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Elastic surface waves in crystals with overlayers: Cubic symmetry
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%c study thc clast1c su1facc waves of systems fo11Tlcd by scm1-1nf1n1tc cub1c crystals %'1th over"

layers of cubic symmetry, having (001) free surfaces and interfaces, by using a Green's-function
tcchlllqllc, foi' Rrbltl'Rl'y tlllckllcss RIld dllcctloil of propagatloll. Fol' 'tllc symmetry dlrcctlolls [100l
and [110]in the limit of small thickness of the ovcrlaycrs, it is possib1c to obtain the dispersion rela-

tion of Rayleigh and Love rvaves in closed form, to first order in h~ (h is the thickness of the over-

layer; v is the parallel wave vector). An application is made to the system formed by a layer of
GR~All ~As on a GRAs substrate» and thc 1nAUencc of thc laycI" composlt1on on thc d1spcI's1on Ic-
lation of the elastic surface waves is discussed.

I. INTRODUCTION

Tllc sys'tcIlls formed by solid layci's 111 close I11ccllallical
contact with a semi-infinite substrate, i.e., systems with
several interfaces, pose interesting theoretical and practi-
cal problems. The overlayeI's are thin; usually their thick-
ness is smaller than the wavelength of the surface wave
being studied. Introduction of this layer on top of a form-
er free surface induces dispersion in the wave so that the
phase velocity now dcpcnds on thc fI'cqUcncy.

The interest in surface waves has ranged from seisrnolo-
gy' to ultrasonic signal processing devices, with impor-
tant applications to radar and communications, ' passing
through surface flaw detection. It is interesting to note
that the field of surface-wave devices has grown in sophis-
tication and range, and many of these devices include a
thin layer in at least part of the propagation path. These
layers can be used for different purposes, such as to pro-
vide a desired dispersion characteristic, as part of trans-
ducers for generating surface waves, or as a guiding re-
gion to confine a surface wave laterally.

For these systems it is common to have different in-
dependent modes of propagation confined to the surface
region, some of which are perturbations of the free-
surface Rayleigh waves, but we have also the Love modes
which are very different in nature. The dispersion rela-
tion of the different modes has been usually obtained by
solving the equations of motion jointly with the boundary
condltlons» foI thc clRstlc dlsplaccIDcnts. Recently» 8
method has been instituted and applied to isotropic and
hexagonal" media, allowing us to study the theory of sur-
face waves in systems with overlayers with more generali-
ty than has hitherto been possible. In this method the
presence of an overlayer of small thickness h compared
with thc acoustic vlbratlon wavclcngth k has been shown
to be equivalent to new effective boundary conditions at
the surface, in a similar way to other approaches. ' '

Wc shall considcI' systcIDs with cUbic syIDIDetry due to
the fact that this allows for the inclusion of the features
of crystalline anisotropy (most of the surface-wave devices
use single crystals), and many of the substances of practi-
cal interest crystal11ze ln thc cubic systcnl. Wc shall stud
systems having (001) free surfaces and interfaces in order
to Rvoid too IIluch coIDplication in thc calculatIons, bUt
the same method can be used for any surface orientation
or propagation direction. In the limit of small thickness
for symmetry directions the dispersion relation of the sur-
face acoustic waves is derived in closed form to first order
in h~. Experimentally, ' the frequency variation of the
Rayleigh wave appears to be detectable even for a surface
coverage of a few hundredths of an adsorbed monolayer.
This, together with our analytic expressions, could pro-
vide a means of determining the elastic constants of very
thin films.

We use a Green's-function method to obtain the fre-
quencies of the system, in spite of its greater complexity
as compared with the usual approach, because this
method lllakcs possllllc tllc calculR'tloll of otllcl' plopcl'tlcs
of such systems, such as, for instance, the mean-square
displacements of atoms or the elastic energy of point
defects ' '

For the study of the dispersion relation of anisotropic
film/substrate systems this method would constitute
merely Rn altematlvc to thc standard cj.genvaluc calcula-
tions based on a study of the eigenfunctions. ' How-
ever, an analysis yielding the Green's function of the sys-
tem provides a more direct inroad into the calculation of
spectral functions —e.g., the projected mode density —wf
interest for scattering problems.

In Sec. II we present the Green's-function calculation
which yields the eigenmodes of the system; for very thin
layers, the effective boundary conditions at the surface are
derived. In Sec. III we consider the thin overlayers
(hie~~ 1), giving the dispersion relation of the modes in
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closed form for symmetry directions. In Sec. IV an appli-
cation is done to the system formed by an overlayer of ar-
bitrary thickness of Ga„All „As on a GaAs substrate for
an arbitrary propagation direction, and the possibility of
obtaining the elastic constants of the layer is discussed.
Finally conclusions are drawn in Sec. V.

We shall be concerned with a system formed by a
semi-infinite cubic substrate (with elastic constants CII,
CIz, C~, and density p) covered by a cubic overlayer
(with elastic constants C'», O'll, C44, and density p') of
thickness h. %e take x3 as the direction perpendicular to
both the free surface and the substrate-overlayer interface,
and we consider XI ——0 and —h as the plane of the inter-
face and that of the free surface, respectively. All the sur-
faces and interfaces are supposed to be (001).

The eigenmodes of the system are obtained from the
poles of the Green's function, which are calculated as usu-
al by solving the equations of motion inside the bulk of
each medium together with the boundary conditions at
the interface and at the free surface, namely the continui-

ty of the displacements and of the stresses: For an arbi-
trary thickness and arbitrary direction of propagation, the
eigenmodes are obtained from the zeros of a 9X9 deter-
minant. For the symmetry directions [100] and [110]this
determinant factorizes into a 6X6 determinant for the
sagittal modes and a 3X3 determinant for the transverse
(Love) modes. For a very thin layer a simplification is
possible by developing the boundary conditions (2.2) in
powers of hII, and then relating the conditions at XI=0
and at —h, as explained elsewhere. ' In this way for an
arbitrary direction of propagation the eigenmodes can be
obtained from the zeros of a 3 X 3 determinant, whereas in
the symmetry directions this determinant is factorized
lllto a 2X 2 dctcHIllnant fol tllc sagittal modes Rfld a 1 X 1

determinant for the transverse modes. This enables us to
obtain the dispersion relations of the Rayleigh and Love
waves in closed form, to first order in IIa..

The method has been fully explained elsewhere' "so
we shall give here the final expressions for systems of cu-
bic symmetry only. The similarity transformation intro-
duced in in order to make the direction of propagation
colncldc wltll flic x I axis of thc crystR1 llRs been cIB-
ployed. We shall study now the different possible cases,
i.e., (i} arbitrary propagation direction, (ii} [100] direction,
Rlld (111) [110] dll'cctloll.

A. Azb1tx'RI'g propRgRtioQ c4Icct10B

Following the method described in Ref. 10 we obtain the effective boundary conditions for the substrate

C44 GIJ(xl,xl )+i~GIJ(XI,X'I )
x

I

=IIC44 a [A,
' —( )sin 28]—

2
GIJ(XI,XI ) —d'wa Gzj(xl, xl ) — a GIJ(XI,XI )

ia(A, ' —2—d') C44 . 1, I I)i'(A—2—d), GIJ(x&,xl )+A, Glj(xs, x& )
C44 BxI X3 ——+0

C~ Gzj(XI,X I )
BxI x3 ——+0

GIJ(XI,XI ) d'Ia GIJ(xl, xl—) . (2.1b)

C~ ia(A2 d),G—I (x—l XI )+A, Gs (XI,X'1 )
Bx,

C44
, Glj.(xl,xl ) ia, —GIJ(xs,xs)+iaGI/(xl, xl )

Bx3
t

(2.1c)

A, =CII /C~, d =(Cll —CII 2C~)/C44 D/C„~, — ——
C, =C44, /p, ~= —sin48/4,

and 8 is the angle between the direction of propagation and the x I axis.
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B. [100]direction

We shall consider the boundary conditions for 6» and 63~ [similar equations are obtained for 6&3 and G33 (Refs. 10
and 11)] and then for 622. Following the steps given in Ref. 10 we obtain the effective boundary conditions for the sub-

strate

a r

C44 6))(X3,X3)+iK63)(X3,X3)
BX3 x3 ——+0

= hC44 iL' K— (A,
' —2 —d')2

2Gf j(X3)x3 ) 2
K G[](x3yx3 )

Ct A,
'2

(A,
'—2 —d') C44 2 C}

iK— [iK(A, —2 —d)6~~(X3 x3 )+A 63](x3 X3 )]
C44 BX3 X3 ——+0

C44 iK(A, —2 —d)6))(X3,X3)+~ 631(x3~X3)
BX3 x3 ——+0

CO= hC44 —,63)(X3,X3 ) —iK 6]](x3 x3 )+iK63\(X3 x3 )
BX3

x3 ——+0

(2.2b)

In the same way we obtain for the transverse modes
r

a
C44 622(x3,x 3 )

BX3

= it[«44K' —i ~~')622(X3~X3 )]x,=+O (2.2c)

The solutions to be used for the Green's function can be
written as

where

(Cu+ C44)x = ()'i+—r4) K

2= 22
~ =r1X4

with

(2.5)

Gjf(x3 x3 )=GIf '(x3,x3 )+A exp( —p&X3)

+8 exp( —P2X3), (2.3a) 2 (PCO —Ci|K )

V1
(PCO —C44K )

f4 (2.6)

63~(X3,X3 ) =63/'(X3, X3 )—
(A, —1 —d)K

Pf+1'f
A exp( —P)X3)

Pe+1'f+ 8 exp( —P2X3)

(2.3b)

Substituting the solutions (2.3) into the effective boundary
conditions (2.2), we obtain the full Green's function, for
this case, the poles of which are the eigenmodes of the
system. These modes are then solutions of a 2&&2 deter-
minant for the sagittal polarization and of a 1&&1 deter-
minant for the transverse polarization. It can be seen that
all the expressions obtained here are the same as those for
hexagonal crystals" provided we make the following
changes:

with similar solutions for 6,3 and G33 and

G22(x3, x3 ) =G22 '(x3,x3 )+C exp( —p, x3)
C13~C12& C33~C11

(2.3c)
for the sagittal mode and

In these equations 6' ' is the bulk Green's function of
the substrate. We have

2co
P, =K-

C2

C11 —C
2

for the transverse modes.

Pf= —,[x+(x —4y )'~ ],
P2=-, [x —(x —4y )'i ],

(2.4) C. [110]direction

Following the method given in Ref. 10, we obtain the
effective boundary conditions for the substrate
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G 1 1(x3,X 3 ) + l «21(x 3 yx 3 )
Bx3 X3——+0

ilr — ia(A, —2—d )GII(X3,X 3 )+& G31(X3,x 3 )(A,
'2 —2—d') C44

C44 Bx3

{2.7a)

ia(A, —2 —d)GII(x3, X3 )+~
BxI

C44 8
G»{X3,X & ) i'—, GII(X3~xl )+1«31(X3»2 ) (2.7b)

aP=CIIa (1—AII~)+O(h),

G22(XI»3 )
Bx3

=hC44 x2 1+
2

N
622(X3,xz) .

Cq

where CII is the velocity of the usual Rayleigh wave and
A=X/D, where N and D are the same expressions as
those given in Ref. 11 by substituting C13—+CI2,

Love modes. Under the condition C,
' ~ C„we have the

following dispersion relation:

(2.7c)

The solutions to be used for the Green's function are writ-
ten in the same form as (2.3) but now

aP=C, I~ [1—8(ha) ]+O(h ) (3.2)

(2.8a)

(2.8b)
This expression is identical with that for an isotropic crys-
taI. IO

We can obtain the eigenmodes of the system from the ex-
pressions for the hexagonal crystals" if we make the fol-
10W1I1g Ch$11gCS:

for the sagittal modes. For the transverse modes no
chaI1gc 1s Ilccdcd.

B. [110)direction

Sagittal modes. The dispersion relation, to first order in

ha, is identical with (3.1) where i' and D are now the
same expressions as those given in Ref. 11 provided we
make the substltutlon C33 —+C», C» ~(C» +C12
+ 2C44)~2» C13~C12.

Loue modes. Under the condition C,
' &C„we obtain

for the dispersion relation the expression (3.2) where

We shall present in this section the analytic form of the
dlsperslon lclatloll for surface waves lll sy111Illctry dll'cc-
tions and a brief discussion of the dispersion relation for
arbitrary direction of propagation.

A. [100]direction

8= CII —C~2 C~I —CI2 a'

C~I —CI2 p

CII —CI2
Cg p Cj

2p 2p

(3.3)

Sagittal modes. The dispersion relation, to first order in
AK~ ls glvcQ by

This expression is identical with that obtained for hexago-
nal crystals. "
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C. Arbitrary propaga. tion direction

In this case we do not have a factorization into sagittal
and transverse modes, but a mode with a mixture of all
the polarizations. The dispersion relation can be obtained
from the effective boundary conditions by substituting the
Green's function in the form (j=1,2,3)

3

G(j(x3,x3)=G(j(x3 x3)+ QAj(e ', (3.4a)
l=l

3

G2j(x3,x3)=Gg(x3, x'3)+ g Bjle
l=l

3

G3j(x3,x3)=63j(x3,x3)+ g CIe
l=l

where the Pl are the solutions of

(3.4b)

(3.4c)

«(2+ &44.)',P'+P' I (')+ I (+I'4+ a'

(provided that ReP~ ~ 0). With

Io——Pe 2 D

44 44

C(( Dsin 28—/2
I1——

pm —C44a2 2

p2
4

Thus the dispersion relation is given by

D sin48 Pz&
2

4 Pj'+ I'(')
'

C44 D sin481"OK

&~ 4 Pj'+1~0

D'sin40

~3j = C(z —«(z+C~)(o) J

P, +I'~

(3.10)

~z( ~zz ~z3 =o
~3) ~32 ~33

(3.7)
(,), , «)z+C~) Pg

(3.11)

where (j=1,2,3)
(s) «)2+ C44)

~3J =C44 l+ K

P~+ I,2

4(j ——b(~j —h(b, (' +5( ),(0) (a) (b)

&3j =&3' h(63'j +63—j ),(0) (a) (b)

with

~" =C~(0)
&j - J

«(2+ &44) Pj&'

(Pj+I g)

r

C12 2 C12C44

C11 C44

«)2+ C44»j')

(P,'+I )

DD' sin 48
16C~ (P,'+ I'o)

(~) p p
2 12 —p~J CI

11

(3.8a)

(3.8b)

(3.9)

Now it is not possible to obtain a dispersion relation in
closed form due to the complexity of the expressions in-
volved, and the secular determinant (3.7) must be solved
numerically.

These expressions can be used, instead of the 9X9
determinant derived from the exact boundary conditions,
for the case ha «1, because they give fairly accurate re-
sults as compared with the exact dispersion relations, with
less numerical computation. With these analytical disper-
sion relations for symmetry directions and the experimen-
tal methods capable of detecting frequency variations of
the Rayleigh wave even for thin overlayers, ' one could
have a way of determining the elastic constants of these
overlayers. We have checked the analytical equations
[(3.1)—(3.3)) against the dispersion relations obtained from
the exact boundary conditions for several systems, and
different values of ha up to ha =0.01, and the discrepan-
cies between the simplified expressions for the phase ve-
locities and those obtained from the complete system of
equations amounted at most to 0.02 m/s, for the crystals
considered. Thus we can conclude that these simplified
expressions are reliable as compared to heavier calcula-
tions.
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In order to obtain the dispersion relations of the dif-
ferent modes appearing by increasing the thickness of the
ovcf layer » wc IDUst solve QUIDcflcally thc determinants
quoted in Sec. II. As before, for symmetry directions
there is a factorization into the sagittal and transverse po-
larized modes, whereas for arbitrary direction of propaga-
tion the uncoupling of the modes does not exist. For sym-
metry directions it can be shown that the secular deter-
minants are identical with those valid for the hexagonal
OI'ystals, by makiI1g the changes stated ln Scc. II. A
comprehensive study of the elastic waves in anisotropic
film/substrate systems is given in Ref. 9. A brief study of
tbc Al-% system with oUf method was glvcn elsewhere.

Thc BrllloUin spectroscopy hRs bccn sho%'n to bc Rn ex-
cellent technique in which one may obtain the dispersion
relation of elastic surface waves for semi-infinite and
layer/substrate systems. Recently, this technique has
been applied to the study of surface acoustic waves in su-
pcrlattit-. cs. Thcsc systcIDS Rrc 1IltcI"cstlng dUc to thclf
possible application to microwave electronics and the fa-
brication of emitting laser diodes. As these structures are
produced in the form of thin films, it would be interesting
to know the elastic properties of the layer. The present
analysis could provide some useful clues if used jointly
with experimental evidence, unfortunately not yet avail-
Rblc.

%c shall consider 8 GR~AlI „As laycI' on 8 GRAs sUb-

strate due to the fact that the GaAs-A1As superlattices
and related alloys are among the best studied of these sys-
tcIHs» RIld cxpcflIDcntal BrllloUln scattering lnvcstlgatlons
on these materials are in progress.

The GaAs exhibits pseudo surface waves (PS&'s)30 for
directions 30'=8&45'. For these directions these modes
are the dominant ones. It can be seen that they are very
sharp fcsonanccs.

Lct Us RssUIDc Rs R starting polQt that thc clastic con-
stants of the layer are the same as those of the GaAs
(Cii ——118X10' N/m, Ci2 ——53.5X10' N/mi,
C~ ——59.4 X10' N/m, and p=5317 kg/m ), whereas

FIG. 2. 01spcrs1on cuIvcs for thc surface %'aves of thc salIlc
system fol x=0.9 and scvcral dlrcct1ons of propagRtlon. Thc
cuI'vcs fox' 8=0 Rnd 45 cor1cspond to true Raylcig1l, %'aves sagi-
tRHy polarized; for 8=15' it corresponds to a true surface wave
Rnd fol 8=30 1t corresponds to R pseudo surface wave.

the density is a function of x (we take the following atom-
ic masses: Mo, ——70, MA, =75, MA~ =&7).

The behavior of this system corresponds to those
presented in Ref. 9. Thus, for a given direction of propa-
gation, the first Rayleigh mode starts from C~(8) [or
Cpsw(8)] at ha=0, going to Cg(8) [o«psw(8)]
ha —+ ac. It will be a true surface mode or pseudo surface
IDodc depending on its posltlon bclo%' of above thc bUlk

minimum velocity Cb(8). In Fig. 1 we give an illustra-
tion of this for the [110]direction and different values of
x. In Fig. 2 we present the dispersion relation of the sur-
face modes of this system for different directions of prop-
agation and x=0.9 (in this case p'=5160 kg/m3). In Fig.
3(a) we present these same dispersion relations considering
that O'J=0.95C,&, x=0.9, whereas in Fig. 3(b) we take
1.05CJ, x =0.9 (ij =11,12,44). Thus it can be seen that a

FIG. 1. Dispersion curves for the Rayleigh waves of
GaAs/Ga„A1~ „As system in the [110] direction for several
values of x.

hK
FIG. 3. I,a) Dispersion curves for thc surface waves of tbc

GR~A11 „As system for several directions of propagation eath
x=0.9 and C» =0.95 C~. (b) game as before but with
C,,'- =1.65 C,,
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5% variation of the elastic constants of the layer changes
drastically the dispersion relation of the surface modes,
and this could be tested experimentally. This could be
detected with the experimental methods now avail-

aMe 14,26-29

If accurate measurements for the dispersion relations in
the thin layer limit were available, it would be possible to
use the simplified forms [(3.1)—(3.3)] in order to obtain
the elastic constants of the layer. But even in the absence
of these measurements we should be able to ascertain
whether Cz & CJ or C,J & C;J by comparison of experi-
mental dispersion relations for different values of It tc with
those of Fig. 3.

V. CONCLUSIONS

In the thm-layer 11mlt (Itic (& 1) 1t ls possible to obtain
in closed form, to first order in Ate, the dispersion relation

of acoustic surface waves propagating along symmetry
directions in a cubic crystal with a cubic overlayer. These
expressions could provide a means to obtain the elastic
constants of thin overlayers. We have made an applica-
tion to the GaAs/Ga„A1~ „As systems and showed that
small changes in the elastic constants of the layer induce
important changes in the dispersion relation of the surface
modes, thus making possible the determination of the
elastic constants of the layer.
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