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Glauber dynamics for one-dimensional spin models with random fields
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We present an exact solution of the long-time relaxational behavior of the magnetization in the

Ising and XY chains in a quenched random field. The random field is assumed to be of infinite

strength but present at only a fraction of the spin sites. We use Glauber dynamics for the Ising case,
and a suitably generalized master equation for the XY case. In both models we find that for T=0,
as time t~ oo the magnetization decays as exp( —Ct'~ ), where C is a constant. At finite tempera-

tures the ultimate asymptotic behavior is purely exponential.

I. INTRODUCTION

Recently, an exactly soluble one-dimensional model of
Ising spins interacting with quenched random fields was

introduced and solved in the static limit by Grinstein and

Mukamel. ' Subsequently, Pelcovits and Mukamel stud-

ied the properties of the analogous XYmodel including its

relaxational behavior governed by Langevin dynamics. In
these models, the strength of the random fields is assumed

to be infinite, but the fields are present at only a fraction

p (0(p ( I) of the sites of the chain. Because of the in-

finite strength of the fields, evaluation of a quenched ther-

modynamic quantity first involves evaluating the thermal

average of the particular quantity in a finite chain of spins

bounded by two random fields of arbitrary orientation

(the directions of the fields are assumed to be isotropically
distributed in space: equally up or down for the Ising
case, and uniformly distributed over the unit circle in the
XY case). Subsequently one averages the thermal average

over the orientations of the two bounding fields and sums

over all possible lengths of the chain weighted by the ap-

propriate probability distribution [see, e.g. , (2.10} below].
The relative simplicity of this calculational procedure al-

lows one to solve for practically any static or time-

dependent thermodynamic observable. This calculational

power is not necessarily present in the more general one-

dimensional Ising (Ref. 3} and XY (Ref. 4) models with

random fields studied by other authors (where the field

strength is not assumed to be infinite). The assumption of
infinite field strength in the models of Refs. 1 and 2 re-

stricts their analyses to the case of "strong pinning, " '

but in a quenched system this is by no means a trivial lim-

it.
In this paper, we calculate exactly the long-time relaxa-

tional behavior of the magnetization in the Ising and XF
chains in a random field introduced in Refs. 1 and 2. We
assume that the time evolution of the models is governed

II. THE ISING MODEL

Our model for an Ising chain in a random field is de-

fined by the Hamiltonian'

8 = —J$ cr;a~ —$h;cr;, (2.1)

by a Glauber equation for the Ising model and a suitably

generalized master equation for the XY case. In both
models we find that if the spins are fully aligned at time
t =0, then at long times the magnetization M ( t)
-exp( Ct'r ),—where C is a time-dependent function of
impurity dilution p and the bond strength J. At T =0
this behavior is true as t —+Do, for T&0 the ultimate

asymptotic behavior is nonrandom in nature, i.e., it is

purely exponential. Identical behavior was found in Ref.
2 for the XY model using Langevin dynamics at T=0,
and qualitatively similar behavior was found in studies of
the Ising chain with bond dilution and models for parti-
cle diffusion in a one-dimensional medium with random

traps. As can be seen from the saddle-point analysis of
M(t) below [see (2.13) and (2.14)] this apparently univer-

sal behavior arises whenever a random system exhibits a
particular distribution of relaxation times. Here we have
chains of N spins bounded by random fields. For each
chain, the relaxation time goes as X and the probability
of finding a chain of length N goes as expN [see (2.12)].
In general, if the relaxation time goes as N~ and the prob-
ability of finding a chain of length N goes as expNa, then
the saddle-point analysis indicates that if a/(a+f3)= —, ,

then M(t)-exp( Ct' ) Asi—milar m.echanism has been

proposed by Cohen and Grest to explain experimentally
observed anomalous time decays i.n glasses.

In the next two sections of this paper we discuss the
calculations leading to the above result for the Ising and
XFmodels, respectively.
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where J is the nonrandom positive bond strength, o-; =+1
and the sum is over nearest-neighbor sites. At each site
h;=+ oo, —oo, or 0 with probabilities P/2, p/2, and
1 —p, respectively. Note that at low T an infinite field is
equivalent to a field greater than 2J (an analogous state-
ment cannot be made in the XF case due to the continu-

ous symmetry). To calculate the quenched time-
dependent magnetization we first calculate the thermal-
averaged time-dependent magnetization in a chain of X
spins bounded by two infinite fields. The Glauber master
equation for a chain of E spins takes the form

P(cT),cd. . . , 0J»,'t) = g [—wJ(cTJ )P(o'(&. . . , cTJ . . . , cT~', r)+wJ( —cTJ )P(cT)), . . . , —cd. . . , O'JJ,'r)],
j=1

(2.2)

where WJ(OJ ) is the probability per unit time that the jth
spin flips from the value of 0J to —OJ [w depends on
the entire spin configuration of the chain, but for simpli-
city, we write WJ (0; )]. The probability function
P(cT~, . . . , cTJJ, t) gives the normalized probability of find-
ing the system at time t in the state (cT ~, . . . , cT~ ).

The usual choice for w;(0; ), namely

W;(+CT; ) = —,
' [1+—,CT;(CT;+&+0; &)y], (2.3)

where y=tanh(2K), K =J/ks T, guarantees that the sys-
tem obeys the principle of detailed balance and will relax
to an equilibrium state governed by a probability distribu-
tion proportional to e ~ . In writing (2.3), we have as-
sumed for simplicity that the bare relaxation time is unity.

Using (2.2) and (2.3) we find

S;(t)= —S;(r)+—[S,+,(t)+S;,(r)],
di ' (2.4)

where S;(r) is the time-dependent magnetization at site i
given by

S;(t)=(CT; ) =ACCT;P(CT&, . . . , CTJ»', t) .
IaI

Equation (2.4) is equivalent to the following matrix equa-
tion:

e
2

17+1

1/2

(sinPl, sin(2PJ), . . . , sin(X/3I)),

(2.8b)

S;(t)~exp — 1 —y cos
N+1 t e& (e&.S')

+S,q,. as taboo, (2.9)

where we have used (2.8a).
The quenched magnetization per site M(t) is given by

the configurational average of

(1/N) QS, (r) .

where pJ =le/(%+1). The vector S,» represents the
equilibrium (i.e., t~ oc ) state of S(t) and S is given im-

plicitly by the initial conditions, i.e., S =S(0)—S,». We
will assume that the initial state is fully aligned so that
S(0)=(1,1, . . . , 1).

The long-time relaxational behavior of S(t) is deter-
mined by the smallest eigenvalue of A, i.e., l =1. Hence
(2.7) simplifies at long times to

dS;(t) N

AcJ SJ +CJ

where A;J- is an XXN Jacobi

—1 7/2 0
y/2 —1 y/2

0 y/2 —1

matrix given by

0
~ ~ ~ Q

~ ~ ~ 0
~ ~ ~ Q

—1 y/2
y/2 —1

(2.6)

This averaging procedure consists of first averaging this
latter quantity over the four possible configurations of the
boundary spins o.o and o.N+1 and subsequently summing
over all values of N weighted by the impurity probability
distribution. Thus,

M(t)= Q X — (1—p) [S++(t)+S+ (r)
N=0 2

+S (&)+S (t)], (2.10)

and C=( —,
'

ycrp, O, . . . , 0, , ycTJT+~) The—boundar.y spins
o.o and o.N+1 are fixed by the random fields.

Equation (2.5) can be integrated to yield the solution

where, e.g.,
N

S+ (r) =—gS;(t), cTp ——1, cTJT+, ——1+— ~ g (2.11)

N N

S;(t)= g g e '
ei;e~JSJ +S,»;,

1=1j=l
(2.7) and similar expressions hold for the other quantities.

Since the quenched equilibrium state is not magnetized,

A,J = 1 —p cosPJ, (2.8a)

where A,I and ei denote the eigenvalues and eigenvectors
of 3, respectively, and are given by'

Spq++ +Spq+ +Seq + +ST =0
Using this fact, and (2.8b) and (2.9), we can write (2.10) at
long times as
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M(t)- g 2P (1—P) exp — 1 —icos2 1
Sln csc

7T

%+1 (%+1) 2(%+1) 2(%+1)

2

The long-time decay of M(r) is determined by the chains
of long length. We can then replace the sum over N in
(2.12) by an integral and obtain

M(r)- e-" r"r-' '~2'

xexp — ~ +x ln l —p0 X

(2.13)

where x =X/r ' . A saddle-point analysis of (2.13) yields

M(r) e —t i y)tt—i/2~ ct~~—3 (2.14)

C=-'(~&) ~ ~1.(1 &) ~2~3.

This result can be expressed more physically by defining
the thermal- and random-field correlation lengths gz. and

g~, respectively, as'

= —(ln tanhK) '- [2(1—y)] '~, T 0 (2.15a)

g~= ~

ln(1 —p)
~

(2.15b)

Thus from (2.14) we see that for times r &&gT/gz, the
anoDlaloUs tcrID proportional to t 1Q thc exponential
will dominate the relaxation of M(t), " while at times
r )&gT/gz, the behavior is dominated by the exponential
factor, exp( r/2@). At T =—0, this latter factor will be
absent completely and the decay ~ill be asymptotically
anomaloUS.

In their analysis of the Ising chain with bond dilution,
Dhar and Barma found an intermediate time regime
where M(t)-exp( t'~—). This regime is absent here
presumably because the boundary conditions differ be-
tween the two problems. In the present analysis, the
chains have fixed ends, 1.e., the spins ai'e pinned by tile in-

finite fields. In the case of bond dilution where the chains
of spins are bounded by missing bonds, the chains have
fI'cc boondary conditions.

III. THE XFMODEI.

In this section we consider the dynamics of the XFana-

log of (2.1), namely,

8 = —Juncos(0; —OJ) —gh;cos(8; —P;),
( lJ')

(3.1)

where 8; is the polar angle of the spin and P; is the polar
angle of the random field distributed uniformly over the
unit circle. The magnitude h; is now either oo or 0 with
probabilities p and 1 —p, respectively. The Langevin
dynamics appropriate to (3.1) were considered in Ref. 2,
and the magnetization was found to decay as in (2.14)
(only the T =0 case was considered, however). Here we
consider a generalization of the Ising Glauber dynamics
(2.2) to the XF case and show explicitly that these dynam-
ical equations yield the same anomalous decay of M(t) at
T =O.

A suitable generalization of (2.2) for a chain of X XF
spins takes the form

2~ da;P(0„0, . . . , e~;r) = g '-[ —u~, (0,—.0, +a, )P(0,, . . . „0,, . . . , 0~;r)

+w;(0;+u; ~8; )P(0&, . . . , 0;+iz;, . . . , 8~;r)], (3.2)

where ta;(8; ~8; +{z;)is the transition probability per unit time that the ith spin rotates by a;. (Again we have avoided
explicitly displaying the dependence of w; on the other spins. ) The detailed balance condition can be satisfied by choos-
1Qg

exp[(K/2)[cos(h;;+i+a;)+cos(b;; i+a; )]jw;(8;~8;+a;)=S
exp[(K/2)[cos(h;;+i)+cos(b;; i)]]

where K =—PJ, 5,J. =8; —OJ, and S is a constant.
The thermally averaged y component of the magnetization at site k is defined by

2'
(sinek(t) ) = f dejsin8kP(ei, . . . , O~, r)

and using (3.2) we find that it obeys

d 2~ & 2~ da
dt

(sjnek(r) }=f de. g f '
[—sinekw(8; —+8;+u;)P(ei, . . . , 8~,'r)

2m

(3.3)

(3.4)

+sinekw(8;+a;~8;)P(8i, . . . , 8;+a;, . . . , 8~', &)] (3.5)
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Using (3.3) we find after some straightforward algebra that {3.5) reduces to

—KA; /2 —XA; /2—(sin8;(t)) = —S(sin8;e ' Io( , I—CC;))—(sin[ —,(8;+,+8; &)]e
' I&( , K—C;)), (3.6)

W, =cosa, , +,+cosa. . . , (3.7a)

C; =2cos (3.7b)

(3.8)

and Io(z) and I&(z) are the modified Bessel functions of zeroth and first order, respectively. In the low-temperature limit
(X~ ao ), (3.6) further reduces to

—E(,A; —C; )/2

( iiis(sn)}= —S fsin8; —sin[ s'(8;+,+8;,)]f) .
n KCi

Proceeding as in Ref. 2 we linearize (3.8) about the
ground-state solution 0; in order to study the relaxational
dynamics at long times at T=0. Thus we write

8; =8; +e;, e; ~& 1

8o 0iv+ t
—4o .

%+1

(3.9a)

(3.9b)

The T&0 is more difficult to treat here though we ex-
pect behavior qualitatively similar to that of the Ising
model, i.e., exponential decay at sufficiently long times.
In principle, one would have to linearize (3.8) about the
equilibrium state for finite T, writing

assuming that the random fields at the ends of the chain
have orientations given by Po and iI)Iv+, . To first order in
e (3.8) reduces to

(sin8;(t})= (sin8; ),»+e; (3.13)

and solving the subsequent linear equation in e. This pro-
cedure seems less than straightforward mathematically
and we will Got attempt lt here.

where htv =(ttitit+, etio)I(%+1)—. With the choice

(3.10)

S=I Jcoshz[2(2mEcoshz)'~ ] (3.11)

M(t)-t e (3.12)

for some damping coefficient I, (3.10) reduces to {18)of
Ref. 2. The analysis of Ref. 2 is then applicable and
yields
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