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A Green’s-function theory of electronic collective modes is presented which leads to a practical
scheme for a microscopic determination of surface elementary excitations in conducting as well as
nonconducting solids. Particular emphasis is placed on semiconductor surfaces where the jellium
approximation is not valid, due to the importance of density fluctuations on a microscopic scale (re-
flected in the local-field effects). Starting from the Bethe-Salpeter equation for the two-particle
Green’s function of the surface system, an equation of motion for the electron-hole pair is obtained.
Its solutions determine the energy spectra, lifetimes, and amplitudes of the surface elementary exci-
tations, i.e., surface plasmons, excitons, polaritons, and magnons. Exchange and correlation effects
are taken into account through the random-phase and time-dependent Hartree-Fock (screened
electron-hole attraction) approximations. The formalism is applied to the study of electronic
(charge- and spin-density) instabilities at covalent semiconductor surfaces. Quantitative calculations
for an eight-layer Si(111) slab display an instability of the ideal paramagnetic surface with respect to
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spin-density waves with wavelength nearly corresponding to (2 X 1) and (73X 7) superstructures.

I. INTRODUCTION

Elementary excitations constitute a fundamental tool to
study the dynamics of interacting many-particle systems.
The description of such excitations in terms of a unifying
physical concept has been provided by the Green’s-
function formalism and especially by the linear-response
theory. These facts were established first by the pioneer-
ing work of Pines and Nozieres""? and many others for the
homogeneous electron gas. This model proved to be suc-
cessful for systems where the valence-electron density is
essentially constant, as in simple metals. However, in the
case of bulk solids, with more or less localized electronic
states, new effects due to the inhomogeneity of the elec-
tronic charge distribution appear. These effects were
shown®~% to be a manifestation of microscopic density
fluctuations induced by the periodicity of the charge dis-
tribution while responding to a macroscopic external field.
An essential point of our theoretical study of these effects
in bulk®~¢ has been to demonstrate the intimate interrela-
tion between the electronic localization or inhomogeneity
of the charge density and the importance of many-body
effects.

In the case of a surface, the charge inhomogeneity is in-
herent in the system and it is then expected that the
many-body effects become even more pronounced than in
bulk. In fact, Jonson and Srinivasan’ found for a
jellium-slab model with infinite barriers that the correla-
tion energy is more dominant in the surface [ ~1/(r,)!/2]
than in the bulk ( ~ lnry) in the high-density limit.

One aim of the present work is to study the many-body
interactions on surfaces, taking into account both the
charge-density fluctuations due to the surface itself and to
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the presence of a lattice. In order to attain this objective
we develop a microscopic description of elementary exci-
tations on surfaces, starting from one-electron energies
and wave functions and incorporating the correlation
terms according to the field-theoretical prescription
(Feynman-Dyson perturbation theory®), as in bulk.>~>
Previous descriptions of surface response functions and
elementary excitations’ have several limitations, due in
part to the imposition of macroscopic boundary condi-
tions or artificial surface profiles. These approximations
can severely affect some physical properties, such as the
dispersion of surface elementary excitations, as Feibel-
man!® has shown in the case of surface plasmons. Anoth-
er restriction in these studies is given by the random-phase
approximation (RPA), which, on grounds of our experi-
ence in bulk,>~® is not expected to be a good approxima-
tion for semiconductor surfaces.

In Sec. II we outline first a local-orbital treatment of
the two-particle Green’s function for the surface, where
the irreducible electron-hole interaction contains the RPA
local-field effects and the screened electron-hole attrac-
tion. Both contributions are of crucial importance in bulk
to explain quantitatively the optical spectrum,* static,®
and dynamical® screening of covalent semiconductors, the
latter being decisive for an accurate evaluation of the
one-particle spectrum of those systems.” With the defini-
tion of an amplitude of collective excitations, in the same
way as done by Sham and Rice!! for bulk Wannier exci-
tons, we obtain a solvable equation of motion for the
electron-hole pair starting from the Bethe-Salpeter equa-
tion. The solutions of this equation of motion determine
the energy spectrum, lifetime, and amplitudes of the col-
lective excitations.
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Armed with the knowledge of the elementary excitation
spectrum, we focus on the problem of electronic instabili-
ties in surface systems using the same formalism. This in-
terest arises from the fact that, in a simplified one-
electron picture (and neglecting electron-phonon interac-
tion), the creation of an ideal surface can lead to a system
with properties at the surface radially different from the
bulk. One example, which will be discussed in detail, is
the surface of covalent semiconductors, specifically the
Si(111) surface. In this system the ideal surface geometry
gives rise to a half-filled metallic band on top of the semi-
conducting substrate if one uses an independent-particle
model. In contrast to this, a reconstructed surface with
nonmetallic properties is observed experimentally.

Our formalism allows for a stringent test of the surface
stability when exchange and correlation are carefully tak-
en into account. The idea is that, if the excitation energy
of a collective mode tends to zero, the ground state itself
has to incorporate this collective state,!? signaling an elec-
tronic instability.

For the application, we choose the Si(111) surface
which has been extensively studied in the past!* and
nevertheless is still a source of continued and partly con-
troversial arguments both experimentally'*!® and theoreti-
cally.!®—18 Recent angle-resolved photoemission experi-
ments for the (2 1) cleaved surface!* proposed the ex-
istence of two nearly dispersionless surface states, and
suggested that correlation effects might be important for
the surface. On the other hand, new data obtained by the
same technique have been assigned to a highly dispersive
dangling-bond (DB) band. On the theoretical side, pseu-
dopotential local-spin-density calculations'® found that a
nonbuckled antiferromagnetic surface is stable against
buckling-type distortions. Two occupied surface states
are obtained when buckling is introduced, which has been
suggested to be stabilized by steps on the freshly cleaved
surface. Independently, a m-bonded—chain model was
proposed by Pandey'” which lowers the energy of the sys-
tem even further.!® Furthermore, a potential barrier
(~0.05 eV per surface atom) has to be crossed in going
from the lowest-state configuration in Ref. 15 to the
equilibrium configuration of the w-bonded—chain
model.!

For this specific system our intention is to study the
mechanism that initially drives the electronic system out
of its ideal configuration. Emphasis is put on a Green’s-
function treatment of the many-body interactions, where
we can consider the nonlocality in exchange and correla-
tion in the presence of the surface, as opposed to the
local-density-type studies described before. Confirming
our above expectations, we find the many-particle interac-
tions to become more pronounced at the Si(111) surface
than in the bulk. Our numerical results demonstrate, for
the ideal surface, that these interactions drive the system
into a spin-density-wave (SDW) instability, which cannot
be obtained only on the basis of the band-structure
{Fermi-surface—nesting) effect. This instability develops
at wavelengths corresponding to (2 1) and (7 X 7) super-
structures, where the (2 X 1) antiferromagnetic SDW is in
accordance with the findings of Ref. 16. Since we can
deal only with small distortions of the ideal configuration

and not appreciable changes as proposed in Ref. 17, we
are not able to obtain the new ground-state configuration.
However, starting, for example, from the proposed equili-
brium configuration of the 7-bonded—chain model, our
formalism can be used to obtain its elementary excitation
spectrum and check it against experiment.

In Sec. III we give the details of the calculation. The
numerical results are discussed in Sec. IV, and summary
and conclusions are finally given in Sec. V.

II. EQUATION OF MOTION AND INSTABILITIES

In this section we obtain (a) a practical solution of the
equation of motion (EOM) for the collective excitations of
a surface system, and (b) the conditions under which the
surface electronic system becomes unstable with respect to
a metal-insulator transition. The first result is achieved
by first defining an amplitude of the collective excita-
tions? 112 which fulfills an integral equation derived from
the homogeneous Bethe-Salpeter equation for the two-
particle Green’s function. The second step consists of in-
troducing an expansion of the surface Block states in lo-
calized orbitals. The condition for an electronic instabili-
ty is attained whenever a collective excitation can arise
without having delivered any energy to the system. That
is, we have to look for elementary excitations with excita-
tion energy o =0. 12

A. Equation of motion of surface elementary excitations

The microscopic description of elementary excitations
in many-particle systems is given by the two-particle
Green’s function for the electron-hole pair,> which for fin-
ite temperatures is defined as®2°

G (1,2;3,4)=(T, 4123 33 4)) , (1)
where 1=(T,7)
P ="y e @)

N is the particle number operator and T, is the time-
ordering operator. H is the many-body Hamiltonian and
we consider the limit 7—0. This limiting procedure al-
lows us to define the chemical potential p unambiguously
for T=0.%1!

The system is taken as periodic in directions parallel to
the surface. This fact allows us to characterize the eigen-
states of the many-body Hamiltonian in the following
way:

H|N’n,k>=EN’n’¥|N’n,k> ’ (3)

—(H —pN)7,

where K is a two-dimensional (2D) wave vector parallel to
the surface and belongs to the first 2D Brillouin zone. n
stands for all other quantum numbers which specify the
corresponding state. | N,0) is the exact ground state of
the N-particle system. G(1,2;3,4) can be divided into a
free and a bound part,2

G(1,2;3,4)=G(1,3)G(2,4)—G(1,4)G (2,3)
+8G(1,2;3,4) . (4)
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The free part, which is given by the first two terms, corre-
sponds to the propagation of two excitations totally in-
dependent of one another, resulting in a product of two
one-particle Green’s functions, where the indistinguisha-
bility of the particles should be taken into account. On
the other hand, the bound part §G(1,2;3,4) describes the
interaction of these two excitations and contains new in-
formation that is not explicitly given in the one-particle
Green’s function G(1,2).

In order to formulate an equation of motion for surface
elementary excitations and to introduce notations needed
in the following discourse, we shall first follow the work
by Sham and Rice closely.!! We start with the Bethe-
Salpeter equation (Fig. 1) satisfied by the bound part
8G(1,2;3,4), %11

8G(1,2;3,4)=G(2,2')G(3',3)I(1',2";3',4)G (1,1')G (4',4)
+G(2,2')G(3,3)I(1',2";3,4')8G(1,4';1',4),

(5

where I(1,2,3',4’) is the irreducible electron-hole in-
teraction and integrations over repeated arguments are un-

derstood. The solutions of this integral equation* deter-
mine, in principle, the dynamics of the electron-hole pair
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FIG. 1. Bethe-Salpeter integral equation for the bound part
8G of the two-particle Green’s function.

completely. However, being primarily interested in the
collective modes of the system, we will concentrate on the
poles of 8G(1,2;3,4). We assume that there exists a collec-
tive excitation described by the state | N,A,q ), with exci-

tation energy w, h*:E N -q""‘ENO- This is an eigenstate

of the system, implying that | N,A,q) has no damping
and o is real. In the case of an unstable bound state, the
pole at 03 will be complex, its imaginary part charac-
terizing the damping produced by the decay of such a
state into the continuum of other excitations

The § component of the bound part 8G is given by!!

20023 Gug (231G, ¢ (41

8G;(1,2;3,4)=2mi8(01 + 0y — 03— 0y) a)z—w3+E

with

NA-T

, (6)

ENO Wy — 3 +EN0_EN’;\, 3

(N,0| (Ty) | N +1,@){N + L |¢|(F3) | N,A,§)

G, »(2,3)=
044 § oy+Eno—Enp,q

(N,0| 41 (F) | N —1,a){N —La | ¥ | N,A,q)

—w3+Eno—EN_1,4

(7

The terms in large parentheses in Eq (6) are obtained using the spectral representation of the 24 terms that are obtained
through all possible permutations in (1).!! Explicitly written are those terms that will contribute to the singular terms in
8G?{ for @ 3 +=E, _q.——E '~o- Only these contributions need to be considered in the integral Eq. (5). The first term on

the nght-hand sxde of Eq. (5) is regular and can be neglected. Inserting expression (6) in Eq. (5), the homogeneous
Bethe-Salpeter equations are obtained,'!

Go,x,a'(z’g’):G(Z’ZI)G(3”3)I(l"z';3"4’)Go,A,a’(4”ll) , (8a)

with Ct)2—Ct)3=E‘NA —’_EN07 and

(4,1)=G (3,2"1(1,2;3',4")G(1,1')G (4',4) , (8b)

AqO A,9q,0

with w4—w,=E, , —E ~vo- These equations determine the excitation energy and amplitude of the elementary excita-
tion. This can be seen from the definition of the amplitude of the collective mode,!!

S Ea T = (N0 $ T | NAT) ®

and the following identity:

<NOI¢T(I'3)¢(I'2) INA. a)—-— lim — f dmzemz GOA —>(r2,w2,r3,a)2 CO) (10)
7,—»0



1914 A. MURAMATSU AND W. HANKE 30

with the contour of integration ¢ given by Ref. 11. The identity (10) can be used to obtain an integral equation for f, _, AT
from Eq. (8a),!!

*

PRRTESE FIRY IS ¥ T aq T 10, T
& o E o—Eyn(K+d)+E,(K)
X LK+ Q)= f (K] [I(FL,T5T5 TS (T, (11)

where we restrict ourselves to a screened Hartree-Fock approximation for the irreducible electron-hole interaction* (Fig.
2),

I(1,2;3",4')=—6(1',3")8(2,4")V%(2',3") + 6(1',4")8(2,3" )V (2',4') . (12)

I(1',2';3',4') is time independent, since only a static screening is taken into account in ¥*.* Thus, we arrived at an equa-
tion of motion for the amplitude (wave function) of the collective excitations. We reproduced the derivation!! of Sham
and Rice for the sake of clarity, Eq. (11) being the starting point to obtain a solvable equation of motion with the help of
a local representation for the surface Block states.

B. Equation of motion in the local-orbital representation

We introduce here a local-orbital representation for the surface Block wave functions. The use of a tight-binding basis
has already proved to be extremely useful for bulk covalent semiconductors,>~¢ where “jellium”-type approximations are
not valid. In tight binding, the Bethe-Salpeter equation is cast in a matrix form which can be solved by inversion. The
form of the expansion in our case is the following-

@, 7= zc,:'uk)ze Ry a™7-R,—R)), (13)

where m denotes the mth layer in a thin slab with M layers, .ﬁ, is a two-dimensional (2D) translation vector, ﬁm isa 3D
basis vector for the 2D unit cell, v is an orbital index, and N is the number of 2D unit cells. Similarly, the wave func-
tions of the collective modes are also expanded in a set of localized orbitals,

frg(TaTa)= NM S a,(F— R —R)ab (F—Rp—Rple' T NIF, (14)
vV

where F; defines the amplitude “per site” of the collective excitation. The index s is short for s E(v,v’,m,m',ﬁl —ﬁp).
Substituting expressions (13) and (14) in the integral equation (11), we obtain a matrix equation,

S TR S o, R, — R, — R (B — Ry — R (Fy + Ny VI Fy) =0 . (15)
r s,8,8"
The matrix N in Eq. (15) is given by

i(k+9q) Ry
o c,ll (k+q)[c, ,(k)]* !

n,n,k

’152( qd,0)= NM

-

Fu(K+8)—Fulk) —i(F+7)E
= = e
E,(k+q)—E,(k)—w—iy

em (K+3)]%e,, ,(k) (16)

This quantity contains the information about the one-particle excitations (band structure) of the system.
The two-particle many-body effects are contained in

Vei=—Va+1Ver (17)
with
C (=Y __ _ia'ip 3 3 %2> B - IV ) - D
Ve(§)= ze [ [ @rd*ralf(7—R,—R,)a(F—R, v (F—T")ay(Fa,(F'—K;) , (18)

where R is a 2D translation vector. V° is the exchange interaction to the electron-hole attraction,’ and is represented in
Fig. 2(b) It gives rise to the local-field effects, a fact that can be seen from Eq (18) where V¢ is expressed as a summa-
tion of the interactions of a “dipole” (electron-hole pair) at the lattice site R=0 with “dipoles” at lattice sites R= R



30 ELECTRONIC COLLECTIVE MODES AND INSTABILITIESON ... . I

1915

which are induced through the motion of a collective excitation along the system. Owing to the long-range nature of this
repulsive interaction, it is convenient to calculate this quantity in 2D reciprocal space. The corresponding form is

Vi=3 [ [ dzdz’4)(G+G,2v(G+G, |z —2'| )44 +G,2") , (19)
3

where 4,(q +G,z) is a generalized charge-density wave,

A,(G+G,2)=

[ drlal(Fz —RE)Fe~ T+ Tal (7—R,,z—RE) (20

G is a 2D reciprocal-lattice vector, and T is a 2D vector parallel to the surface, the coordinates z and z’ being perpendic-
ular to the surface. The interaction potential between the charge-density waves is the 2D Fourier-transformed Coulomb

potential,

v(4G+G, |z —2'| )=2me2&

Finally, the matrix V. is given by

Ve(d)= 3,
P

It corresponds to the statically screened electron-hole at-
traction, represented by Fig. 2(a).

The matrices N, V¢, and V* described above are the 2D
versions of the equivalent quantities obtained by Hanke
and Sham™* in the study of optical properties in the bulk
of covalent semiconductors. The fact that Eq. (15) is
valid for any complete local basis allows a very simple
form of the equation of motion for the collective excita-
tions,

[14+N(§,0)V*(§)]F§)=0, (23)
which is subjected to the condition
det[14+N(4q,0)V*(q)]=0. (24)

These solutions determine in a completely general way the
energy spectrum and amplitude of the eigenmodes of
charge-density fluctuations on the surface, i.e., surface
plasmons as longitudinal elementary excitations, or also
surface excitons with longitudinal as well as transverse
character. The realization of the method presented is lim-
ited in practice by the size of the matrices N and V*°. As
a consequence of this constraint, calculations can be per-
formed only for relatively thin slabs. Moreover, the wave
functions of the system should be sufficiently localized to
allow the use of a few overlaps in the density form factors
(20). Finally, the extension of the electron-hole pairs
entering in the interaction V* of (22) should be limited to
a lattice distance (Frenkel and intermediate-radius exci-
tons). In Secs. III and IV we will discuss these aspects in
connection with numerical studies of an ideal Si(111)
eight-layer slab.

Electronic instabilities

We now consider the conditions under which an insta-
bility of the surface electronic system develops. The situ-
ation arises when the excitation energy of an isolated ele-
mentary excitation (plasmon, exciton, etc.) or of a well-
defined peak inside a continuum decreases drastically for

e TR [ [ [ ardirairalF-R,-F,

(21)

Ja (B —R, o (F—F")e UT", F)a¥ (T e, (F'—Rp) . (22)

a certain wave vector qo, giving as a result increasingly
important charge- (or spin-) density fluctuations with
wavelength 277/g,. When the excitation energy w(dg) be-
comes zero, the system undergoes an electronic instability.
Recalling the condition (24) for © =0, we obtain

det[N 44, 0=0)+¥*(§)]=0 (25)

as the condition corresponding to an instability of the sys-
tem against formation of a charge-density wave (CDW) of
wavelength 27/q. As can be seen in Fig. 2, the term V>
contains the contributions for an electron-hole pair in the
singlet configuration. In the case of a triplet configura-
tion, that is, for a spin-density wave (SDW), we obtain a
similar condition,

det[N ~ 14, 0=0)++¥%(q)]1=0. (26)

The interaction term V¢ [Fig. 2(b)] does not contribute in
the triplet configuration because it requires the conserva-
tion of spin at each vertex.

We see from Egs. (25) and (26) that in the screened
Hartree-Fock approximation for the irreducible electron-
hole pair, the main role for the CDW as well as the SDW
instabilities is played by the screened electron-hole attrac-
tion V¥, which tends to promote the creation of a large
number of excitons in the ground state, leading to the usu-
ally called “excitonic” instability.2!"!2

A point that we have not considered in our formulation
so far is the contribution of the electron-phonon coupling.
This coupling can change the character of the instabilities.
In general, the SDW instability is expected to appear be-
fore the CDW instability develops, when the electron-
phonon coupling is absent, because the singlet configura-
tion contains the repulsive term V°.?? This aspect will be
considered in a planned subsequent publication, where we
first obtain the phonons of the ideal surface system based
on the same microscopic formulation of the response
function.

Conditions similar to (25) and (26) were already ob-
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4 2! 4 2!
|I:E[3l = + 1 )‘ -7 —< 3¢
(a) (b)

UL Screened Coulomb attraction
————— -~ Coulomb repulsion

FIG. 2. Irreducible electron-hole interaction. (a) Electron-
hole screened attraction, and (b) bare Coulomb repulsion.
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FIG. 3. Si(111) ideal slab. (a) Horizontal projection: O
denotes atoms in the first, sixth, and seventh layers, X denotes
atoms in the second, third, and eight layers, and @ denotes
atoms in the fourth and fifth layers. a; and a, are primitive
translation vectors. (b) Side view of the basis for eight layers.
ro is the next-nearest-neighbor distance in Si.

FIG. 4. Hexagonal Brillouin zone. The irreducible part is
delimited by the line '—L—J—T.

tained by a number of authors?>~?* in the case of bulk

solids. However, here we would like to emphasize two in-
gredients of our surface formulation. Firstly, by consider-
ing a realistic band structure, we are able to deal with the
actual geometric properties of the Fermi surface. This
point is of particular importance for surface systems,
where the 2D Fermi surface can often present ““nesting”
features, due to lowering of dimensionality. Secondly, our
treatment accounts for the contributions of the direct and
exchange Coulomb interactions self-consistently through
the solution of the Bethe-Salpeter equation. In this way
we can quantitatively follow the modification of these
contributions going from the bulk to the surface.

The application to ideal Si(111), which is discussed in
the next two sections, can be taken as direct evidence for
the importance of these two ingredients.

III. IDEAL Si(111) SLAB: CALCULATION SCHEME

In this section we present details of the numerical study
for an ideal Si(111) slab with eight layers. The unit cell of
the ideal Si(111) slab was chosen as in Ref. 25, where the
symmetry properties of such a system are discussed. A
top view of the unit cell is shown in Fig. 3(a), with the 2D
primitive translation vectors a; and d,. Figure 3(b) is a
side view of the unit cell and the coordinate system which
has the following properties: (i) the origin coincides with
the inversion center of the slab; (ii) the z direction is per-
pendicular to the slab; (iii) all the atoms in the unit cell
are on the y-z plane, which is a reflection plane; and (iv)
the 3D basis vectors can be obtained from Ref. 25. The
Brillouin zone and its irreducible part are shown in Fig. 4.

A. Band structure and wave functions

The surface band structure (Fig. 5) was obtained in a
tight-binding scheme where we considered up to fourth-
nearest neighbors.?® The parameters (Table I) were deter-
mined with a least-squares fit to the self-consistent pseu-
dopotential results of Refs. 27 and 28 and to a self-
consistent band structure for perfect silicon in a superlat-
tice configuration with generalized Wannier functions.?
The dangling-bond band, which appears in the band gap
of Fig. 5, was fitted to the results of Appelbaum and Ha-
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TABLE I. Least-squares-fitted parameters for an eight-layer Si(111) slab. v,7'=1 correspond to a bond pointing in the [111] direc-
tion, and v' =2 to a bond pointing in the [1TT] direction. The vector R is given in units of the bulk lattice constant.

Valence Conduction DB—valence-band DB—conduction-band DB-DB
Parameter v v R band band interactions interactions interactions
€ 1 1 (0,0,0) —5.39 5.43 0.00 0.00 0.4
€ 1 2 (0,0,0) —1.13 —0.62 —1.28 —0.14
€ 1 2 (1,1,0) 0.68 —0.27 0.47 —0.31
€; 1 1 (1,1,0) —0.20 0.16 —0.06 0.27
€ 1 1 (1,1,0) —0.27 0.28 0.00 0.00
€5 1 2 (1,1,0) 0.01 0.25 0.02 —0.02
(3 1 2 (0,1,1) 0.00 —0.04 0.09 0.07
€ 1 2 (0,1, 1) 0.01 —0.11 —0.11 —0.15
€5 1 1 (2,0,0) —0.06 0.13 —0.07 0.08 0.058
€9 1 2 (2,0,0) —0.22 0.15 —0.15 —0.10
man? in order to describe the surface states more precise- ty, relating the self-energy to the irreducible vertex in Eq.

ly. We obtained good overall agreement for the DB
band® and the band complex of the valence bands.?®%
For the conduction bands good agreement is achieved for
the lowest band,?® but unfortunately there is not detailed
calculation available for the higher states. The wave func-
tions are expanded in terms of a dangling bond, four
bonding, and four antibonding orbitals, which are ob-
tained as combinations of sp® hybrids. Such a description
of the wave functions has been shown to be appropriate
for our investigations of the dielectric properties of silicon
bulk taking into account the many-body effects*® and for
studies of the electronic states of the surface.’! Here, we
only roughly outline the orbital determination, details of
which can be found in Ref. 4. Ideally, we should have
determined the single-particle spectrum and therefore or-
bital Gaussian coefficients in accordance with the two-
particle spectrum determined from the Bethe-Salpeter
equation.’ This requires the fulfillment of a Ward identi-
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FIG. 5. Band structure in the tight-binding approximation
for an eight-layer slab. The DB band appears in the gap.

(12). Clearly, this is still an impossible task and we had to
resort to a pragmatic choice of single-particle energies and
wave functions. Initially, the orbitals were chosen, as in
our bulk studies,® by fulfilling the requirement of
current conservation. In order to avoid orthogonality
corrections,” which would render our surface calculation a
formidable, extremely time-consuming task, we further-
more found it necessary to contract the bulk orbitals to
more localized ones. This choice was guided by an empir-
ical adjustment to the valence charge density of various Si
bulk calculations,? with a typical density profile given in
Fig. 6. The value of the coefficients for the Gaussian rep-
resentation are given in Table II.

B. Matrices N, V¢, and V*

The band structure described in Sec. III A is used to
calculate the noninteracting propagator N [Eq. (16)].
We distinguish three different contributions calculated us-
ing different integration techniques in order to obtain a
comparable accuracy for all of them. The most accurate
method, a 2D adapted tetrahedron method,? was used to

0.10

0.05
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FIG. 6. Valence-band charge density along a bond. (a) This
work, (b) “hard-core” pseudopotential, and (c) “soft-core” pseu-
dopotential. (b) and (c) were obtained from Ref. 32.
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TABLE II. Coefficients of Gaussian orbitals.

Wave Exponential
function Amplitude factor
s a;= 1.3406 a;=0.3172
a,=—1.3406 a,=1.3172
)4 b= 0.2471 B1=0.502
b,= 02429 B,=0.155

calculate the intraband contribution from the metallic DB
band, where the denominator in Eq. (16) becomes very
small for transitions in the vicinity of the Fermi surface.
For interband transitions between the DB band and the
valence or conduction bands we used 18 special points in
the irreducible part of the 2D hexagonal Brillouin zone
(BZ).3* The contributions from interband transitions be-
tween valence and conduction bands were obtained by the
“mean-value point” technique for two dimensions.3* The
overall change in the matrix elements for the last type of
transition, going from 1 (mean-value point) to 18 special
points, is around 1%; much more pronounced is the varia-
tion in the matrix elements corresponding to transitions
between the DB band and the valence or conduction
bands, with changes going up to factors of 2.

For the matrices Vg.(q) and V3. (q) only contributions
up to next-nearest neighbors in the index s were con-
sidered, the other contributions being, as in bulk,* at least
1 order of magnitude smaller. With this approximation
the dimension of the matrices N, V*, and V*is 113x113.
Another approximation reducing the computational effort
significantly consisted of retaining only the terms corre-
sponding to p=v=p'=v' or p=p',v=v' (us%v) in the
indices s. With our set of Gaussian orbitals these terms
are a factor of about 10 larger than the others, a result
which is consistent with the bulk studies of Ref. 4.

The matrix V¢ was calculated according to Eq. (19)
which, in combination with the Gaussian basis, ensures a
fast convergence (“Ewald summation”), as opposed to the
form in Eq. (18), where the long-range character of the
Coulomb interaction appears explicitly.

As can be seen from Eq. (22), the screened electron-hole
interaction V* has the same form as in the bulk, the expli-
cit expressions being already presented in Ref. 4. We ap-
proximated the screening function in V%, e(r,r’), by the
bulk spherical dielectric function.*> For the matrix ele-
ments in V* containing contributions from the DB surface
state we have chosen the screening such that in the long-
range limit (| T—T'| >>a) a macroscopic dielectric con-
stant with 5" =¢€5"X/2 results. This choice, which is not
rigorous, was made in order to preserve the short-range
properties of €(r,7’') similar to those in bulk, guided by the
fact that the short-range electronic configuration of the
Si(111) surface remains very similar to that in bulk.2”-33
In principle, we should have used the full dielectric func-
tion also in the electron-hole vertex (Fig. 2)
ew(?]’+a,?:1’ +G';z,z"). The above static and isotropic ap-
proximation proved to be a reasonable one in bulk co-
valent semiconductors.*?
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IV. ELECTRONIC INSTABILITIES
IN AN IDEAL Si(111) SLAB

The formalism discussed in Sec. II is applied in a first
step to a strictly 2D system which consists of a 2D array
of DB orbitals with the same configuration as in the top-
most layer of the ideal Si(111) slab. The aim of this effort
is to isolate the contributions of the metallic surface state
from the substrate and to observe in a simplified model
the competition of band-structure (single-particle) and
many-body (two-particle) effects.

The possibility that 2D Fermi-surface nesting is respon-
sible for a CDW-type instability has been put foward by
Tosatti and Anderson.’®3” The Fermi surface constructed
from the band structure of Sec. III is shown in Fig. 7,
where no appreciably flat segments are observed. More
insight is obtained by calculating the noninteracting sus-
ceptibility N (q, ®=0) [see Eq. (16)].

In this 2D model, with only one orbital, we restrict the
calculation to terms with R;=R, in the index s (defined
in Sec. II) due to the high localization of the DB orbi-
tals.>> Then, N(q) reduces to a scalar quantity. The
band structure of the system is obtained from the more
complicated one of Sec. III (Fig. 5) by isolating the sur-
face state. The integration in the BZ was carried out as
described in Sec. III for wave vectors 4 along the symme-
try directions of the irreducible part of the BZ.

The quantity N ~!(g) is displayed in Fig. 8 (dotted line).
We observe that the uncorrelated electron-hole transitions
give rise to minima near wave vectors corresponding to
the (7X7) reconstruction. However, the effects of nesting
of the Fermi surface®®” are not sufficient to fulfill the
condition for an electronic instability, Eq. (25), without
incorporating the many-particle interaction V,,. Further-
more, no structure corresponding to the (2X 1) reconstruc-
tion is observable.

To study the many-body effects, we consider the func-
tion

FIG. 7. Surfaces of constant energy for the 2D array of dan-
gling bonds. The dashed line is the Fermi surface.
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FIG. 8. Inverse 2D susceptibility. For an explanation, see
Sec. IV.

S(@=N"Yg)+V*(q) . 27

In a first step, we take into account only the local-field ef-
fects in the RPA, i.e., V*°(q)=—V*. A large correction is
obtained in Fig. 8 (dashed line), due to the localized na-
ture of the DB orbitals. Most of the features present be-
fore are eliminated and the system is even further away
from an electronic instability. Beyond the RPA the situa-
tion is not decisively changed. Although the electron-hole
attraction pushes the curve to lower values (dashed-dotted
line in Fig. 8), the system remains far from an instabili-
ty.® Only when we consider the triplet configuration
(solid line) for the electron-hole pair, where the repulsive
part V¢ is absent, does the system show a tendency to-
wards an instability near wave vectors corresponding to
the 7X 7 superstructures. There, we are not able to reach
an electronic instability (CDW or SDW) in a strictly 2D
model, neither from just nesting nor by additionally in-
cluding the two-particle many-body effects.

The situation is completely different in a 3D thin slab.
Now S(gq) is a matrix with dimensions d Xd (d=113 in
our case), as given by Eqgs. (25) and (26). Figure 9 presents
a plot of (detS)!/? for the same approximations as in the
2D case. The power 1/d was adopted in order to facili-
tate plotting of the different many-body approximations,
which result in order-of-magnitude changes in the deter-
minant of S, on one and the same scale. The dotted line
in Fig. 9 corresponds to the Hartree approximation
(V**=0), and thus contains only the effects induced by
the slab band structure in Fig. 5. It can be seen that, al-
though the DB band itself produces some features due to
nesting as before, they are eliminated by the interaction
with the substrate and by the substrate itself. When the
RPA local-field effects (Fig. 9, dashed line) are taken into
account, the (1X 1) paramagnetic structure becomes even
more stable. This is due to the repulsive character of the
interactions. A 1/g divergence is obtained at the I point.
This is a result of the metallic nature of the DB band of
the ideal surface. The dashed-dotted line in Fig. 9 finally
shows the decisive influence of excitonic effects: The
determinant becomes smaller at the zone boundary (J—L
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FIG. 9. SDW instabilities on the ideal Si(111) slab. For an
explanation, see Sec. IV. The inset shows the irreducible part of
the 2D Brillouin zone. The dots on the abscissa correspond to
wave vectors for the possible (7X7) superstructures along the
—J—L-T line.

line), and even smaller than in the Hartree approximation
around the L point.*® This suggests that the system has a
tendency towards a CDW instability in that region. It
should be stressed that our treatment (Sec. II) does not
consider the coupling of the charge-density fluctuations to
the ions. This is required for local charge neutrality and
can trigger the appearance of a CDW instability.?> In
fact, in a previous calculation*® of the phonon spectrum
for the same system, which incorporated the above
many-body effects, an instability around the L point was
obtained. This is connected with a (2 X 1) superstructure.
Next, we consider the spin-density fluctuations (solid
line) in Fig. 9. It is evident that the inclusion of the
electron-hole attraction leads to two types of instabilities.
The determinant goes through zero at wave vectors near
those corresponding to the (2X 1) and (7X7) superstruc-
tures, where the first one agrees with pseudopotential
local-spin-density results.!® To our knowledge, the (7X7)
SDW instability is reported here for the first time. It
would be interesting to independently study such a possi-

Az

X

FIG. 10. Schematic representation of transitions between DB
orbitals and backbond orbitals.
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TABLE III. Amplitude “per site” squared for the magnetic
instability. For an identification of the quantities «, B, and y,
see Fig. 10.

Transition DB bonding DB antibonding
a 1.47x10~* 1.31 x1073
B 7.60x 1072 4.233x 107!
% 7.60x 1072 4.233%x 107!

bility with the local-density ground-state methods used in
Ref. 16. However, again it should be noted that we can
only aim at predicting what drives the instability initially.

As a last point, we discuss the localization of the mag-
netic instability. This we obtain from the amplitude of
elementary excitations as defined in Sec. II. The ampli-
tude becomes especially important for surface systems and
allows us to separate extended bulklike excitations from
those localized at the surface. In order to obtain the am-
plitude “per site,” F,; [Eq. (14)], we first diagonalize the
matrix S(q) for the wave vector where the determinant
goes to zero, and then look for the eigenvector corre-
sponding to the zero eigenvalue. One eigenvalue is ob-
tained around the value ~0.5X10~7, which is well
separated from the total set ranging from ~0.6x10~! to
~6 in absolute values. The corresponding eigenvector
shows components different from zero only for those
transitions between bonding or antibonding states of the
backbond and the DB states on the same site (see Table
III and Fig. 10). A remarkable point is that the amplitude
corresponding to on-site transitions of the DB states is
zero. Furthermore, we can see from Table III that the
sum of the squared amplitudes for transitions between
backbonds and DB states gives 1 (we took orthonormal-
ized vectors). This demonstrates that only those transi-
tions which are localized at the surface contribute to the
instability. This fact, together with our results for the 2D
model, proves that 2D models do not reproduce the physi-
cal mechanisms that trigger the electronic instabilities.

V. SUMMARY

This paper is devoted to a many-body description of
surface elementary excitations. An aim has been to
develop and carefully test a Green’s-function formalism
for surface systems with strongly inhomogeneous charge-
density profiles. This formalism allows for a theoretical
study of various electronically related elementary excita-
tions which arise from a linear-response process. These
excitations include plasmons, excitons, magnons, and,
when complemented by the electron-lattice interaction,
phonons and polarons as well. The latter interaction will
be incorporated in a subsequent publication. Only then
can we conclusively establish the existence or nonexistence
of a CDW instability, which is favored by electron-lattice
coupling.
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We take into account two types of many-particle in-
teractions: Firstly, the RPA local-field effect, which re-
sults from the electronic density fluctuations on a micro-
scopic scale, and secondly, the screened electron-hole at-
traction. From the equation of motion for a surface ele-
mentary excitation its energy spectrum and amplitude are
obtained. This last quantity is of particular relevance for
a surface system. It makes possible the distinction of col-
lective modes localized at the surface from the extended
bulklike ones.

In a first step, we apply this formalism to the study of
electronic instabilities on covalent semiconductor systems,
specifically on the ideal Si(111) surface. For this surface
both local-field and excitonic effects give corrections to
the polarizability determinant which are of comparable
magnitude to the noninteracting electron-hole contribu-
tions and are even more pronounced than in bulk.>~® In
fact, detailed numerical studies demonstrate that they are
the driving force responsible for the electronic instabilities
obtained at the ideal Si(111) surface. Another aspect
which emerges from our study is the importance of the
3D character of the system: The surface instabilities have
their origin in the interactions between the first and the
second layers and they cannot be reproduced in a strictly
2D model. This fact is shown explicitly by the amplitude
“per site” obtained for the collective mode which corre-
sponds to the magnetic instability. This result agrees
qualitatively with Ref. 16, where a nonzero valence spin
density is found up to the third layer. For the CDW-type
excitations, no instability was obtained. However, CDW’s
could be favored if electron-phonon coupling is taken into
account. This point will be taken up in a following paper.

Finally, some comments should be made concerning re-
cent work'®~!® on reconstruction of the Si(111)2X 1 sur-
face. Owing to the fact that our formalism is devised as
linear response, we can only test the stability of a given
(for example, ideal) surface geometry against small distur-
bances against charge or spin reorientation. Nevertheless,
the magnetic instability obtained for the ideal Si(111) sur-
face is in accordance with local-spin-density calculations'®
which seem to show that a magnetic (2 X 1) superstructure
gives a local minimum in the total energy with respect to
small distortions around the ideal configuration. Future
work will be directed to calculating the spectrum of ele-
mentary excitations starting from one of the different pro-
posed models and then testing the proposal against opti-
cal*' and photoemission experiments,'*!®> as was already
successfully done in bulk.>—*
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