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Elastic surface waves in crystals with overlayers: Cubic symmetry
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We study the elastic surface waves of systems formed by semi-infinite cubic crystals with over-
layers of cubic symmetry, having (001) free surfaces and interfaces, by using a Green’s-function
technique, for arbitrary thickness and direction of propagation. For the symmetry directions [100]
and [110] in the limit of small thickness of the overlayers, it is possible to obtain the dispersion rela-
tion of Rayleigh and Love waves in closed form, to first order in Ak (% is the thickness of the over-
layer; k is the parallel wave vector). An application is made to the system formed by a layer of
Ga,Al,_,As on a GaAs substrate, and the influence of the layer composition on the dispersion re-

lation of the elastic surface waves is discussed.

I. INTRODUCTION

The systems formed by solid layers in close mechanical
contact with a semi-infinite substrate, i.e., systems with
several interfaces, pose interesting theoretical and practi-
cal problems. The overlayers are thin; usually their thick-
ness is smaller than the wavelength of the surface wave
being studied. Introduction of this layer on top of a form-
er free surface induces dispersion in the wave so that the
phase velocity now depends on the frequency.

The interest in surface waves has ranged from seismolo-
gy' to ultrasonic signal processing devices,> with impor-
tant applications to radar and communications,>* passing
through surface flaw detection.’ It is interesting to note
that the field of surface-wave devices has grown in sophis-
tication and range, and many of these devices include a
thin layer in at least part of the propagation path. These
layers can be used for different purposes, such as to pro-
vide a desired dispersion characteristic,® as part of trans-
ducers for generating surface waves,’ or as a guiding re-
gion to confine a surface wave laterally.®

For these systems it is common to have different in-
dependent modes of propagation confined to the surface
region, some of which are perturbations of the free-
surface Rayleigh waves, but we have also the Love modes
which are very different in nature. The dispersion rela-
tion of the different modes has been usually obtained by
solving the equations of motion jointly with the boundary
conditions, for the elastic displace:m4.=:nts.9 Recently, a
method has been instituted and applied to isotropic'® and
hexagonal!! media, allowing us to study the theory of sur-
face waves in systems with overlayers with more generali-
ty than has hitherto been possible. In this method the
presence of an overlayer of small thickness 4 compared
with the acoustic vibration wavelength A has been shown
to be equivalent to new effective boundary conditions at
the surface, in a similar way to other approaches.!?!3

We shall consider systems with cubic symmetry due to
the fact that this allows for the inclusion of the features
of crystalline anisotropy (most of the surface-wave devices
use single crystals), and many of the substances of practi-
cal interest crystallize in the cubic system. We shall study
systems having (001) free surfaces and interfaces in order
to avoid too much complication in the calculations, but
the same method can be used for any surface orientation
or propagation direction. In the limit of small thickness
for symmetry directions the dispersion relation of the sur-
face acoustic waves is derived in closed form to first order
in hx. Experimentally,'* the frequency variation of the
Rayleigh wave appears to be detectable even for a surface
coverage of a few hundredths of an adsorbed monolayer.
This, together with our analytic expressions, could pro-
vide a means of determining the elastic constants of very
thin films.

We use a Green’s-function method to obtain the fre-
quencies of the system, in spite of its greater complexity
as compared with the usual approach,’ because this
method makes possible the calculation of other properties
of such systems, such as, for instance, the mean-square
displacements of atoms!®!> or the elastic energy of point
defects.!® !

For the study of the dispersion relation of anisotropic
film/substrate systems this method would constitute
merely an alternative to the standard eigenvalue calcula-
tions based on a study of the eigenfunctions.”'#~2° How-
ever, an analysis yielding the Green’s function of the sys-
tem provides a more direct inroad into the calculation of
spectral functions—e.g., the projected mode density—of
interest for scattering problems.?!

In Sec. II we present the Green’s-function calculation
which yields the eigenmodes of the system; for very thin
layers, the effective boundary conditions at the surface are
derived. In Sec. III we consider the thin overlayers
(hk << 1), giving the dispersion relation of the modes in
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closed form for symmetry directions. In Sec. IV an appli-
cation is done to the system formed by an overlayer of ar-
bitrary thickness of Ga,Al;_,As on a GaAs substrate for
an arbitrary propagation direction, and the possibility of
obtaining the elastic constants of the layer is discussed.
Finally conclusions are drawn in Sec. V.

II. GREEN’S FUNCTION FOR A CUBIC
OVERLAYER SYSTEM

We shall be concerned with a system formed by a
semi-infinite cubic substrate (with elastic constants C,j,
Ci, Cy, and density p) covered by a cubic overlayer
(with elastic constants C};, C};, Cliy, and density p’) of
thickness 2. We take x; as the direction perpendicular to
both the free surface and the substrate-overlayer interface,
and we consider x;=0 and —#h as the plane of the inter-
face and that of the free surface, respectively. All the sur-
faces and interfaces are supposed to be (001).

The eigenmodes of the system are obtained from the
poles of the Green’s function, which are calculated as usu-
al by solving the equations of motion inside the bulk of
each medium together with the boundary conditions at
the interface and at the free surface, namely the continui-
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ty of the displacements and of the stresses: For an arbi-
trary thickness and arbitrary direction of propagation, the
eigenmodes are obtained from the zeros of a 9X9 deter-
minant. For the symmetry directions [100] and [110] this
determinant factorizes into a 6X6 determinant for the
sagittal modes and a 3X3 determinant for the transverse
(Love) modes. For a very thin layer a simplification is
possible by developing the boundary conditions (2.2) in
powers of hk, and then relating the conditions at x;=0
and at —h, as explained elsewhere.! In this way for an
arbitrary direction of propagation the eigenmodes can be
obtained from the zeros of a 3 X3 determinant, whereas in
the symmetry directions this determinant is factorized
into a 2 X2 determinant for the sagittal modes and a 1 X1
determinant for the transverse modes. This enables us to
obtain the dispersion relations of the Rayleigh and Love
waves in closed form,? to first order in h«.

The method has been fully explained elsewhere!®!! so
we shall give here the final expressions for systems of cu-
bic symmetry only. The similarity transformation intro-
duced in?? in order to make the direction of propagation
coincide with the x; axis of the crystal has been em-
ployed. We shall study now the different possible cases,
i.e., (i) arbitrary propagation direction, (ii) [100] direction,
and (iii) [110] direction.

A. Arbitrary propagation direction

Following the method described in Ref. 10 we obtain the effective boundary conditions for the substrate

Cy g GIJ(X3,X3)+IKG3J(X3,X3)
a x3=+0
= hClu | [R[A2— (L )sin26 G35 ) — Gy s, x5 ) — B2 2,
=hCy [ sin?26] — 1j(x3,%3) —d'TK°G ;(x3,x3 G K“Gj(x3,x3)
t
. 2_~_gy C
*IK(A' :22 4) f4 ()"2 2— d)GU(X3,X3)+A, 9 G3](X3,X3) , (213)
A Cu 0x; x3=+0
6 , ' 2 d’ ) 0)2 ' ' 2 ,
Cas |7 Gaj(x3,x3) =hCly 1+ —-5in"20 | — — | Gy(x3,x3) —d'T6°Gj(x3,x3) , (2.1b)
aX3 x3=+0 2 t’
xy3=+0
' |iK(A2—2— d)GU(x3,x3)+7» G3](x3,x3)
xy3=+40
’ Cl)2 1] . 44 a ’ . '
=hCy ————;G3j(X3,X3)-—lK_,“ =G j(x3,x3)+ikG3j(x3,x3) , (2.1¢)
t' C44 aX3
x3=+0
where
}»2=C11/C44, d=(C11—C12—2C44)/C44=D/C44 )
C}=Cu/p, T=—sin46/4,

and @ is the angle between the direction of propagation and the x, axis.
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B. [100] direction

We shall consider the boundary conditions for G; and G3; [similar equations are obtained for G3 and G3 (Refs. 10
and 11)] and then for G,,. Following the steps given in Ref. 10 we obtain the effective boundary conditions for the sub-

strate
d N ,
Cu |7 —Gulx3,x3)+ikG3(x3,x3)
ax3 x3=+40
2 2_H__J1\2
=hC:‘4 }\,’ZKZ—_w—Z‘ Gu(X},X%)—Q\'—‘T—({‘)—‘KzG“(X:;,Xs)
loA A
t
2_~_ gy C
_ieAm22d) B 022 d)G (k) A AP0 Gy (x5,x3 )] | . 2
A Cis dx3 x3=+0
. 2 , 2 d ’
Cuy |ik(A*—2—d)G (x3,x5)+ A E—Gn(xs,xs)
X3 x3=+0
C
—hCiy | — 2= Gy(x3x ) — ik | -G (x5 ) 4 ikG(x5,x5 ) (2.2b)
! C44 6x3
t x3=+40
I
In the same way we obtain for the transverse modes where
d
Cus | 7—Gpalx3,x5) (Ci+Cu)?
8X3 x3=+0 X=_(Y%+y‘%)~—%c—44—’(2’
2,2 / 11C44
=h[(Ciuk"—p'/0")G2(%3,%3) ], =40 . (2.2¢) (2.5)
2,22
The solutions to be used for the Green’s function can be rEe
written as )
with
G11(x3,%3) =G (x3,x3)+ 4 exp(—Byx3)
+ B exp(—fx3) , (2.3a) 2 (pw*—Cy1K?) ) (pw?* — Cayk?)
Yi=—(= & V&=~ . (2.6)
) Cu Cu
G31(x3,x§)=G(3‘{°)(x3,x'3)—m
Substituting the solutions (2.3) into the effective boundary
Bz 2 conditions (2.2), we obtain the full Green’s function, for
171 A exp(—Bix3) this case, the poles of which are the eigenmodes of the
1 system. These modes are then solutions of a 2 X2 deter-
I minant for the sagittal polarization and of a 1X 1 deter-
B+vi B exp(—Bxs) minant for the transverse polarization. It can be seen that
+ B CXPY—P2X3) | all the expressions obtained here are the same as those for
hexagonal crystals!! provided we make the following
(2.3b) changes:
ith similar solutions for G;3 and Gs3, and
¥ B » Ci3—Cp, Cy3—Cyy
Golx3,x5)=G5 (x3,x3)+Cexp(—Bx3) . (2.3c)

In these equations G‘®’ is the bulk Green’s function of
the substrate.”> We have

2

B%sz—'w_z ’
t

Bi=3[x+(x2—4p)'7?], (2.4)

Bi=3[x —(x2—4y?)'/?]

for the sagittal mode and
Cu—Cp,
2

for the transverse modes.

—>Cy

C. [110] direction

Following the method given in Ref. 10, we obtain the
effective boundary conditions for the substrate



30 ELASTIC SURFACE WAVES IN CRYSTALS WITH . 2045
Cu —a_—Gll(x3,x'3)+iKG31(x3,x'3)
ax3 3=+0
) 2 , A2—2—d')? ,
=hC:‘4 : }\.’Z—i __60_2_ Gu(x3,x3)—(——-F—*—K2Gu(x3,x3)
2 C
”2
—'KM (kz 2—d)G11(x3,x'3)+k2—‘a—G31(x3,x'3) ’ (273)
)\,’2 C44 6x3
x3=+0
C l'K(A.2—2—d)G11(x3,xs)""kz—a—G3l(-x3’xl3)
“ 0x3 x3=+0
' C“ 9 (2.7b)
=hCy ————2G31(x3,x3)——1 k—— | =—G11(x3,x3)+ikG3 (x3,x3) .
! 9x3 x3=+0
r
In the same way we obtain for the transverse modes wl= CI% k21— Ahk)+O(h) , (3.1)

Cus Gypl(x3,x3)

9
0x3 X3=+0

2
a) ’
—— | Gnlx3,x3)
C'

t

dl

=hC, 1+Z-
hCly +2

x3=+0
(2.7¢)

The solutions to be used for the Green’s function are writ-
ten in the same form as (2.3) but now

2
B =« +—‘§— o (2.8a)
t
C+Cpp+2C
V= |po— Cu+Cip+2Ca 12+ 44 /C44,
(2.80)

yi=<pw2—c44x2)/cl, )

We can obtain the eigenmodes of the system from the ex-
pressions for the hexagonal crystals!! if we make the fol-
lowing changes:
Cii+Cpp+2Cy

2

For the transverse modes no

Ci3—Cypy, C33—Cyy, Ciy—

for the sagittal modes.
change is needed.

III. DISPERSION OF THE ACOUSTIC
SURFACE WAVES: THIN OVERLAYER LIMIT

We shall present in this section the analytic form of the
dispersion relation for surface waves in symmetry direc-
tions and a brief discussion of the dispersion relation for
arbitrary direction of propagation.

A. [100] direction

Sagittal modes. The dispersion relation, to first order in
hk, is given by

where Cy is the velocity of the usual Rayleigh wave?* and
A=N/D, where N and D are the same expressions as
those given in Ref. 11 by substituting C;3—Cjy,
C3—Cyy.

Love modes. Under the condition C, <C,, we have the
following dispersion relation:

@*=CH*[1—B(hk)*]1+0(h?) 3.2)
with
1 ’ 2
g |Cu_p
Cua p

This expression is identical with that for an isotropic crys-
tal.!”

B. [110] direction

Sagittal modes. The dispersion relation, to first order in
hk, is identical with (3.1) where N and D are now the
same expressions as those given in Ref. 11 provided we
make the substitution C;3;3—C;;, C;1—(C;;+Cp;
+ 2C44)/2, C13—>C12.

Love modes. Under the condition C; <C,, we obtain
for the dispersion relation the expression (3.2) where

’ ’ 2
B Cu—Cn [Cu—Cn p
2C4y Cu—Cp p |’
(3.3)
Cc,—C C —Cj
c=n=Cu 2 _Cu=Cu
2p 2p

This expression is identical with that obtained for hexago-
nal crystals.!!
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C. Arbitrary propagation direction 3 —Bix
_ Gojlx3,x5)=G5(x3,x5)+ 3 Bye 73, (3.4b)
In this case we do not have a factorization into sagittal =1
and transverse modes, but a mode with a mixture of all
the polarizations. The dispersion relation can be obtained , - , 3 —Bix,
from the effective boundary conditions by substituting the Gij(x3,x3)=G3j(x3,x3)+ X Cje , (3.4¢)
Green’s function in the form (j=1,2,3) I=1
3
’ —Blx .
G1j(x3,x5)=G{}(x3x3)+ 3 Aje o, (3.4a)  where the Bl are the solutions of
1=1
]
(Ca+Cu)?
BS+B |T3+Ti4 T+ —2 % 2
C11Cy
(Ca+Cy) DZ%sin%46 DZ%in?40
+B* (T34 THT+ 303+ T3 Kr— k* |+ 00N —=———T%k*=0 (3.5
ottt Toli+to—r 16C2, o'y 16cz, |4 (3.5)
I
(provided that ReB; >0). With D= _ Dsindg _BiK’
2 4 Bi+T;
r3=L22 2|14 —2— |sin29, L
Cu 2Cy (@)_ Cyu D sind0Ix
A C '4———2‘——2— , (3.10)
2 po’ C,,—Dsin®20/2 3.6 u 4 Bi+To
T Cu Cu ’ ’ A<21}>=£§%42K2 ,
, pot—Cur®
F4= C 2
11 A Clz—(C12+C44)'—‘T ] ,
Thus the dispersion relation is given by B +1y
Ay Ap Ay Ag"-)=——p’m2(C12+C44) B; 3.11)
A21 Azz A23 =0 ) (37) J C“ B‘?—Fri ’
Az Ay Ay (
Ci2+Cu) 2
(b) 12 44 K
h =1,2,3 A3’ =Cy |1+ B; .
where (] ) 3j 44 C11 B‘%’f‘ri j
A (0) h(A(a) (b)) (3.88)
Now it is not possible to obtain a dispersion relation in
(0) (a)
Ay —h(A3j +A21‘ )s (3.8b) closed form due to the complexity of the expressions in-
Ay (0) —h( A(a) + A(sl;)) , (3.8¢) volvedf and the secular determinant (3.7) must be solved
numerically.
with These expressions can be used, instead of the 99
determinant derived from the exact boundary conditions,
N for the case hk << 1, because they give fairly accurate re-
A9—c,. |-B,— (Ca+Cu) Bk sults as compared with the exact dispersion relations, with
v “ 4 Cy (BF+T3) less numerical computation. With these analytical disper-
sion relations for symmetry directions and the experimen-
tal methods capable of detecting frequency variations of
C the Rayleigh wave even for thin overlayers,!* one could
A(‘”_ C 44F' 12 2| _ pa?, (3.9) have a way of determining the elastic constants of these
T overlayers. We have checked the analytical equations
[(3.1)—(3.3)] against the dispersion relations obtained from
the exact boundary conditions for several systems, and
Ci2 C1uCu  (Cia+Cu)B2) different values of h« up to hk=0.01, and the discrepan-
A(b) 2 _ J . . . e .
c K c (B+T2) cies between the simplified expressions for the phase ve-
1 44 JTh4 locities and those obtained from the complete system of
equations amounted at most to 0.02 m/s, for the crystals
DD’ sin%40 considered. Thus we can conclude that these simplified

»

+ SR
16Cys (B3+T3)

expressions are reliable as compared to heavier calcula-
tions.
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IV. Ga,Al;_;As LAYER
ON GaAs SUBSTRATE

In order to obtain the dispersion relations of the dif-
ferent modes appearing by increasing the thickness of the
overlayer, we must solve numerically the determinants
quoted in Sec. II. As before, for symmetry directions
there is a factorization into the sagittal and transverse po-
larized modes, whereas for arbitrary direction of propaga-
tion the uncoupling of the modes does not exist. For sym-
metry directions it can be shown that the secular deter-
minants are identical with those valid for the hexagonal
crystals,!! by making the changes stated in Sec. II. A
comprehensive study of the elastic waves in anisotropic
film/substrate systems is given in Ref. 9. A brief study of
the AI-W system with our method was given elsewhere.?

The Brillouin spectroscopy has been shown to be an ex-
cellent technique in which one may obtain the dispersion
relation of elastic surface waves for semi-infinite’® and
layer/substrate systems.?” Recently, this technique has
been applied to the study of surface acoustic waves in su-
perlattices.?® These systems are interesting due to their
possible application to microwave electronics and the fa-
brication of emitting laser diodes. As these structures are
produced in the form of thin films, it would be interesting
to know the elastic properties of the layer. The present
analysis could provide some useful clues if used jointly
with experimental evidence, unfortunately not yet avail-
able.

We shall consider a Ga,Al;_,As layer on a GaAs sub-
strate due to the fact that the GaAs-AlAs superlattices
and related alloys are among the best studied of these sys-
tems, and experimental Brillouin scattering investigations
on these materials are in progress.?’

The GaAs exhibits pseudo surface waves (PSW’s)*° for
directions 30°=6 < 45°. For these directions these modes
are the dominant ones. It can be seen that they are very
sharp resonances.’%3!

Let us assume as a starting point that the elastic con-
stants of the layer are the same as those of the GaAs
(C;;=118%10"° N/m?  C;,=53.5x10"° N/m?
Cyu=59.4 %10'° N/m? and p=5317 kg/m?), whereas

c (103 ms-1)

2 .85 | I | 1

FIG. 1. Dispersion curves for the Rayleigh waves of
GaAs/Ga Al _xAs system in the [110] direction for several
values of x.

8z45°

2.8

c(103ms1)

2.7 L
s}

FIG. 2. Dispersion curves for the surface waves of the same
system for x=0.9 and several directions of propagation. The
curves for 6=0°" and 45° correspond to true Rayleigh waves sagi-
tally polarized; for 8=15° it corresponds to a true surface wave
and for 6=30" it corresponds to a pseudo surface wave.

the density is a function of x (we take the following atom-
ic masses: Mg, =70, Ms;=75, M ;=27).

The behavior of this system corresponds to those
presented in Ref. 9. Thus, for a given direction of propa-
gation, the first Rayleigh mode starts from Cg(6) [or
Cpsw(0)] at hk=0, going to Cg(8) [or Cpsw(6)] for
hk— oo. It will be a true surface mode or pseudo surface
mode depending on its position below or above the bulk
minimum velocity C,(8).° In Fig. 1 we give an illustra-
tion of this for the [110] direction and different values of
x. In Fig. 2 we present the dispersion relation of the sur-
face modes of this system for different directions of prop-
agation and x=0.9 (in this case p’'=35160 kg/m3). In Fig.
3(a) we present these same dispersion relations considering
that C/;=0.95C;;, x=0.9, whereas in Fig. 3(b) we take
1.05C;j, x =0.9 (ij=11,12,44). Thus it can be seen that a

(a)

Tm _\_—iL

£ = 0°

- 28

=

— 150

© 2.7 0

1 1 1 1
0 1 2 3 4 5

hk
L5°

¢ 1103ms™)
™
m "
\\

hk
FIG. 3. (a) Dispersion curves for the surface waves of the
Ga,Al;_,As system for several directions of propagation with
x=09 and C;=095C;. (b) Same as before but with
C/;=1.05Cy.
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5% variation of the elastic constants of the layer changes
drastically the dispersion relation of the surface modes,
and this could be tested experimentally. This could be
detected with the experimental methods now avail-
able, 14:26—29

If accurate measurements for the dispersion relations in
the thin layer limit were available, it would be possible to
use the simplified forms [(3.1)—(3.3)] in order to obtain
the elastic constants of the layer. But even in the absence
of these measurements we should be able to ascertain
whether Cj; < Cj; or Cj;> C; by comparison of experi-
mental dispersion relations for different values of Ak with
those of Fig. 3.

V. CONCLUSIONS

In the thin-layer limit (hk <<1) it is possible to obtain
in closed form, to first order in A«, the dispersion relation
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of acoustic surface waves propagating along symmetry
directions in a cubic crystal with a cubic overlayer. These
expressions could provide a means to obtain the elastic
constants of thin overlayers. We have made an applica-
tion to the GaAs/Ga,Al;_,As systems and showed that
small changes in the elastic constants of the layer induce
important changes in the dispersion relation of the surface
modes, thus making possible the determination of the
elastic constants of the layer.
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