whether this linear elastic theory can be
made quantitative. One cannot simply substitute real po-
tentials into the equations because the integrals, which
arise from treatmg the film as a continuum, are too sensi-
tive to the lower limit of integration. However, a reason-
able estimate can be obtained from Eq. (3.5) which re-
quires only the three numbers C, 8, and S. The first is
easily obtained because the effective potential P(z) is the
difference of the interactions between an adatorn a dis-
tance z from a half-space of substrate and of bulk adsor-
bate. As both of these potentials fall off as z with
known amplitudes, the constant C is known. The param-
eter 8, as given in Eq. (3.2), is simply a combination of
Lame coefficients of the bulk adsorbate. This expression
is simplified considerably using the fact that for simple
structureless adsorbates which form a fcc lattice, such as
the noble gases, the Lame coefficients are related by
@=3/2A, , so that 8=3@. Lastly the value of S, which
can be shown to be proportional to the stress in the sys-
tem, can be obtained from Eq. (3.3) if the strain is known
for a few different thicknesses. We have evaluated S
from our microscopic calculations of Sec. II. We found
that it obeys Eq. (3.3) down to a very few layers and scales
linearly with the ratio of the integrated substrate-atom to
atom-atom potential:

S =0.0229[A —1.88] .

Note that this dcpcrldcIlcc on R implies that thc cqui11bri-
urn height h depends on two parameters; the asymptotic
potential strength C and the integrated strength R. This
contrasts with the lattice-gas model in which the height
depends only on one parameter. We have taken

~

C
j
/R

to be that of neon for hypothetical noble gases with
RN, ~R, and to be that of xenon for hypothetical gases
with Rx, ~R. Lastly, 8 was obtained by calculating the
Lame constants in the fcc crystal in which atoms interact-
ed with the Aziz potential. Results of this calculation are
shown as dotted lines in Fig. 3(a). The film thickness II is
plotted versus the ratio of integrated potential strengths,
R. As CRil bc sccII, thc Rgi'ccnlcIit, is fRII. It should bc
noted from the qualitative agreement alone that the equili-
briurn heights obtained in the microscopic calculation are
limited by the stress for both the cases of expanded and
cornpl csscd f11IIls.
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To summarize, the actual stress and the known long-
distance behavior of the potentials are sufficient to obtain
a good estimate of h from Eq. (3.5). Further, the needed
stress S can be obtained from calculation or experiment
on a system of only a few layers.
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APPENDIX

In the models above, we ignored the effects of lateral
relaxation of finite crystallites, a relaxation which results
in the variation of the horizontal lattice constant with
vertical coordinate z. We also ignored the appearance of
dislocations which also permit such a variation. We now
consider these two possibilities and show that is reason-
able to ignore them.

1. Relaxation of fimtc crystallites

For a domain in which the ratio of its radius ro to
height h is very large, one expects that all layers undergo
a common horizontal expansion or compression. If this
ratio is of order unity or less, however, the shape of the
domain might WCH distort appreciably in the presence of
the substrate potential. In order to quantify the distinc-
tion between these two types of elastic response, we em-

ploy the model of a cylindrical crystallite described by iso-

tropic elastic constants p and A,. The equation of equili-

brium is

pV u+(@+A)V(V u)=V/, „,
wllcl'c 9 is tllc dlsplRccllicll't Rnd ItP ls thc cxtc11181 potcli-
tial, which is assumed to fall off rapidly with height. We
take the effect of this potential to be negligible inside the
body, but will retain an arbitrary in-plane deformation of
the bottom face of the cylinder of the crystallite as a
boundary condition in order to represent the lateral strain
it induces.

To find 8 solution to this equation, we proceed as in
Ref. 10. The neglect of the potential inside the body im-

plies that u, =O. The radial component of the displace-
ment is obtained from the radial part of Eq. (A1) which,
in cylindrical coordinates, becomes Bessel's equation of
order of 1 with solutions

uI (r,z) =Jl (xIr/ro)cosh[yxi (h —z)Iro],
where yz=(2p+A, )/p= —,

' for @=3/2A, , and where the
condition of zero radial stress at the walls of the cylinder
determines the xI. An arbitrary displacement u (r, O) im-
posed as a boundary condition at the bottom face, z =0,
can be expanded in this set of functions;

u(r, O) = g aIJI (xir fro)cosh(yxlh fro) .

The 1th term contributes a deformation of the top face
relative to the bottom face of

III(I,II)/Ill(I, O)=1/cosh(y»~«o) .

By definition, the limit of thin cylinders occurs when
this ratio is near unity. Provided that the major contribu-
tion to u(r, O) comes from small I, this limit is obtained
for R/h &xi@, which should certainly be well below 100.
For example, in the case of a uniform dilation of the bot-
tom face, the relative contribution of the terms in u (r,O)

are a» ——1,—0.05,0.03,0.08,0.01, . . . , with higher terms
decreasing faster than exponentially. In this case an as-

pect ratio Il fro ——0. 1 is already in the limit of thin
cylinders. The films examined in experiment with domain
sizes on the order of hundreds of lattice spacings or more
should be well described as thin in the above sense for
thicknesses up to 20 layers at least.

2. DislocatioQs

We now estimate the energy associated with the
creation of a dislocation, since such excitations might be
created to relieve the lateral strain. %'e consider only
nearest-neighbor interactions and describe the registry of a
first layer against a second by locating the atoms of the
first layer at 8 sublattice of sites on a honeycomb lattice.
A reasonable model for an isotropic compression of the
first layer relative to the second is 8 triangular network of
walls across which the sublattice occupations are changed.
Note that this triangular network of walls arising from
atoms on honeycomb sites is completely analogous to the
honeycomb array of walls arising from atoms on triangu-
lar sites. " For a network of dislocation segments of
length S, the change in area, M/A, is approximately

2c~
[
=&NN /S, for S &&r NN, wllcl'c I'~~ ls fhc IlcR1'cst-

neighbor distance. The atoms within the domain wall are
displaced by a distance of order m=rN~/V3. We ap-
proximate the total energy of this wall as

x csin mx m+8 y x

where x is the position along the row of atoms and y is
the displacement perpendicular to the row. The first term
represents the contribution due to the corrugation of the
adjacent layer. The amplitude A =0.5e„~ if only
nearest-neighbor interactions are considered. The second
term is essentially the shear energy of the first layer. Cal-

culating the shear energy of a uniformly sheared mono-

layer, we find 8=20ezq. The solution minimizing the
energy subject to the boundary condition y ( —oo )
=0,g ( oo ) = lU, 1S

cos(Iry /m) = —tanh[(A f8) '~
Irx /m],

wlllch 11RS 8 wldtll M~4(8/2) cofff~5I'~~, Rlld 8
dislocation energy of approximately 0.66'gg /P~N pcl uIlit
length of dislocation.

For thc triangular network of dislocations, we arrive at
a rough estimate of the core energy per unit area neces-
sary for a compression 5A /A of (2eq~ /r NN )5A /A. In
the numerical calculations of Sec. II the changes in the
latcIal stIaiIl and in the cncrgy froID layer to laycI werc so
small as to exdude the possibility of dislocations such as
these.
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