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Solid-state shifts of core-electron binding energies in tetrahedral semiconductors
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Solid-state shifts of core-electron binding energies are calculated for tetrahedral semiconductors
with the valence-band maximum as reference level. A Born-Haber cycle is used to relate binding-

energy shifts to changes of bond energies due to the excitation of core electrons. These energies are
obtained from tight-binding theory with universal parameters. Metallization was included as a
correction to the bond-orbital approximation. Shifts calculated entirely in terms of tight-binding pa-
rameters are compared with experimental data for the least-bound core electrons. Overall agree-
ment is within 1 to 2 eV in most cases.

I. INTRODUCTION

Binding energies of core electrons are sensitive to the
chemical and structural properties of their solid-state en-
vironment. They have been widely used for experimental
studies of surface chemistry and physics of solids.
Theoretical predictions of core-electron binding energies
were attempted by several authors during the last few
years. ' In the case of metals, a semiempirical approach
using a Born-Haber cycle and empirical cohesive energies
and heats of solution has been proposed by Johansson and
Martensson. (Johansson and Martensson' draw attention
to the incomplete screening of an excited core hole in the
case of semiconductors, and to the difficulties which arise
from this fact for the applicability of their calculation
scheme to such materials. The variability of the Fermi
level of semiconductors mentioned in the text is only
another formulation for the same difficulty. Yin and To-
satti2 implicitly used the assumption of a Fermi energy
just below the core exciton level. ) With a slight modifica-
tion, Yin and Tosatti used this approach to obtain esti-
mates of binding energies of the group-IV semiconduc-
tors Am. ore direct method for calculation of core-
electron binding energies of semiconductors has been
developed by Bechstedt et al. on the basis of earlier work
by other authors. It has been shown that the solid-
state shift of binding energies decomposes into an initial-
state or core-level shift and a final-state or relaxation
shift. The relaxation effect due to the core hole in the fi-
nal state can be calculated with good accuracy for weakly
bound core electrons. ' The determination of the core-
level shift in second-order perturbation theory reduces to
the calculation of the Coulomb potential of the solid-state
valence electrons within the core region. In principle,
such a calculation could be done by using the valence elec-
tronic structure from pseudopotential, linear combination
of atomic orbitals (LCAO), or any other band theory, but
no attempt has been published so far following this line.
There are indeed computational difficulties with such an

approach; e.g., obtaining the self-consistent pseudopoten-
tial in the core region. In Refs. 6, 7, 10, and 3, instead of
a calculated valence-charge distribution the Phillips
bond-charge model" was used which, however, introduces
new parameters which are only poorly known.

Core-level shifts and relaxation energies are simulta-
neously treated if one uses a Born-Haber cycle for the
binding-energy calculation as was done in Refs. 1 and 2.
The disadvantage of this approach is that one needs
empirical values of cohesive energies and heats of solu-
tion. One can try to overcome this problem by calculating
the needed values from tight-binding theory. ' While one
cannot expect to get precise theoretical predictions of
core-electron binding energies in this way, one should be
able to derive reasonable estimates without using adjust-
able parameters and to provide some insight into the im-
portance of solid-state effects. In the present paper this
approach will be developed in detail. We relate the core-
electron binding energies to valence-band maximum ener-
gies and to bond energies, both calculated from tight-
binding theory. Bond energies are treated within the
bond-orbital approximation (Sec. II) and with the in-
clusion of metallization (Sec. III). In Sec. IV we apply the
general results to obtain the binding-energy shifts for a
series of tetrahedral semiconductors and binding energies
for the least-bound core electrons of these materials.

We start with the definition of the binding energy
which is measured by photoemission. In an elementary
photoemission event, a photon of frigo is absorbed and a
photoelectron of kinetic energy Ek;„ is emitted. The solid
changes from its initial state of energy E; „,~ to the final
state of energy Er,„,~. The energy balance of the event
reads

~+Ekin Einitial +Efinal

Usually the initial state can be identified with the ground
state of the solid. To obtain the correct final state one as-
serts that the sample is kept electrically neutral by allow-
ing an electron from the ground to flow into the solid.
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zF z~B Efinal Einitial ~ (2)

Combining relations (1) and (2) one obtains

Es fico ——Eio„—,

which is used to convert photoelectron kinetic energy data
into binding energies of core electrons with respect to the
Fermi level.

In contrast to metals, the Fermi energy of a semicon-
ducting material can be changed, by varying preparation
conditions, within a certain energy interval ranging from
the upper part of the valence band to the lower part of the
conduction band. To eliminate the related change of
core-electron binding energies EB with sample preparation
it is most convenient to refer to a p-type sample with the
Fermi level at the valence-band maximum Ev&M ..

+F EvBM (4)

The principal reason for this choice is the identical sym-
metry and location of the valence-band maximum for all
zinc-blende semiconductors.

The calibration, Eq. (4), of the Fermi level will be used
throughout the paper, and the corresponding core-electron
binding energy will be denoted by IBM. Any experimen-
tal measurement can be immediately shifted to this scale,
assuming the doping of the specimen is known.

The energy of the compensating electron within the solid,
after thermodynamic equilibrium has been established, is
equal to the solid-state Fermi energy Ez. The effect on
the solid of a photoemission experiment, therefore, is the
creation of an electron-hole pair with the hole at the core
level and the electron at the Fermi level. The excitation
energy, Er,„,i E;—„,i, equals the binding energy Ez of
the core el':ctron with respect to the Fermi level,

II. CALCULATION SCHEME, BOND-ORBITAL
APPROXIMATION

A convenient way of obtaining Ez from Eq. (2) is to
use an indirect path between the initial and final states in-
stead of the direct one described in Sec. I. The indirect
path and the direct path combine to make the Born-Haber
cycle shown in Fig. 1. We use this cycle to obtain the
shifts of core-electron binding energies theoretically in
terms of the tight-binding parameters describing the elec-
tronic structure of the solid.

Crystalline semiconductors of diamond or zinc-blende
type are considered. The two atoms of the primitive cell
are denoted by A and 8, where A denotes the cation and
B the anion in the case of III-V or II-VI compounds. We
start with the AB solid in its ground state. In a first step
we remove the atom (the core electron of which will later
be excited) from the solid to infinity where it is a free
atom. This atom may be either 3 or 8 and will be denot-
ed by zX which stands for A or B with atomic number Z.
The work which must be done in this step is the energy of
atomization 8'(zX). In a second step we ionize the core
level; i.e., we remove one core electron from the zX atom
and put it at the vacuum level. This takes the ionization
(or binding) energy of the core electron of the free atom,
I„„(zX). The zX atom with one hole in the core, to a
good approximation, can be treated as an atom z+~X+
with atomic number Z+ 1 (referred to as a "Z+ 1 one
atom" in the following) and with one electron missing in
the outermost valence shell. In the third step we take the
electron at the vacuum level and put it in this shell of the
Z+1 atom, forming in this way a neutral Z+1 atom
(z+iX ) in its ground state. The work to be done in this
step is —I„,i(z+iX), the negative of the ionization energy
of the outermost valence shell of the Z+1 atom. As the
fourth step we bring the Z+1 atom to the solid and put
it into the vacancy left behind by the removed zX atom.
One of the valence electrons of the Z+ 1 atom is put at
the valence-band maximum of the solid. The total work
for the fourth step is denoted by —W'(z+iX), the nega-
tive of the work for the removal of the Z+1 atom with
one of the electrons at the valence-band maximum. The
state we have reached after the last step is exactly the fi-
nal state of the photoemission experiment, the difference
between the Z+ 1 atom and the zX atom with a core hole
being neglected.

Now the cycle can be closed by taking the direct path
from the initial to the final state, requiring the energy
—EIi (zX). The energy balance for the cycle yields the
following expression for Eii (zX):

Eg (zX)= W(zX) —$V (z+ ix)

+I„„(zX) I,,i(z+iX) . —
I

I

l

FIG. 1. Born-Haber cycle for the calculation of E&

YBM t

I

I

The atomic ionization energies on the right-hand side
of Eq. (5) are known from atomic calculations, ' and, in
some cases, from experiment. ' The removal energies
~(zX) and ~*(z+iX) are related to cohesive energies
and heats of solution, and, in principle, could be derived
from experimental data. Such a procedure is not useful
for semiconductors where the heats of solution are un-
known or poorly known. The idea underlying the present
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paper is to use tight-binding theory with universal param-
eters" developed by one of us, for the calculation of
W(zX) and W (z+iX).

In forming the AB solid in the bond-orbital approxima-
tion' (BOA) all valence electrons of the A and 8 atoms
are put in sp -hybrid states of average hybrid energy
e'i, ——2 (ei", +e&) with ei", ' ——4 (e,"' +3e~' ), the hybrid

energies of atom A and 8, respectively. The energy per
electron necessary for the promotion from the atomic to
the hybrid configuration is denoted by Ep, (AB). It
amounts to

—,
'

(ep" —e,"+e,'—e,') for Z„=ZB

Ep„(AB)= ~ —,(2' —e, —e, ) for Z„=ZB—2

—,
' (3e"—e,"—e —e, ) for Zz ——Z~ —4 .

Forming g bonds between hybrids lowers the energy of
each electron by [ V2(AB)+ Vi(AB)]' . Here V2 is the
covalent energy"

$2
V2 ———,

'
( V„~—2v 3 V, ~ —3 V ~)= —3.22

md

with I the free-electron mass and d the nearest-neighbor
distance. V3 is the polar energy,

V3= 2(&a —~i)

There is also a shift in all of the levels due to nonor-

thogonality of orbitals on adjacent atoms. The change in

energy per electron pair is seen in Ref. 12 to be given ap-

proximately by Vo ——2)OV /
~

Zi,
~

(rio being a dimension-

less constant). This is an important contribution to the re-

moval energy of an atom, but since we will replace the re-
moved atom by a second atom (the z+iX atom), the two
shifts very nearly cancel and we ignore them. Note there
is a shift which is generally less than a volt due to dif-
ferent Fi, . If we were going to include this we should also
allow the neighboring atoms to relax, which would reduce
the effect by a factor of order 2. We proceed without lat-
tice relaxation and without this term. There is, however,
a change of the valence-band maximum due to the
nonorthogonality which is not cancelled and which will
need to be included.

%'ith the neglect of the nonorthogonality contribution
the bopd energy within the BOA becomes

Eb, d (AB)=2Ep„(AB)—2[V2(AB)+ Vi(AB)]'~ . (9)

If an atom A is removed, four bonds with eight electrons
are broken. Zq of these eight electrons are taken out
from the solid; Zz ——8 —Zz remain. The state of the Zz
outside electrons is given by the atomic configuration of
the free Zz atom. The Z~ electrons within the solid will
be distributed among the four states which are formed
from the four dangling hybrids of an 2 vacancy. Let
E,(ZB) be the total energy of the Zii electrons within the
solid and E,(ZB) their energy within a free 8 atom. If
the energy of the Z~ electrons within the solid would be
E,(ZB) and not E,(ZB), the removal work W(A) would

be equal to —4Eb,„d(A,B). But it is E,(ZB), and we ob-
tain

W(A) = —4E~„~(AB)+E,(Z, ) E.(Z, ) .

The removal work for an atom 8 is accordingly

W(8) = 4E—b,„d (AB)+E,(z~ ) E—,(zq ) .

(10a)

(lob)

Accordingly we have

z~+1
W*(z, +i»=W(z, +i» —[EvBM(A» —&-'i ] .

Here W(z +iA) and W(z +iB) are given by Eqs. (10a)
and (10b) with the replacement of A by z +iA and 8 by

z +~8, respectively, and with Zz by Zz+1 and Z~ by

Zz+1, respectively. To avoid ambiguities we assume the
Z~+ 1 atom always to be a cation. For A =8, therefore,
the combination for the Zz+1 atom is forbidden; the
promotion energies necessary for the calculation
W*(z +iA), W*(z +i8) from Eqs. (11), (10), and (9)

must be taken from Eq. (6) with the replacement of e,"p
~+' ZB+]

by e, p for Ep„(z +,AB) and e, p by e, p for
Epram(A z&+ 28)'

The valence-band maximum Ev&M is given by the ex-
pression'

EVBM 2 (~p +~p)+ 2 VO(AB)

Ep —Ep +

1/2

1.28
md

(12)

Here —,
'

Vc(AB) is the shift in each hybrid energy due to
nonorthogonality. It may be evaluated by adding Vo(AB)
to Eq. (9) and requiring the result to be a minimum with
respect to variation of d. It is

V2(AB)
Vo(AB) =

[ V', (AB)+ V', (AB)]'" (13)

Now using expressions (10) and (11) the binding energy
EB (X) from Eq. (5) may be decomposed into the atom-
ic ionization energy I,o„and a solid-state contribution,
AEg, according to

EVBM(X) gEVBM(X) +I (X) (14)

with

If a Zz+1 atom is taken from the solid, we have the
following changes. Zz of the eight electrons from the
four z +~A 8 bonds are removed and set in the atomicA+
configuration of a Z~+ I atom with one electron of en-

z +i~
ergy e„,"~ missing in the outermost valence shell. The
missing electron is taken from the valence band (VB) of
the solid. The Z~ ——8 —Zz bond electrons which remain
in the solid take the total energy E,(zri). The removal
energy W'(z„+,A ) becomes

z~+'
W (z„+iA)= W(z„+iA) [EvBM—(AB) e„,", —] . (1 la)
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AE (X)=4E „(X)+E (&8), (15)

AEb,„d (3)=—4[Eb,„d (AB)—Eb,„d (z„+iAB)], (16)

~Eb. d{8)= —4[Ei' d(~» —Ei d(~z +i»]
Note that the unknown energies E,(Z~) E,—(Zz) and
E,(Zz ) E,—(Zz ) do not enter these equations. The
reason is that they are related to an intermediate state of
the solid which is irrelevant for the energy balance be-
tween initial and final states. Similarly, surface dipoles
(which contribute to the work function) do not enter.

The energy hE~ from Eqs. (14) and (15) represents
the difference of the binding energy Ez of a semicon-
ductor core electron related to the valence-band maximum
and the binding energy of the corresponding core electron
of a free atom related to the vacuum level. It will be re-
ferred to as the solid-state binding-energy shift. In an in-
tegral way AE~ accounts both for changes of the
initial-state energy, the core-level shift, and of the final-
state energy, the relaxation-energy shift. The two effects,
llowevel, cannot be sepaI'atecl ill Eqs. (14)—{17). In Eq.
(15) the difference between the Hartree-Fock term value,
e„,i, and the ionization energy I„,i of the outermost
valence shell has been neglected since it is sma11 compared
to the other two terms.

As will be shown below, the bond-orbital approxima-
tion considered so far gives the main contribution to the
solid-state binding-energy shift b,EIi . The interaction
between neighboring bonds, and antibonds, i.e., the effect
of metallization (in the terminology of Ref. 11) has a
small, but far from negligible, effect on hE~ . In the
next section it wi11 be calculated.

III. CORRECTIONS TO THE BOND-ORBITAL
APPROXIMATION: METALLIZATION

A bond orbital between two atoIIls X and X Is coupled
to six neighboring bond and six neighboring antibond or-
bitals (see Fig. 2). The bond-bond interaction can be omit-
ted for our purpose since it results only in a symmetric
splitting of the bond energy which does not change the to-
tal energy of bond electrons. The bond-antibond interac-
tion, however, shifts the bond energy by a certain energy
E~ct which must be taken into account. For the calcula-
tion of E «various kinds of bonds must be distinguished
(see Fig. 2). First, bonds between an X =A and X=8
atom in a pure AB solid; their energy change will be

»x&

FIG. 2. Nearest and second-nearest neighbors of an atomic
pair XX'. X=A or z +~A. X'=8 or z +IS.

A B

denoted by E «(AB i
0). Second, bonds between an

X=z +iA and an X'=B or an X=A and an X'=z +IB
atom in a pure AB solid; the bond-energy change is denot-
ed by E „(z„+iAB

~

0) and E „(A z +iB i 0), respec-

tively. Third, bonds between an A and a 8 atom with one
of the six nearest neighbors of the pair being an
X=z +iA or X'=z +iB atom; the notations

E «(»IB
~ z +iA) and E «(AB

~ z +iB) are used for the

bond-energy change.
The calculation of E «(AB

~
0) proceeds as follows.

The interaction-matrix element of the AB bond with the
A8 &, 282, and 383 antibonds in Fig. 2 is
—,(1—uzi)'» Vi{2) and with any AiB, AzB, or 338 an-
tibond is —,

' (1—alii )'» Vi (8), where

V, (X)= ——,
' (e,'—P),

V3(AB)

[V', (WB)+ V,'(~8)]'»2

%ith the energy separation between an AB bond and an
AB antibond equal to —2V2(AB)/(I —alii)'», one ob-
tains in second-order perturbation theory

E „(AB i
0)= (1—alii) [Vi(A)+Vi(8)] .

In the same way one obtains

(I+~, +,~a)(l —~~a)
E «(z„~i~8 10)= 2V, ~B, ~ (I —&', ~,~a)'"Vi(z„+i~)+

(1—awa) ' +(1—az, gg) ' +Pz
Vi (8)

3 s ){&+a )ZB+1
E „(Az,+,8 ~0)=

2V2(AB) (1—aw»a ) +(1—aiba) +46'~ z + is
2 —1/2 —1/2

(21)

Vi(A)+ —,'(1—ag, ii)'» Vi(z ~iB)
B

(22)
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Vl(B)E „(AB
~ z +)A)=E „(AB

~
0)+

2

(1—&~a)'"
2

Ia )( I+o'~a )

+
(1—, ~I~a) +(1—&~a) P—, I~a

—1/2 —1/2 (23)

Vl(A)
Eme«AB

I z +IB)=Emmet(AB I 0)+~+ met
2

(I+&~, +,a)(1—&~a)
+

(1—&~, +,a) +(1—Iz~a) P~—, ~la
—1/2 —j/2

where Pxx is given by the relation

z~+I
z~+ I 2 V2(AB)

za+1
Il & PA z +la 2V (AB)

~h

The change of bond energy by metallization has also an
effect on the nonorthogonality shift of all energy levels
mentioned in Sec. II. For the same arguments as used
there, this effect can be neglected for the removal work
but must be included for the valence-band maximum. In
Eq. (12) for EvBM one has now Vo+5VO instead of Vo
with

5VO(AB)= , E „(AB—i0) .

Equation (26) follows by again minimizing the new bond
energy Eb,„d+E „with respect to the interatomic dis-
'tRIlCC d.

T11C cllaIlgC Of bond CI1ClglCS RIld Of EvRM dllC to
metallization results in shifts bE& of core-electron
binding cncfgics wh1ch Ric to bc included in addition to
b,Eb,„& and EvaM to obtain the total solid-state shift

second largest contribution to bEa is the change of the
bond energy of an zX and Z+1 atom within the BOA.
This shift is positive, i.e., the binding is smaller for the
Z+1 than for the zX atom, in the case of cations. The
opposite trend is observed in the case of anions. The main
reason is that the polarity of an z„+IAB bond is smaller,

and that of A z +IB bond larger, than that of the refer-

ence A8 bond. The smallest contribution to AE3 is the
change bEa of the bond energy due to metallization.
Fof catlons ~+g 1s always ncgat1vc Rnd its absolu'tc
value relatively large For.anions the sign of b,Ea is ei-
ther pos1tivc of ncgatlvc and thc absolute value 1S Iclat1vc-
ly small. This behavior of bEa reflects two different
trends. First, the metallic energy Vl is always larger for
the Z+1 than for the zX atom. Second, the overlap be-
tween neighboring bonds and antibonds decreases with in-
creasing polar1ty.

By using the Born-Haber cycle from Fig. 1 one obtains

bEa (A)= 4[E „(AB—
i 0) E„(z„+IA—B i 0)]

—12[E „(AB
I
0) E„(AB

I z„—+ IA) j

TABLE I. Input parameters for the calculation of solid-state
shifts of core-clcctron binding cncrglcs. 6, & from Ref. 13; V2

calculated from Eq. (7).

+ ,E „(AB j
0)—,

bEMET(B) 4[E (AB
~
0) E (A B

~
0)]

—12[E „(AB
~

0) E„(AB
~ z +IB)j—

+~E „(AB i0). (2&)

In this section we apply the theory to obtain core shifts
for a series of IV-IV, III-V, and II-VI semicon-

dllctols. Tllc I'cqllll'cd tlgll't-blIldlllg parameters Rl'c llstcd
in Table I. In Table II calculated shifts are shovvn both
foI thc catioIls and an1ons together with the various coll-
tributing energies. The largest contribution to aE~v~M

turns out to be EvBM, i.e., the change of the reference lev-
el between the free and the solid-state atom. This means
that the accuracy of E»M is critical to our calculations.
Nevertheless we have used the rough approximation (12)
fol EvRM. BC'ttCI' valllCS Of EvBM Rl C 11CCCSSary lf OIlC

aims to get more precise predictions of b,Ea . The

Al
Si
P
S
Cl

Zn
Ga
Ge
As
Se
Br

10.73 5.71
14.84 7.58
19.31 9.53
24.14 11.57
29.39 13.87

8.12 3.89
11.82 5.56
15,52 7.33
19.40 9.00
23.48 10.65
27.78 12.51

7.66 3.92
10.79 5.34
13.88 6.79
17.07 8.21
20.39 9.66
23.86 11.10

S1S1
GCGC
SnSn

GaP
GaAs
GaSb

InP
InAs
InSb

ZnS
ZnSC
ZQTC

4.40
4.15
3.47

4.40
4.08
3.49

3.80
3.60
3.10

448
4.08
3.52

3.83
3.54
3.11
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TABLE II. Core-electron binding-energy shifts of cations hE~ (A) and anions hE~ (B), related to the valence-band maximum,
and the various contributions. All are in eV.

~End (A ) AEbond (B) EVBM(AB) AEg (A ) AEg (B) DEB (A ) ~EB (B) Ival(ZA + lA ) Ival(ZB+ lB)

Si
Ge
Sn

Si
Ge
Sn

1.09
0.97
0.60

—7.13
—6.92
—6.48

—1.83
—1.99
—1.78

—7.87
—7.94
—7.66

8.70
8.29
7.65

Al
Al
Al

P
As
Sb

4.12
3.97
3.28

—1.59
—1.05
—0.78

—8.30
—7.88
—7.27

—2.82
—3.37
—4.01

—0.16
—0.26
—0.09

—6.93
—7.28
—8.00

—9.98
—9.19
—8.14

6.78
6.78
6.78

10.45
9.76
8.98

Ga
Ga
Ga

P
As
Sb

3.67
3.58
3.15

—1.37
—0.97
—0.57

—8.27
—7.86
—7.23

—2.87
—3.53
—3.90

—0.13
—0.20
—0.07

—7.47
—7.82
—8.28

—9.77
—9.03
—7.89

6.59
6.59
6.59

10.45
9.76
8.98

In
In
In

P
As
Sb

3.84
3.73
3.23

—2.32
—1.64
—2.48

—8.46
—8.01
—7.34

—2.51
—2.98
—3.57

+0.07
+0.08
+0.17

—7, 13
—7.26
—7.68

—10.71
—9.57
—9.66

6.19
6.19
6.19

10.45
9.76
8.98

Zn
Zn
Zn

S
Se
Te

4.77
4.73
4.46

—1.80
—1.55
—1.03

—10.45
—9.64
—8.77

—2.05
—2.15
—2.18

—0.27
—0.06
+0.13

—7.73
—7.06
—6.49

—12.52
—11.26
—9.67

5.39
5.39
5.39

12.57
11.48
10.34

Cd
Cd
Cd

S
Se
Te

4.46
4.46
4.20

—2.41
—1.92
—1.28

—10.69
—9.84
—8.92

—1.30
—1.63
—1.79

+0.14
+0.13
+0.04

—7,53
—7.01
—6.51

—12.97
—11.63
—10.16

5.23
5.23
5.23

12.57
11.48
10.34

The shifts &Ez from Table II do not differentiate
between different core levels and can be used to calculate
binding energies of any of them. In Table III we take the

shallowest core levels to compare our calculated results
with experimental ones. The experimental data depend to
some extent on sample preparation and measuring condi-

TABLE III. Calculated and experimental core-electron binding energies related to the valence-band maximum for the shallowest
core levels of cations E~ (A) and anions E~ (B). Experimental values for Si, Ge, and Sn are from Ref. 14, for AlAs from Ref.
1S, for AlSb from Ref. 16, for the Ga and In compounds from Ref. 5, and for the Zn and Cd compounds from Ref. 15. The gap en-

ergy has been subtracted from the data in Refs. 5 and 16. Theoretical free-atom ionization energies are from Ref. 12. All are in eV.

Si
Ge
Sn

Si
Ge
Sn

I „(A) I,.(B)

108.44
36.10
31.35

EvBM(A ) EVBM,expt(A ) EYBM(B)

100.17
28.16
23.69

EVBM,expt(B )

99.0
28.7
24.1

Al
Al
Al

P
As
Sb

80.60
80.60
80.60

138.53
48.64
39.50

73.67
73.32
72.60

73.2
128.55
39.45
31.36

40.6
30.6

Ga
Ga
Ga

P
As
Sb

24.59
24.59
24.59

138.53
48.64
39.50

17.12
16.77
16.31

16.9
17.9
19.3

128.76
39.61
31.61

127.0
39.4
31.6

In
In
In

p
As
Sb

23.36
23.36
23.36

138.53
48.64
39.50

16.23
16.10
15.68

16.3
16.8
16.6

127.82
39.07
29.84

40.3
30.9

Zn
Zn
Zn

S
Se
Te

14.38
14.38
14.38

172.13
62.10
48.27

6.65
7.31
7.88

9.03
9.20
9.84

159.61
50.84
38.60

53.5
40.9

Cd
Cd
Cd

S
Se
Te

16.19
16.19
16.19

172.13
62.10
48.27

8.67
9.18
9.68

9.64
10.04
10.49

159.16
50.47
38.11 40.2
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tions and differ between different authors. The overall
agreement with our calculated data is within 1 or 2 eV.
For such agreement the inclusion of metallization was
essential as it was for cohesive energy calculations. " The
agreement is better for the IV-IV and III-V than for the
II-VI materials. Whereas for the first two groups of ma-
terials there is no systematic trend in the deviations, the
calculated binding energies are always lower than the ex-
perimental ones in the case of II-VI compounds. This is
true both for cations and anions. The reason might be too
deep a predicted value of EvBM from Eq. (12) for these
materials.

In Table II we show also ionization energies
I„,&(z +tA), I„,(z +,B) of the outermost valence shell of
the Z~+1 and Ztt+1 atoms, respective'.

Note that the
solid-state shifts KEtt (A) and bEjt (B) are close to
—I„,&(z„+&A) and I„,&(z—+,B). This means that the

excitation energy from the core level to the outermost
valence shell in the case of a free atom, which amounts to
I««(zX) I«~(z+—tX), is not too far from b,E~ (X), i.e.,
the corresponding excitation energy from the core level to

the valence-band maximum in the case of a solid-state
atom. The various solid-state effects, i.e., the different
core-level positions, the different core-hole relaxation en-
ergies, the shift and the splitting of the valence-state ener-
gies of an atom embedded in a solid compared to a free
atom, obviously, cancel out each other to a certain extent.
We have demonstrated this partial cancellation, not by
calculating the energy changes directly, but by using a
Born-Haber cycle and tight-binding theory with universal
parameters. In conclusion we state that our approach is
able to provide insight into qualitative features of core-
electron binding energies and to reproduce experimental
values within 1 to 2 eV without using any empirical pa-
rameters. We feel that still better quantitative results can
be obtained with more complete calculations. Surface
shifts of binding energies should be accessible by this ap-
proach.
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