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Calculations of the deep-energy levels of substitutional sp -bonded defects in Si„Gel „alloys sug-

gest that the standard shallow dopants As and P and the isoelectronic C defect may become deep

traps for x=0.2.

I. INTRODUCTION

It has been recently accepted that the deep energy levels

in the fundamental band gaps of semiconductors are
bound primarily by the central-cell atomiclike defect po-
tential. ' Theories have been developed to predict quan-
titatively the chemical trends for the defect levels of a
variety of sp -bonded impurities in several hosts. ' Im-
portant applications have been made to technologically
important alloy systems, such as GaAsi „P„(Refs.2, 5

and 6), Hg, „Cd Te, and In& „GayAsi „P„, where the
variations of the deep levels with alloy composition are
especially interesting.

In this paper we examine one of the prototype semicon-
ductor alloy systems, Si„Gel „,and predict its deep lev-

els. We study the crystalline form of these alloys that is
of interest as a high-temperature thermoelectric material.
It has energy-band edges that vary almost li.nearly as
functions of composition x. ' The band gap, Zs,~, is in-

direct, with the valence-band maximum at the center of
the Brillouin zone (point I') and the conduction-band
minimum changing from the point L [=(2ir/aL, )( —,,
—,', —2)j to near the point X [=(2m./aL )(1,0,0)]. The
change occurs at the crossover point, approximately
x =0.15.' '" lt is this feature that makes the defect lev-

els of this alloy interesting to study, since alloys with
compositions near the crossover can possibly produce deep
levels in the gap for impurities such as As and P, which
have only shallow levels in the gap for both Si and Ge.

Near the band gap, every sp -bonded substitutional im-
pllrlty with a valellce greater than that of tile tefrahedlally
bonded host by unity is expected to have an Ai (s-like)
level, a triply degenerate T2 (p-like) deep level, and an in-
finite number of shallow levels. For impurities such as P
in Si, the A i and T2 deep levels are resonances aboue the
conduction-band minimum —and are normally unob-
served; only the shallow levels are observed in the gap.
The deep resonant levels are distinct from the well-known
shallow effective-mass levels. The present paper considers .

the conditions under which the 1owest of these resonant
levels can be driven in the band gap by changing the alloy
composition of the host. When this happens, the lowest
impurity level in the gap is the Al deep level, and the
effective-mass shallow levels are above it; as a result, the
P impurity switches from being a shallow donor to being
a deep trap. We do not consider the shallow levels exph-

citly or the long-ranged Coulomb interaction responsible
for them; we merely recognize that once a deep level des
cends into the gap, it provides the ground state for the ex-

tra electron of a donor impurity.

II. THEORY

We use a modified version of the theory of Hjalmarson
et al. to calculate the sp -bonded defect levels of Ai (s-
like) and T2 (p-like) symmetry for the tetrahedral (T~)
point group. The Hjalmarson theory requires a deter-
mination of the local spectral density of states, which is
calculated from the Vogl et al. ' empirical tight-binding
theory of the host energy band structure. This band
structure was obtained using a simple nearest-neighbor
tight-binding method, with emphasis placed on accurate
determination of the local spectral density of both valence
and conduction bands. For that reason, the theory of
Vogl et a/. includes only five basis orbitals per atom: the
usual sp basis plus one excited s orbital, s*. The param-
eters of the Vogl model are fitted to band structures deter-
mined by Chelikowsky and Cohen' at the symmetry
points I' and X in the Brillouin zone. Since we expect the
interesting phenomena of the Si„Ge, „alloys to occur
near the crossover composition, where the indirect gap at
L, in Ge switches to a gap at X in Si, it is important that
the Vogl model be generalized to fit the band structure at
the I. point as well as at the X point. Thus we include
two second-neighbor parameters' to improve the fit to
the band structure at I. for both pure materials, and we
modify the Hjalmarson theory to account for these
second-neighbor InteractIons.

A. The model Hamiltonian

I. Band strletttres ofSi and Ge

We provide first the theory for determination of the
band structures of the unalloyed materials, Si and Ge. We
use a zinc-blende-structure tight-binding Hamiltonian for
a basis of quasiatomic functions localized in the unit cell

at R;,
~
n, b, R; &. The Bloch-type tight-binding states are

~
n, b, k&=N '"+exp[i(k R+k vb)l ln» R &

Here quantum numbers n run over the s„p„,pz, p„and
s orbitals, the N wave vectors k lie in the first Brillouin
zone, and the site index b is either a (for anion) or c (for
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cation). (We shall refer to the two sites in the unit cell of
homopolar Si or Ge as anion and cation sites, treating the
diamond-crystal structure as though it were zinc blende. )

Anion positions are R;; cation positions are R;+ v; with
vb ——5, b(aL, /4)(1, 1,1), with ai being the lattice constant.
The quasiatomic functions are Lowdin orbitals, which are
symmetrically orthogonalized atomic orbitals. The
Schrodinger equation for the Bloch function

~
k, A, ) is

O
[H—e(k, A, )] i

k, A, ) =0,
or, for this basis

Q I (n, b, k ~H ~m, b', k)
m, b'

—e(k, A, )5„5bb I (m, b', k
~
k, A, ) =0 .

The solutions are

~
k,Z)=g ~n, b, k)(n, b, k

~
k, X),

n, b

(2.2)

(2.3)

(2.4)
bo

bc
bp

O

bg

O
where the band index k has ten values and the bulk Ham-

iltonian matrix in the
~
n, b, k) basis is given as in Eq.

(2.5) shown at right.

Here we have

go( k ) = cos(hark &/2)cos(nk2/2)cos(mk3/2)

i sin(—nk &/2)sin(n k2/2)sin(mk3/2),

bo bip

O

g&(k) = —cos(mk&/2)sin(mk2/2)sin(nk3/2)

+i sin(wk
&
/2)cos(mk2/2)cos(m'k3/2),

b0 %o
bo

bp

O

g2( k ) = —sin(m k ~ /2)cos(m k2/2)sin(m k3/2)

+i cos(mk, /2)sin(mk2/2)cos(~k3/2),

g 3 ( k ) = —sin( m k ~ /2 )sin( mk 2 /2 )cos ( hark 3 /2 )

+i cos(mk
&
/2)cos(~k2/2)sin(n. k3/2),

(2.6)
%O

bo

O

g4(k ) =sin(mk& )sin(mk2),

g5(k) =sin(mk& )sin(mk3),

gb(k) =sin(mk2)sin(nk3) .

In Eq. (2.5), on-site matrix elements are denoted by
E(n, b), nearest-neighbor matrix elements by V(nb, mb'),
and second-neighbor matrix elements by e(nb, mb'), where
the prime on b is used to denote different anion or cation
atoms. For example, we define

bg bo

I

bp bo

bo bop

bo

O

O O

e(sa,p„a')= —4(sa ~H ~p„a'),

e(p„a,p~a')=4(p„a
~

H ~p~a') .
(2.7) bop

O O
The first of these is a three-center integral' that is
nonzero because of tetrahedral symmetry.

The determination of the values of matrix elements
E(n, b) and V(nb, mb') for tetrahedral semiconductors
emphasizes the band structure at I and X, and has been



THEORY OF DEEP IMPURITIES IN SILICON-GERMANIUM ALLOYS

TABLE I. Empirical matrix elements of the sp s* Hamil-
tonian in eV and nearest-neighbor bond distance d in A. Note
anion (a) and cation (c) sites are equivalent for the diamond lat-
tice. Except for V(sa,pc) and V(s a,pc) for Ge, these parame-
ters are the same as in Ref. 12. 6 (E)=(E—H) '= [1—Go(E) V] 'Go(E), (2.10)

where Ho is the Hamiltonian (2.5) that produces the band
structure of the perfect (virtual) crystal host. A Dyson
equation relates the defect Green's function,

E(s,a)
E(p,a)
E(s*,a)
V(s,s)
V(x,x)
V(x,y)
V(sa,pc)
V(s a,pc)
e(sa,p„a')
E(p~a,pea )

Si

—4.2000
1.7150
6.6850

—8.3000
1.71SO

4.5750
5.7292
5.3749
0.24
0.0
2.35

—5.8800
1.6100
6.3900

—6.7800
1.6100
4.9000
4.9617
4.5434
0.0
0.157
2.45

to the Green's function of the unperturbed "perfect crys-
tal, "

Gii(E) =(E—Hii) {2.11)

Defect levels of energy E are found by solving the equa-
tion

det[1 —Reoo(E) V] =0 (2.12)

for states of symmetry i, where /=Bi (s-like) or T2 (a-
like). We write the partial Green's function in terms of
the Hilbert transform of the local spectral density,

Dt(E')
Go t(E) =Pf,dE', (2.13)

2. Band structure of the Si„Gei „alloys

To calculate the band structure of the alloy,
virtual-crystal approximation 1s assumed. Thc ncarcst-
neighbor distance d, the on-site matrix elements
E(nb, mb'), and second-neighbor parameters e(na, mb')
are linearly interpolated as function of x, while the first-
neighbor matrix elements V{nb,mb') are interpolated as-
suming that Vd is a constant, '

Vd =x(ds;) Vs;+(1—x)(dG, )2VG, . (2.8)

The assumption is thus made that the symmetry of the al-
loy remains that of either perfect crystal, that is,
tetrahedral. Since there is little bowing in the fundamen-
tal band edge of this aHoy, this approximation is known to
be quite reasonable. '

B. Deep-trap theory

The defect theory of Hjalmarson et al. is a Green's-
function method developed from formalism derived by
Koster and Slater and others. ' The Hamiltonian for the
defect problem is given by

(2.9)

described elsewhere. ' Two of the second-neighbor pa-
rameters, Eqs. (2.7), are used in the present work to im-
prove the fit to the conduction band near the symmetry
point L. Neither parameter in (2.7) has an effect on the
band structure in the b,[100) or X[110]directions in the
Brillouin zone. The first parameter, e(sa,p„a'), is used for
adjusting the higher relative minimum of the conduction
band at Lz in Si. It affects only the Ai bands and only its
absolute value is of importance. We use this parameter to
remove the accidental approximate degeneracy of L i and
L2 found using the tight-binding parameters of the Vogl
model. ' Since the shift in energy at Li caused by this
parameter is of the wrong sign for Ge, a second parame-

ter, e(p„a,p„a'), is used to fit Li for the conduction band
in Ge. Table I shows the values of E(n, b), V(nb, mb'),
and e(nb, rnb') used for the band structures of Si and Ge.

V Ehost(S) EimPurity(
1

V Ehost(+) Eimpurity(
(2.14)

Because of the chemical trends in the diagonal matrix ele-
ments E of the host Hamiltonians for a variety of hosts,
the defect potentials V are found to be proportional to
atomic-energy differences. " Finally, since this is a one-
electron potential-scattering theory, the different charge
states of an impurity are found to be degenerate in this
model.

III. RESULTS

The band structure for Si„Gei „alloys was calculated
using Eqs. (2.5) and (2.8). Figures 1(a)—1{d) display the
calculated band structures for x =0, 0.2, 0.74, and 1 com-
pared with those of Bassani and Brust. ' In our calcula-
tion, we found that the crossover point from an indirect
gap at L to one near X (for 4 K) occurs at x =0.25, in
reasonable agreement with experimental results for room
temperature, x=0.15.' (Our results differ from those of
BassRn1 Rnd Bfust, %vho obtaiIl x =0.2, s1Ilcc Vve f1tted
the band edges of Si and Ge to the more recent results
used by Chelikowsky and Cohen. ' )

Our results for defect levels of donor impurities are

and determine the spectral density Di(E') using the
Lehmann-Taut formalism. For energies E within the
band gap, tbe integral may be calculated using the
special-points method. ' The defect potential V is con-
structed along lines suggested by Hjalmarson et al. Lat-
tice relaxation around the defect and the long-ranged
Coulombic tail of the potential (for a nonisoelectronic de-
fect) are neglected because the energies of deep levels are
controlled mainly by the central-cell part of the potential.
Since the off-diagonal matrix elements do not change un-

less the bond length is altered, Harrison's rule' implies
that the defect potential is diagonal in the Lowdin-orbital
basis. The diagonal elements V are, by definition, the
differences between host- and impurity-atom matrix ele-
ments
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FIG. 1. Band structures E(k) for the principal symmetry directions of the diamond lattice for (a) Ge, (b) Sio 2Geo 8, (c) SiQ 74Geo &6;
and (d) Si. The points k in the Brillouin zone are kg=(0, 0,0), kL ——(2n. /aL, )( 2, 2, 2 ), kg ——(2m/aL, )(1,0,0), kU ——(2m/aL, )(1, 4, 4),
and k~ ——(2m. /aL, )( 4, 4,0), where aL, is the lattice constant. We compare these with results of Bassani and Brust (Ref. 11) (dashed
curve). Principal symmetry directions are labeled only for (a) Ge.
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TABI.E II. Comparison of calculated unrelaxed-vacancy en-

ergy levels (in eV), relative to the valence-band maximum, deter-

mined by different authors for Si and Ge. Few of these authors
list a theoretical uncertainty. The present simple theory is ex-

pected to predict levels typically uncertain by -0.3 eV. This
table suggests that the present theory, although very simple, is

comparably accurate with other theories, some of which are
more complicated.

Ge Conduction Band

FllllllllllllPIIIIP~

Si Conduction Band

This work
Hjalmarson et aI.'
Kauffer et al. "
Joannopoulos et al. '
Bernholc et Ql.

Papaconstantopoulos et al. '
Lindefelt
Baraff et al. "
Bernholc et al. '

Bernholc et al. '

—1.2
—1.2
—0.88

—1.1
—0.6
—0.7

0.04
0.06

0.51
0.51
0.12

0.47
0.11 0.27

0.75
0.66 0.18g

0.7
0.8
0.67

FlllrlllllrllrFZ
Ge Valence Band

4P

—0.6

Lal

Fgl/F/lr FFFFFFFFFFF'

Si Valence Band

'Reference 2.
"Reference 25.
'Reference 26.
Reference 27.

'Reference 28.
Reference 29.

IReference 30.
"Reference 31.
'Reference 32.
'Reference 33, Fig. I.

states of the defects. ) Since V has the opposite sign for
acceptor impurities, these rules are then inverted.
Unrelaxed-vacancy levels are the zeros of G(E); thus ac-
ceptor impurity levels have energies lower than the
unrelaxed-vacancy energy level.

Deep-energy levels are typically determined by our
methods with accuracies of a few tenths of an eV. This is
seen in the results of Table II for the unrelaxed-vacancy
level determined by various author's using Green's-
function methods. Results are quoted from tight-binding
methods ' (Refs. 25 and 26 calculate the Green's
function for the imperfect crystal), from pseudopoten-
tials, ' and from self-consistent calculations. ' We
may caIibrate our results to experimental results known
for S, Se, and Te impurities in Ge and S and Se in Si. S,
Se, and Te are all double-donor impurities having two
charge states [as well as a number of states for complexes
of impurities; see, for example, the experimental results
for S (Ref. 35)]. We compare our results with the results
for the neutral impurity level of A, symmetry. In Ge,
the substitutional impurities S, Se, and Te have observed
levels of 0.58, 0.62, and 0.65 eV, respectively (i.e., 0.18,
0.14, and 0.11 eV below the conduction band). We find
the same ordering in our theory: 0.17, 0.25, and 0.59 eV.
In Si, G.rimmeiss and co-workers. ' find S, Se, and Te
to have levels at 0.85, 0.87, and 0.97 eV, respectively (i.e.,
0.32, 0.30, and 0.20 eV below the conduction band); others
find for S, 0.85 eV, and for Se, 0.86 eV. We find 0.55,

FIG. 5. The theoretical (solid levels) and experimental
(dashed levels) energy levels of S, Se, and Te in Ge (Ref. 37), and
Si (Refs. 35, 38—40).

0.66, and 1.08 eV for S, Se, and Te, respectively.
conclude that we have successfully reproduced the quali-
tative chemical trends, as shown in Fig. 5, but have a
quantitative error that places our' impurity levels too deep
within the band gap by approximately 0.05 to 0.4 eV.
Note that the theory predicts that As and P in Si and Ge
are near the borderline of the shallow-deep transition; a
0.05 eV shift upwards of all theoretical curves causes As
and P to become unambiguously shallow impurities in Si
and Ge. A significantly more accurate determination of
defect energy levels will probably require a vast improve-
rnent over the tight-binding theor'y used here. We note,
however, that even the highly sophisticated contemporary
self-consistent pseudopotential calculations of deep levels
have quoted uncertainties of +0.2 eV, and so vast im-
provements over the -0.3 eV uncertainty of the present
work will be difficult to achieve.

A further difficulty with the current theory is the ab-
sence of deep levels for acceptor impurities of T2 symme-
try. %'e suspect this is because our T2-symmetric va-
cancy states lie somewhat too close to the valence band.
We also note that an improved tight-binding theory, such
as the one for Si by Papaconstantopoulos and
Economou, obtains higher-energy T2-symmetric vacan-
cy states (see Table II). If the host band structure in the
present model were altered to produce a higher T2 vacan-
cy level, then the defects Hg, Cd, Zn, Tl, and In might be-
come deep levels above the valence-band rnaxirnurn as
well. However, use of such a multineighbor theory intro-
duces complications to the calculation of defect levels,
since the proportionality of V to atomic-energy differ-
ences Eq. (2.14) is valid only if the on-site diagonal matrix
elements of the theory exhibit manifest chemical trends.

Predictions of our deep-trap theory for Si„oe& „alloys
are as follows. First, we expect a deepening of impurity
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levels for all deep-donor impurities of Si and/or Ge in the
alloy for x near 0.2. This first result has been confirmed

by experiment for Te in Si„Ge, „. Azhdarov et al.
(Fig. 3) found neutral-defect energy levels that follow the
conduction-band edge, being deeper by 0.03 eV for
x =0.15 compared with x =0. Second, we predict that
impurities that are shallow donors or isoelectronic reso-
nances in Si and Ge may become deep for x near 0.2. Im-
portant exan1ples may mclude the 2 «-symIDetrlc In1purj. ty
levels for As and P and, for Tq symmetry, perhaps also N
and O. Furthermore, if As and P are deep impurities for
x near 0.2, we also expect that the isoelectronic substitu-
tional impurity C to be deep for a similar range of x.
These predictions should be tested experin1entally.

IV. DISCUSSION

We have determined the single-impurity sp -bonded

deep-energy levels of Si„Gei „alloys. Due to a crossover

from an indirect gap at L to one near X that occurs at
x=0.2, we have found that many of the shallow dopants
of Si and Ge may have deep levels near the indirect-gap
crossover point. Important examples of impurities that
may have deep levels include As, P, C, N, S, Se, Te, and
Q.
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