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Electronic collective modes and instabilities on semiconductor surfaces.
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The phonon self-energy and the dynamical effective charge are expressed in terms of the

non —local density-response function e '(q+G, q+G', z, z') of a surface. The main purpose is to
obtain a consistent description of the energy spectra, lifetimes, and amplitudes of electronic surface
excitations, such as surface plasmons, excitons, and magnons, which have been discussed in a previ-
ous paper with the dynamical (phonon) excitations. An application to the ideal Si(111) surface re-
veals two types of instabilities of Rayleigh modes, which can be related to relaxation and (2&(1)
reconstruction.

I. INTRODUCTION

Both the determination of static, structural properties
and the study of vibrational excitations on surfaces has re-
cently made significant progress through the application
of elaborate experimental techniques, such as low-energy
electron diffraction, ' characteristic energy loss, and
scattering of light (He) atoms. From the theoretical
point of view, the dynamics of crystal surfaces have so
far been exclusively described by empirical models. ' Here
one einploys a bulk parametrization of the force constants
to extract the surface vibrational modes. These empirical
models work well on surfaces of, for example, alkali
halides, where the electronic charge distribution sur-
rounding the surface ions as well as their geometrical ar-
rangement is practically unchanged compared to the bulk.
This is contrasted by the majority of semiconductor and
transition-metal surfaces where the electronic properties
are radically different from the bulk. Often this change is
accompanied by an instability toward surface reconstruc-
tion. Examples are the Si(111) (Ref. 6) and the (001) sur-
faces of both W and Mo, which display various super-
structures as a function of temperature and also adsorbate
composition. Here an a priori determination of the force
constants is needed, which consistently takes both the
atomic surface reconstruction and the electronic structure
changes into account. The present work aims at such a
description.

Our lattice-dynamical forinulation focuses on the prob-
lem of expressing the phonon self-energy in terms of the
response of the surface electrons to an external probe.
This approach permits the complete solution of the lattice
vibrational problem within the harmonic approximation
once the charge of the nuclei (or, in practice, the potential
of the ion cores) and a properly defined density-response
matrix e '(q+G, q+G', z,z') are known. In a previous
paper, hereafter designated as I, a Green's-function for-
malism for electronic collective modes was developed

which facilitates the calculation of e ' in conducting as
well as nonconducting solids. The main advantage of this
Green's-function formalism lies in the fact that one and
the same quantity, i.e., the two-particle propagator, deter-
mines a broad range of surface elementary excitations,
such as electron-hole excitations, excitons, plasmons, mag-
nons, and phonons. In I this has been exploited to study
the spin response of the ideal Si(111) surface. Quantita-
tive calculations for an eight-layer slab displayed an insta-
bility of the ideal paramagnetic surface with respect to
spin-density waves with wavelength corresponding to
(2&(1) and (7&&7) superstructures. Here we present the
density-response theory of surface lattice dynamics, with
particular emphasis on semiconductor and transition-
metal surfaces where the jellium approximation is not
valid, i.e., where density fluctuations are important on a
microscopic scale (reflected in the local-field effects). Our
paper is organized as follows. In Sec. II, explicit expres-
sions for the phonon self-energy and the surface effective
charge are given. The latter has already been derived by
one of us for an insulating system, but here we consider a
metallic surface such as the ideal Si(111). Section III
summarizes results of a phonon calculation for the same
eight-layer slab of Si(111), the collective modes and insta-
bilities of which we have already studied in Ref. 8. This
calculation gives insight into what drives the ideal Si(111)
surface out of its bulk pattern into a structural superstruc-
ture. In particular, we find two types of instabilities for
the Rayleigh modes: one, which is related to relaxation of
the surface layer, and the other being related to the
charge-density fluctuations of a (2&& 1) reconstruction. In
the present work the instabilities are found for the ideal
surface and we do not predict a new equilibrium for the
reconstructed surface lattice structure. However, we em-
phasized that our dynamical theory can just as well be
used to check one of the proposed models for the recon-
struction, such as the ~-bonded chain model, against ex-
periment. ' Such a calculation is under way as well as a
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many-body study of the optical and photoemission experi-
ments of the (2y 1)-Si(111)surface. A final discussion is
presented in Sec. IV. FIG. 2. Integral equation for the susceptibility.

II. THEORETICAL FRAME

We present in this section various aspects of a micro-
scopic theory of surface lattice dynamics. First, we dis-
cuss briefly the non —local-dielectric-response function of
the surface electronic system, which determines the pho-
non self-energy in the harmonic approximation. Then an
explicit expression of the phonon self-energy itself is
presented, and finally we discuss the form of the effective
charge for metallic systems, the expression for insulating
systems being already given in Refs. 11 and 12.

X(1,2) =X(1,2)+X(1,1')I~ (1',2')X(2', 2), (2.4)

XX
k ),~2 k 2, n3 k 3,n4 k~

where u(1', 2') is the unscreened Coulomb interaction.
Because the polarizability X can be expressed with the
help of Bloch wave functions in the following way 6

A. Surface density-response function
X 1( -„(r ')g'„,k, ( r '), (2.5)

The quantity which determines the density-response
function is the two-particle Green's function. It was ex-
tensively discussed for surface systems in paper I.s There
we showed that with the help of a local-orbital representa-
tion for the one-particle states it is possible to solve the
Bethe-Salpeter equation when the irreducible electron-hole
interaction is treated in the screened Hartree-Iock ap-
proxlmatlon.

The susceptibility X(1,2) and the two-particle Green's
function G (12,34) are related in the following way

a local-orbital representation of the wave functions allows
us to reach a separable form for X.' In such a representa-
tion the Fourier-transformed surface polarizability is
given by '

X(q +G, q+ G ',z,z';co)

= g A, (q+G,z)S (q, co)A, (q+G';z'),

(2.6)

X(1,2)= g G,.(12,2+1+), (2.1) where A, (q+ G,z) is a generalized charge-density wave

where o and a' are spin indices and xi+ =vi+0+. For the
polarizability X we consider the integral equation for the
two-particle Green's function

(2.2}

where Go is the free part, and we include in the irreduci-
ble electron-hole interaction (paper I) only those diagrams
which do not contain contributions such as the one in Fig.
1(b). Tllis will give all irreducible terms 111 tllc two-

particle Green's function, the sum of which we call G.
Then the polarizability is obtained as

X(1,2)= g G (12,2+1+) .

With these definitions, all long-range effects coming from
the Coulomb interaction are excluded. They are con-
tained in the susceptibility X (Ref. 15) which satisfies the
following integral equation (Fig. 2):

A, (q+G, z)= f d~ra„(r —k",z —R*)e '~+

Xap (r —Rii —R„z—R~ ) . (2.7)

S„(q „co) N„(=qa) ), , (2.8)

where N~ was already defined in I. The corresponding
diagram is shown in Fig. 3(a). In this approximation the
polarizability X contains only contributions from nonin-
teracting electrons and holes. In the time-dependent

The vector q is a two-dimensional (2D} vector in the ir-
reducible part of the Brillouin zone and G is a 2D
reciprocal-lattice vector. Moreover, r is a 2D vector
parallel to the surface as well as R, which is a translation
vector. R ( and R' are the parallel and perpendicular
components, respectively, of a 3D basis vector corre-
sponding to the mth layer. The index v gives the dif-
ferent orbitals. Finally, s is determined by the set of in-
dices defined before: s—:(v, v', m, m', 8, ). '

The matrix S„ is given in the time-dependent Hartree
approx1IIlatlon by

410100+

M~J~ Screened Coutomb Gttroction
———Coulomb reputsion

FIG. 1. Irreducible electron-hole interaction I: {a) electron-
hole attraction~ (b) unscreened exchange.

(b)
FIG. 3, (a) Hartree polarizability; (b) contribution from the

electron-hole attraction in the time-dependent Hartree-Pock ap-
proximation.
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screened Hartree-Fock approximation (TDSHF) we have

S„(q,co)=[N,, '(q, co)+ —,
'

V,', ] (2.9)

where V' was also given in I. The diagrams correspond-
ing to this approximation are shown in Fig. 3(b), where
the interaction lines inside each bubble should be under-
stood as a statically screened Coulomb attraction. The
separability of the polarizability in Eq. (2.6) allows us to
solve the integral equation (2.4), to obtain'

S„(q,co) =[N '(q, co)+ V"'(q)],, '

with V~(q) = —V'(q)+ —, V'(q).

(2.13)

S. Surface dynamical matrix

tion between the generalized charge-density waves 2, and

%e restrict ourselves to the TDSHF approximation,
where S ~ is given by

X(q+ G, q+ G ',z,z';co)

= g A, (q+G,z)S„(q,co)A, (q+G', z'),
$$

where

S„(q,co)=(S ' —V'),, '

(2.10)

(2.11)

Having obtained the density-response function, we can
now present a form of the surface dynamical matrix,
which includes the electronic correlation effects discussed
in I and in Sec. IIA. We consider a thin slab with sur-
faces perpendicular to the z direction. The normal-mode
solutions are of the form

and iq RII
u (1~)=M '

g (a, q)e "e (2.14)

V,', = g f dzdz'A, (q+G, z)v(q+G, ~z —z'
~

)

XA, (q+G', z') . (2.12)

The expression (2.12) corresponds to the Coulomb interac-
I

where u~ is the a component of the displacement of the
ion ~ with mass M from its equilibrium position
R„=(RIIo R'„).

The electronic contribution to the second-order force
constants is

E
P p g, —— d r d r' (r —R~ —R„)g( rr ';co), (r ' —Rl' —R ')

dna dr'p

—5n5«g (r —R~ —R„)g(r, r ';co=0), (r —R&. —R„-)aw
Br'p (2.15)

where

2-0 Z„e
W(r —R, —R„)=-

lr —R
(2.16)

is the ionic potential experienced by an electron at posi-
j 0tion r due to an ion at position R„=RI+R, R~ being a

2D translation vector. In the adiabatic approximation,
the response function X must be calculated in the static
limit. The dynamical matrix is defined as the Fourier
transform of the force constants. The electronic contribu-
tion has the following form:

X f dz W(q+G,
~

z —Z'„'
~

)

for a =x,y and

XA, (q+G, z)

i Cx ~ R ~~0

F,'(~, q)= —g [
q+G[e'

G

ia. R ~IO

F, (lr, q)= —i g(q+G) e'

G

(2.19a)

D~p(~~', q ) =D p(aa', q ) D~p(KK 0), —(2.17) && f dzsgn(z —R'„')W(q+G, ~z —R*„~ )

with Xa, (q+G, z) . (2.19b)

D~p(KK q)=(M„M„) ' QF, (~,q)S„(q)F, (x', q) .
$$

(2.18)

The factors F, (a, q) give the force in direction u on the
ion sc at the site R„due to interaction with a charge-
density wave A, . The form of these force factors is the
following:

Equation (2.18) shows how the phonon properties will
be influenced by the electronic response. In particular, if
an electronic instability appears, as was discussed in I, a
great enhancement of the screening matrix S(q) will re-
sult, which can drive a structural instability. In the next
section we will show for the ideal Si(111) surface that
charge-density fluctuations appear in connection with
structural instabilities at the boundary of the Brillouin
zone.
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C. Effective charge for a metallic surface

As a complement to the microscopic formalism of sur-

face lattice dynamics, we present here the expressions of
surface effective charges. We deal in this section with a
metallic system as in the case for the ideal Si(111)surface,
the insulating case having been presented elsewhere. "

As in the insulating case, we must examine the long-
I

z' G,O;z, z', co =0 O . (2.20)

To proceed further, we define as in the insulating case a
short-range part of the susceptibility,

wavelength behavior of the density-response function

X(q+G, q+G', z,z';co=0). In the metallic case, the ab-
sence of a gap gives the following result:

X(q+G, q+G', z,z')=X(q+G, q+G', z,z')+ g f f dzidzzX(q+G, q+G";z,zi)
6"~0

xv(
I
q+GI' lzi —zz

I
»(q+G" q+G'z»z ) (2.21)

where

—
I q+ 6

I

' l&g-&g l

u(
I
q+G I; lzi —zz

I
)=2me

I
q+G

I

(2.22)

is the 2D Fourier-transformed Coulomb interaction and X(q+G, q+G';z, z') is the polarizability of the system. The
susceptibility can then be obtained through the following integral equation:

X(q+G q+G"zz')=X(q+G q+G'zz')+ f f dzidzzX(q+G q'zzi)v(
I q I lzi —

zz I )X(q q+G"zz z') .

(2.23)

If q =0, due to charge neutrality we can take u (0,
I
z —z'

I
) =0 (at least for a thin slab) and then

X(G,G',z,z')=X(G, G';z, z') .

For q -0 we can do the following expansion for the susceptibility:

f f dzdz'X(q, q;z,z'),
e(q)

1
dz X( q, q+ G ',z,z'),

e(q)
1 dz'X( q+G, q;z, z'),

e(q)

z z' q, q;z, z' =

zX q, q+G';z, z' =

z' q+G, q;z, z' =

where

X(q+G, q+G', zz') X(q+G, q+G', z,z')+ f dziX(q+G, q;z,zi) f dzzX(q, q+G';zz, z'),
e q

(2.24)

(2.25a)

(2.25b)

(2.25c)

(2.25d)

and

e(q):—1 —v(q) f f dzdz'X(q, q;z, z') (2.26)

2%8u(q)= (2.27)

Now we insert the expansions (2.25a)—(2.25d) in the dynainical matrix and separate those terms with short-range contri-
butions from those which could in principle have long-range behavior. Then we obtain the following form for the
dynamical matrix, very similar to the bulk form

D p(«';q)=(~„~„) '
I e "q [Z„Z„v(q)—W(q, a)W(q;~')/v(q)]qIie

+e "Z~( q;~) [v (q)/e(q)]Zp(q;a')e + .
J

(where the ellipsis represents short-range terms), and where again

27M Z~
8'(q, a)

and a,P=x,y. The effective charge Z (q,~) is defined following the result for bulk in Ref. 18:

(2.28)

(2.29)
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Z.(q e)= —i q. N'(qe)r'e(q)+ g (q+G). e
' " f f dede'i(q, q+Gee')R (qq. g;(e' —R. ) ) . (Z3O)

6+0

For a=z we repeat the same procedure as before considering the element D of the dynamical matrix and obtain

Z, (q;e)= iq (

' + g (q+G)e f'f dedef('qq, +G ee)
U(q)

Xsgn(z' —R„)8'(q+G; iz' —R„ i ) . (2.31)

The expressions (2.30) and (2.31) have the limit for q-+0
(Ref. 18):

Z (0, )=eAr' f drr f drr'X(r, r')g

, (r ' —RI„',ir),
P~

which is the change of the electronic charge density per
unit displacement of the sublattice x.. We must point out
here that a difficulty appears when dealing with D~ or
D~~ wlmre cL=x or p'. IQ these cases we were Got ab1c to
reduce the dynamical matrix to an expression such as
(2.28). Further work is needed on this point.

III. RESUI.TS

In this section we study the lattice dynamics of the
ideal Si(111) surface. The results were obtained by cou-
pling the charge-density fluctuations, which were deter-
mined by the susceptibilities calculated in I, to the ionic
system using the formation described in Sec. II.

We first study a 2D array of DB orbitals with the same
configuration as in the topmost layer of the ideal Si(111)
slab presented in I. There we showed that such a 2D sys-
tem presents no electronic instabilities. The spectrum of
the phonons corresponding to ionic motions parallel to the
plane of the 2D system are shown in Fig. 4. The solid
lines correspond to the bare-ion phonons, where the longi-
tudinal branch presents a dispersion curve typical for a
2D plasmon (aP ~ q), and the dashed line to the renormal-

L [0,& ) t [t,o) 3'

FIG. 4. Phonons of a 20 monolayer. The solid lines corre-
spond to the longitudinal (I ) and transverse ( T) phonon
branches for the systexn with "bare" ions. The dashed line re-

sults from the renormalization of the longitudinal branches by
electronic screening.

ized phonons. We observe that at the I- point no renor-
malization of the phonon occurs, that is, the charge densi-
ty wave (CDW) cannot couple to the lattice for q =G/2.
By examining the force-form factor E ( q ) we can see that
the symmetry of the DB orbitals on the (111)surface does
not allow a coupling of the CDW to displacements paral-
lel to the surface on a 2D model. To illustrate this
behavior let us write E (q ) in the following way:

rq —R E(z (3.1)

I „r „r 8' r —Rz
PG

(3.2)

is the force experienced by an ion at lattice site R due to
interaction with a charge density at site R=O. If we take
into account that the projection on the surface of the
charge distribution of a DB orbital has a monopolar char-
acter, we obtain the following result, for a =x,y:

Foo ——0,
+os= —~o z

(3.3)

Owing to this symmetry property of the DB orbitals on
the (111)surface we obtain

E (q=G/2)= ge 'q' Eoa ——0.
R

(3.4)

ez8'( r) =— (1—Pe ')
r

(3.5)

In Fig. 5(a) we show the coupling factor EXEt for dis-
placements parallel to the surface in the direction I I. -
where we can observe that E(q)=0 for q =6/2. Dis-
placements parallel to the surface can couple through the
interaction between DB and "backbond" orbitals [Fig.
5(b)], but with much smaller amplitude.

The situation described above changes for a slab, where
the 3D character allows for coupling of the DB orbitals
with backbond orbitals and where restrictions imposed by
symmetry properties of the 2D model are no longer
present. The geometry and electronic properties of such a
slab were already described in I and we will not repeat
them here. In the following we briefly discuss details con-
cerning the force-form factors E, and then we present the
results for the 3D case.

For the force-form factors E a pseudopotential of the
form
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was chosen. This pseudopotential corresponds to a
frozen-core approximation where the only contributions
to the polarizability come from the valence electrons. The
constants a and P were adjusted in order to obtain the
correct phonon bandwidth and their values (a=0.573,
P=1.49 in a.u. ) are in the order of magnitude of the ones
which can be obtained by fitting the ionic pseudopotential
of Si given by Cohen and Heine. ' The orthogonalization
of the orbitals in the force-form factors was seen to be im-

portant for the stability of the phonons for long wave-

lengths. The antibonding orbitals were orthogonalized to
the bonding orbitals using Lowdin's method,

Q'(r)=f;(r) g(P„(r—R—)
~

P',(r))P„(r—R) . (3.6)

We neglect the contributions coming from orbitals sitting
in different places and consider only terms first order
in t =—(P&(r )

~

P„'(r ) ). Owing to the fact that
(p&(r) I y~(r)) —t and (p&(r)

~
p„(r)) =0 we have, final-

ly, the following correction:

y„( )=y'„( ) —(y„'( )
~
g( ))y„'( ), (3.7)

where v and p are determined by the index s in F, ( q, ~).
We present in Fig. 6 the phonon spectrum in the I -L

direction calculated for an ideal Si(111) slab with eight
layers. The dashed lines correspond to surface modes and
the solid lines correspond to modes extended through the
whole slab. In our work we designate as surface modes
those modes which are localized in the first and second
layers with amplitudes decaying approximately exponen-
tially in directions perpendicular to the slab. The identifi-
cation of resonant-mode results is very difficult because

0
r

FIG. 5. Electron-phonon coupling form factor F&(I'~: (a)
for DB-DB interaction; (b) for DB backbond interactions, both
for displacements parallel to the surface.

FIG. 6. Calculated phonon spectrum for an eight-layer slab.
T: transverse optic surface modes. R: Rayleigh modes. The
imaginary frequencies correspond to the unstable phonons.
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FIG. 7. Displacement pattern corresponding to the phonon
instabilities of the I. point. The dashed line shows the new unit
cell for the 2&(1 superstructure.

the slab is too thin. Moreover, the surface modes appear
pairwise due to interactions between both surfaces of the
slab.

Two kinds of surface modes are obtained. The low-

energy modes, characterized with R in Fig. 6, appear
below the bulklike modes and are elliptically polarized in
the sagittal plane (in our ease the y-z plane). Owing to
these characteristics we identify them as Rayleigh
modes. ' The other modes are transverse modes, polar-
ized parallel to the surface. Both modes were also ob-
tained by Zimmermann and Ludwig with a phe-
nomenological model for a semi-infinite Si crystal.

The Rayleigh modes present two different types of in-

stabilities. In the region where q & 1/I, I being the thick-
ness of the slab, we obtain phonon instabilities which are
related to the fact that we are dealing with an unrelaxed
surface (violation of infinitesimal rotational invariance s).
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The Rayleigh-mode instabilities at the I. point are a direct
consequence of enhanced charge-density fluctuations
which show in an incipient form in the susceptibility cal-
culated in I. The soft phonon at the L point corresponds
to a structural instability against a 2X1 superstructure.
A study of the eigenvectors of this inode shows the dis-
placement pattern of the atoms (Fig. 7).

IU. DISCUSSION

Based on a previous formulation of a many-body
theoretical framework for the calculation of surface ele-
mentary excitations and response functions, we obtain ex-
pressions for the surface phonon self-energy and the sur-
face dynamical effective charge. We apply this formalism
to the study of the phonon spectrum of an eight-layer slab
with. ideal Si(111)surfaces. Two types of structural insta-
bilities are found, both related to surface Rayleigh modes.
One type of instability is found for small 2D wave vec-
tors, which is due to the unrelaxed configuration of the
slab. The other type of instability, given by the soft pho-
nons at the zone boundary, is related to enhanced charge-
density fluctuations which manifest in an incipient form
in a previous study (I) we performed on electronic insta-

bilities in the same system. This structural instability cor-
responds to a 2X1 superstructure. The displacement pat-
tern of the atoms is given by the eigenvectors of the soft
mode.

We should remark here that our results partly differ
with total-energy calculations which show that buckling
geometries raise the total energy with respect to the ideal
configurations, while others apparently show a reduc-
tion of energy for some buckling configurations. We be-
lieve that the discrepancy between our results, which show
an instability with a buckling geometry, and the local-
density calculations is related to the difference in treat-
ment of exchange and correlation near the surface, where
nonlocality effects may become more important than in
bulk. A more detailed investigation is needed in this
direction.
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