PHYSICAL REVIEW B

VOLUME 30, NUMBER 4

15 AUGUST 1984

Dynamics of polyacetylene chains

Francisco Guinea*
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 13 February 1984)

The dynamics of polyacetylene chains have been studied using the Su-Schrieffer-Heeger Hamil-
tonian and within the adiabatic approximation. We investigate the nature of the various nonlinear
excitations of the system, as well as their interactions. It is shown that both solitons and breathers
are highly stable and regain their shape after undergoing collisions with remarkable accuracy. A de-
tailed analysis of soliton-antisoliton scattering is given, as well as its effect on the electronic proper-

ties of the system.

I. INTRODUCTION

The standard theoretical model for the understanding
of polyacetylene is the Su-Schrieffer-Heeger (SSH) Hamil-
tonian? which focuses on the coupling between the 7
electrons and the ionic motions along the one-dimensional
polymer chain. It is well known that this model exhibits a
rich variety of nonlinear phenomena and topological exci-
tations. In particular, molecular-dynamics studies of opti-
cal absorption>* provide a simple interpretation of experi-
mental data in terms of soliton-antisoliton production.’

The purpose of this paper is to carry these studies fur-
ther and analyze systematically the properties of the non-
linear excitations of (CH), within the adiabatic approxi-
mation. In Sec. II I present the method of calculation and
discuss its limitations and advantages. Then, the method
is applied to analyze the detailed structure of static and
moving solitons.

In the following sections the main results of this paper,
the dynamics of solitons and soliton-antisoliton and
soliton-breather collisions, will be presented, as well as
their effects on the electronic properties of the system.
Finally, a discussion of the most relevant features of this
analysis will conclude the paper.

II. METHOD OF CALCULATION

As mentioned above, we will use the SSH Hamiltonian
to describe polyacetylene,
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with parameters? ¢ =2.5 eV, K =21 eV A‘Z, and a=4.1
eVA~!, which give a dimerization parameter of 0.04 A
and a soliton width of about 14a, where a is the lattice
constant of the undimerized chain.

In order to follow the time evolution of the system, we
will make use of the adiabatic approximation, and assume
that the ions obey Newton’s equations of motion, with
well-defined classical trajectories. For each set of atomic
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coordinates, the electrons rearrange themselves to mini-
mize their energy. Owing to the large difference between
the ionic and the electronic mass, M; =24 000m,, this is a
very reasonable approximation, as further supported by
Monte Carlo simulations and renormalization studies of
the full quantum Hamiltonian.® It is to be noted that
quantum effects associated with the small soliton mass
cannot be ruled out, although quantum corrections to its
value seem to be small.’

For each set of ionic coordinates {x ] }, we have to solve
the following equations:
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where 1, is the wave function of the ground state of
H({x;}) with the required number of electrons. As it is
an eigenstate of H, we can use the Feynman-Hellmann
theorem to calculate F,:
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and the quantity on the right-hand side of (3) can be ex-
pressed in terms of Green’s functions,
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where €f is the energy of the uppermost occupied elec-
tronic level in the system. A variety of methods exist to
calculate Green’s functions in one-dimensional systems,”’9
which avoid the need to diagonalize large matrices; the
ones used here are described in detail in the Appendix. It
should be noted that in order to perform the integral in
(4), a small imaginary part, ~0.01 eV, has been included
in the energies, in order to round off the peaks in the
Green’s functions. Note that this procedure is different
from the one followed in Refs. 3 and 4. The main differ-
ences are the direct calculation of the forces and the
avoidance of manipulations of large matrices. This allows
us to study larger chains as considered previously.

To minimize end effects, the calculations have been
performed for chains whose ends are attached to an infin-
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ite number of atoms clamped in rigid positions, or for
closed rings of atoms. Both geometries have the extra ad-
vantage of preventing a global shrinking of the polymer
backbone which leads to a renormalization of the parame-
ters to be used in the Hamiltonian, but with no physical
consequences. The equations of motion (2) are integrated
using standard numerical procedures. In cases where in-
version symmetry is preserved, only half of the equations
are actually solved.

III. PROPERIES OF STATIC
AND MOVING SOLUTIONS

Once the forces on the atoms are calculated, it is simple
to analyze equilibrium properties of the polymer chains by
setting all forces [Eq. (2)] equal to zero and solving the re-
sulting set of nonlinear equations for the atomic displace-
ments. We have applied this method to study solitons at
rest, obtained by matching a linear chain of atoms to in-
finite chains dimerized in opposite phases at both ends.
We let an odd number of atoms readjust freely so that the
system is symmetric around the central atom, and there is
only a need to solve for half of the equations.

The results for the order parameter, u; =(— 1)x;, where
x; is the displacement from the equilibrium nondimerized
position of atom i, and the change in bond length,
yi=u;+u; ., are depicted in Fig. 1. The chain shrinks
near the soliton, inducing a linear shift in the atoms far
away from it, which is shown in the large oscillations in
the order parameter u;, although the total shrinking is
about 0.1 A for the entire soliton. The bond lengths,
which are the coordinates with real physical significance,
are perfectly dimerized over most of the length of the
chain. The details of this spontaneously induced dimeri-
zation can be used as a check on the accuracy of the nu-
merical calculations; we estimate that the errors in the
coordinates of the atoms are less than 0.002 A. Near the
center of the soliton, the bond lengths follow the hyper-
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FIG. 1. Equilibrium shape of the soliton. The positions of
139 atoms held between two perfectly dimerized chains have
been calculated so the net force acting on each of them is zero.
Only half of the chain is shown. (a) Order parameter u;
=(—1)x; (x;, position of atom i); (b) bond lengths y;
=ujp1+u;.

bolic tangent shape predicted by the continuum approxi-
mation very closely.!®!! It should be noted that this glo-
bal shrinking of the chain near a soliton has been found in
independent studies,* and can have some relevance as
it influences the interactions between neighboring
chains.'>'® A simple explanation can be found within the
continuum approximation, as periodic metallic chains
tend to be slightly shorter than dimerized chains with the
same number of atoms; the soliton can be looked upon as
a small portion of “metallic” polyacetylene, embedded in
a semiconducting background.

It is interesting also to note that there are two slightly
different sets of equilibrium coordinates for the soliton,
depending on whether 4n +1 or 4n + 3 atoms are allowed
to relax, but otherwise independent of n. We think this is
a feature associated with end effects which should persist
in very long chains; details are shown in Fig. 2.

Solitons in motion have been studied by integrating Eq.
(2) for a ring with an odd number of atoms. The dimeri-
zation cannot be perfect, and one soliton is generated
spontaneously; in this way, the need to deal with a soliton

and an antisoliton at the same time is avoided. On the
other hand, charge-conjugation symmetry is broken, and

the valence and conduction bands are not equivalent. To
minimize this effect, very large rings have been con-
sidered. Finally, since a constant displacement for the
atoms in the ring has no physical significance, only the
bond lengths will be studied.

Because of the odd number of atoms, the order parame-
ter defined as y;=u;+u; ., seems to change sign each
time we go around the ring, as if there was an artificial
discontinuity at some point, which we chose to be the
atom labeled 1. It is easy to see that all physical proper-
ties change smoothly over the ring.

The initial conditions are always of the form
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FIG. 2. Different possible shapes of the soliton. Bond
lengths are shown, as defined in Fig. 1 (see text for details). (a)
139 atoms; (b) 137 atoms.
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where u, is the equilibrium order parameter for very long
chains, and £(v), the length of the soliton, is allowed to
vary, to obtain the most stable shape as the soliton evolves
in time. As a check in the calculation, we estimate that
the total energy is conserved within less than 103 eV per
atom of the ring. As in other nonlinear field theories,'*
there is a maximum velocity above which the soliton can-
not propagate,* which, for the choice of parameters used,
is v =4.8X10% cm/s or 2.6v,, where v, is the velocity of
sound of metallic polyacetylene.

Figure 3 shows the motion of solitons for two different
initial velocities and shapes. It can be appreciated that the
propagation is almost uniform, which is consistent with
the fact that discrete lattice effects are very small, in par-
ticular the energy for the soliton to hop from site to site.
There is a small, velocity-dependent shrinking, similar in
some ways to the one found in more conventional non-
linear topological solitons.'* It should be noted, however,
that the solition width does not decrease below 10 A, in
good agreement with simple estimates of this quantity.

In Fig. 4 results obtained by using Eq. (5) as an initial
condition are displayed, but with velocities higher than
the maximum velocity of the soliton reported earlier. It
can be seen that the soliton slows down rapidly, until it
moves at roughly the maximum velocity. In addition, a
new structure develops, which takes most of the extra en-
ergy initially in the soliton; its amplitude grows as the
velocity of the soliton is increased. It is in many ways
similar to the “breather” solutions found in other non-
linear theories,*!* and remains highly stable as the simu-
lation evolves. It is mainly built up of phonons of wave-
length ~ 15a, i.e., very similar to the soliton width, which
are prevented from spreading out by their nonlinear in-
teractions; as will be discussed later, large-amplitude
breathers change smoothly into bound soliton-antisoliton
pairs.

All the results presented here are obtained by keeping
the Fermi energy fixed at the center of the gap, that is, for
neutral chains. Hence, no other nonlinear excitations are
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FIG. 3. Soliton moving around a ring of 95 atoms. Bond
lengths are shown. For each initial condition the positions of
the atoms at ¢ =7.2X 10~'* s are also shown. (a) Initial velocity
V;=1.6X10° cm/s; (b) ¥V;=4X10° cm/s.
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FIG. 4. Asin Fig. 3: (a) ¥;=5.6X10° cm/s; (b) ¥; =8 10°
cm/s.

expected, as polarons!® explicitly require the presence of
extra electrons or holes in the chain. This point will be
discussed further in connection with the nature of
soliton-antisoliton collisions.

IV. SOLITON-BREATHER
AND SOLITON-ANTISOLITON COLLISIONS

We will now further examine the stability of the non-
linear modes described earlier by studying the collisions
between them. While solitons are obviously stable because
of topological reasons, nothing prevents a breather or a
soliton-antisoliton pair from decaying. In some simple
one-dimensional (1D) systems, such as the classical sine-
Gordon equation,!# extra conservation laws impose their
stability, and in others, such as the ¢* field,!> numerical
simulations show that they are also remarkably stable. It
will be shown that this is the case in polyacetylene.

In order to study soliton-breather collisions we generate
a breather and a soliton in a ring by using the method
described earlier, namely by setting up the initial condi-
tions so that the soliton velocity is higher than its max-
imum allowed velocity. The breather propagates at slower
speed and the soliton moves around the ring and eventual-
ly collides with it. Diagrams of the process at different
times are shown in Fig. 5. It can be seen that the breather
slowly broadens, although most of the energy remains
concentrated in a small region of space. During the col-
lision it is difficult to appreciate the shape of the breather;
shortly afterwards, however, it regains its form and
evolves independently of the soliton.

Soliton-antisoliton collisions will be first studied in the
frame of reference at which the “center of mass” of the
pair is at rest. Furthermore, we will now study neutral
solitons. In this way the ionic motions are symmetric
around that point, and only the movements of half of the
atoms in the ring have to be considered. Figures 6 and 7
show how the collision proceeds for two different initial
velocities of the solitons. In the first case, the pair evolves
into a bound state, in which the solitons never separate
beyond a certain distance. Most of the time, however,
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FIG. 5. Collision between a soliton and a breather on a ring
with 95 atoms: (a) Initial condition (v =5.6X%10% cm/s), (b)
after 9 10~ S s, (c) after 17.2X 10~% s, and (d) after 27 10 %s.

they can be distinguished, and the actual collisions take a
small fraction of the total “period” of the motion. It is
interesting to note that the order parameter behaves in a
way very similar to what has been found in simulations of
the @* classical field."> When the solitons make contact
the order parameter goes to zero and then overshoots, as if
the solitons were going to pass through each other, al-
though it is a higher-energy state. The solitons are then
repelled, move away, stop, and collide again; after two
bounces they regain their shape and separate. This pro-
cess seems to be independent of the initial velocity of the
soliton (also see Fig. 7) and indicates that the kinetic ener-
gy of the solitons is transferred into other kinds of collec-
tive motions, and only the second time the solitons collide
is it again available to let them move away. This behavior
has also been reported in the ¢* field, although then there
is evidence for one, three, etc., bounce collisions, which we
have not found in this case. It should be noted that each
entire collision takes a time of the order of the inverse
optiical-phonon frequency (wq=2VK/M =2.5% 10"
sTO).

Above a certain threshold, the solitons separate to infin-
ity, with velocities significantly lower than the initial
ones. This is the process depicted in Fig. 7. Owing to the
small effective mass of the soliton, any numerical uncer-
tainty in the energy of the system is translated into a sig-
nificant error in the final velocity, so the graph in Fig. 8,
showing the relations between initial and final velocities,
is only indicative. We cannot rule out the possibility of
narrow windows, in which the solitons are trapped in
bound states, as in the ¢* theory. The energy lost during
the collision is left in a breather mode, indistinguishable
from the ones described in the preceding paragraph. It
follows from this discussion that neutral solitons can
bind; this excitation changes smoothly into a breather as
the mean separation between the soliton decreases.

The SSH Hamiltonian has no obvious equivalence prin-
ciple between different frames of reference. In the undi-
merized case, electrons behave like massless relativistic
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FIG. 6. Collision between solitons on a ring of 184 atoms.
The positions of the atoms are symmetrical around the center of
mass of the system, and only the time evolutions of half of them
have to be computed. The figure shows the 40 atoms closest to
the center of mass, the initial velocity of the solitons where
1.6 10% cm/s. Each diagram is separated from the next by an
interval of 7 10" 5. Note that in (f) the solitons come to rest.
Not shown is the next collision, which repeats the previous se-
quence.

particles with velocity equal to the Fermi velocity, and the
corresponding value for the phonons is the sound velocity;
the same discrepancy persists in the broken-symmetry
state. Hence, we have analyzed soliton-antisoliton col-
lisions in other frames of reference to see if the descrip-
tion outlined above also holds. Figure 9 shows the evolu-
tion of a soliton at rest and another hittting it at its max-
imum velocity. It can be seen that most of the kinetic en-
ergy is transferred from one soliton to the other, as if
there were some kind of equivalence principle, and the
momenta of the solitons were conserved.

When the Fermi energy is raised or lowered, to simulate
collisions between charged solitons, the above processes
change, and the solitons no longer pass through each oth-
er, as shown in Fig. 10. We think this effect is related to
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FIG. 7. As in Fig. 6. Initial velocity of the solitons is 4.8
cm/s.
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FIG. 8. Final versus initial velocity of a soliton after under-
going a collision with an antisoliton in the rest frame of refer-
ence of the pair.
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FIG. 9. Collision of a soliton initially moving at 4.7 cm/s
with an antisoliton at rest in a ring of 100 atoms. Time inter-
vals as in Figs. 6 and 7.
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FIG. 10. Collision between charged solitons. Initial condi-
tions as in Fig. 7 but the chemical potential of the chain has
been lowered to —0.3 eV, so the midgap states are empty.
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FIG. 11. Average density of states for the 60 atoms around
the center of mass of a soliton-antisoliton system undergoing a
collision. Only the valence band is shown. A Lorentzian widen-
ing of 0.15 eV has been included. Situations depicted in (a) and
(b) correspond exactly to the ionic positions shown in Figs. 7(b)
and 7(c).

the outward pressure exerted by the extra localized elec-
trons present in the system, in a way closely related to the
effect that allows the formation of polarons.'®

Finally, it is interesting to discuss the effect of col-
lisions on the electronic density of states. Only the region
around the gap is perturbed, and the results are shown in
Fig. 11. The main effect is the splitting of the midgap
state, which moves into the conduction and valence bands,
and is consequently broadened. At the point when the or-
der parameter is above its normal value, the “local gap”
increases slightly, as expected. Electrons or holes which
are initially in the midgap state can be transferred to the
conduction or valence bands of the chain during this pro-
cess, and so we think soliton-antisoliton collisions can be
an effective charge-transfer and neutralization mechanism
for solitons.

V. CONCLUSIONS

We have presented a detailed study of the nonlinear ex-
citations of neutral polyacetylene chains. Solitons are
very close to the predictions of the continuum model, ex-
cept for a small (~0.15 A) shrinking of the chain around
it (it is to be stressed that we are working with the stan-
dard set of interaction parameters,? which predict a fairly
large width, 144, a being the length of the C—C bond, for
the soliton). There is a maximum velocity, 4.8X10°
cm/s, above which the soliton cannot propagate.

Another relevant excitation, the breather, has also been
described. It has been shown to be built up of optical
phonons with wavelength of ~15a, kept in a coherent
state of about (30—40)a by their nonlinear interactions.
The lifetime of this mode is very large compared with
typical phonon periods.

These two modes are highly stable and retain their
shape after undergoing collisions among themselves. The
soliton-antisoliton collision has been studied in great de-

tail. The order parameter behaves in a similar way to
what has been found in numerical analysis of the ¢* clas-
sical field. Solitons start to pass through each other, and
then move away in times comparable to the optical-
phonon frequency. The details of the collision are affect-
ed by the charge state of the solitons.

For velocities below a given threshold (in the center-of-
mass frame of reference) solitons are bound and cannot
separate to infinity. Above it, the final velocity continu-
ously increases as a function of the initial velocity, part of
the energy being transferred to a breather mode left at the
place where the collision took place. Again, the order pa-
rameter varies smoothly over regions large compared with
the lattice constant, so these processes should be well
described by a continuum theory.

The main effect of soliton-antisoliton collisions on the
electronic properties is the splitting of the midgap states,
which can be as large as 4 eV. These states become reso-
nances in the conduction and valence bands. This effect
may provide an efficient charge-transfer mechanism
among solitons.
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APPENDIX

We will examine first the case depicted in Fig. 12, that
is, the calculation of the electronic structure of an infinite
chain of which n central atoms are displaced from their
regular positions. The number of atoms and the phases at
both ends are arbitrary.

It can be shown that for the perfect parts of the right-
hand and to the left-hand sides of the displace portions,
the quantities

Gii1.ilw)
T(w)=—22"2" (for the right-hand side) ,
Gi,j(a’)
G ( (A1)
L H(w)
T (w)= Zi-LjO) (for the left-hand side)
G,‘J(CO)

are functions independent of j, which, for the particular
case of dimerized polyacetylene, can be calculated analyti-
cally.?

Within the central part, we have to solve the following
equation:

wGi,j(w)=tiG;+1j(w)+ti_1G,-_1,j(co)+8.-,j (A2)

—e——— =9 —-- 0~~~ O0~-- 0 -~ - &0

FIG. 12. Sketch of the geometries analyzed in this work.
Solid circles denote clamped atoms. Open circles denote atoms
which are allowed to move. See Appendix for details.
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where ¢; is the hopping element of the Hamiltonian be-
tween orbitals located at atoms i and i +1:

ti=t +a(x,~+1——x,~) . (A3)
We define the following functions:
G,' H(w) G,-_lj(w)
Tiw)=—"" T}(o)=—0l— A4
'(w) Gi~1,,-(a)) g ((U) G,'yj((t)) ( )

which now depend explicitly on the position along the
chain, i, although independent of the second index, j.}
From Eq. (A2) these functions satisfy

(0T[(a))=tiTi(60)Ti+1(w)+t,‘_1 N

(AS)
Cl)T',I ((t))=ti__1+ti_2Til (Q))Ti'_l(a)) 5
so that
li— , li—
Ti(w)= T; ()= . (A6)

C()—tiTi+1(Cl)), CL)“'t,'_zTi,_l(CU)

Since we know the boundary conditions (A1) we can
iterate Egs. (A6) and obtain these functions for the entire
displaced portion of the chain. In terms of these func-
tions we can write

1
w—t,~_17}'(w)—t,~7‘,-+1(a))

G ilw)=

b

(A7)
Gitil@0)=T; (0)G;;(0),

which finishes the calculation. All the information about
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the boundary conditions is included in the initial transfer
functions (A1). In particular, by setting

T(w)=T"(w)=0, (A8)

we can obtain the properties of a finite chain with open
ends.

The case of a ring is slightly more complicated, and this
method cannot be used in a straightforward way. To do
this calculation, we begin by setting an arbitrarily chosen
hopping integral ¢, =0. The Green’s functions for this
case are obtained using the method described above. In
order to estimate the complete Green’s functions we now
have to solve the following Koster-Slater equation:’

G;j(@)=Gi(0)+1,[ Gln(@)G, 41 j(@)

+Gl{)n+l(m)Gn,j(m)] s (A9)

where G?;(w) has been calculated previously.
The particular case of G, ;(w) and G, ;(®) split into
sets of two coupled equations for each j easily solvable:

Gy, j(@)=G j(0)+1,[ Gpp(@)Gy 41 j()

+Gpp 11(@)G, j(0)] ,
(A10)
G 1,)(@)=Gy 11 (@) +1,[ G110 (@)Gy 11 (@)

+Gn+1,n+l(m)Gn,j(w)] ’

which are solved. It is easy to see that, in terms of these
functions, all Green’s functions can be calculated using
Eq. (A9).
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