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We present a method for calculating the energy of an isolated, charged, deep-level point defect in
an otherwise-perfect infinite crystal. To simplify the evaluation, one can make the usual replace-
ment of one-particle energy terms by a sum over occupied eigenvalues plus corrections for over-
counting. However, this simplification leads to conceptual difficulties when the defect is charged.
These are overcome by truncating the long-range tail of the defect potential. The correct screening
charge does not appear automatically when a truncated potential is used, and so a constant potential
shift is added to guarantee proper screening. Alternatively, one can evaluate the original kinetic-
energy form of the functional. We do so and compare it with the eigenvalue formulation. A careful
study of the effects of truncation indicates that, although the two formulations are equivalent for
neutral systems, they are not so for charged systems. The calculated energy of charged defect must
differ slightly when evaluated by the two methods. The truncation error is greater for the eigen-
value formulation than for the kinetic-energy formulation. However, this difference is expected to
be in the {0.1—0.2)-eV range for reasonable truncation radii, and to be quite insensitive to atomic
displacements. This may be sufficiently small and insensitive, depending on the situation being
studied, that the greater numerical simplicity of the eigenvalue formulation would make it the
method of choice. If not, the kinetic-energy formulation presents no major difficulties. Conse-
quences of shifting the conduction-band eigenvalues, as a way of overcoming the small-band-gap
problem inherent in the use of local-density-functional theory are explored.

I. INTRODUCTION

This paper deals with how to formulate and evaluate
the energy of an isolated point defect, that is, the differ-
ence in total energy between an infinite crystal containing
a single isolated point defect and the total energy of the
same infinite, but perfect crystal. This difference, the de-
fect energy, plays the central role in controlling the
behavior of the defect, e.g., its equilibrium configuration,
its vibrational properties, and the various reactions in
which it may participate In th.e case of semiconductor
crystals, most defects can exist in one of several charge
states. Their behavior will then be charge-state depen-
dent, giving rise to an enormous range of interesting and
occasionally technologically important effects. '

Calculating the defect energy for an isolated charged
point defect is complicated by the presence of a long-
range Coulomb tail in the defect potential. We have re-
cently called attention to this problem and have described
a method of calculating the defect energy within the
local-density-functional formalism. ' That method made
use of the self-consistent Green's-function technique"'
for the electronic structure of the defect crystal and the
eigenualue formulation of the total-energy expression. '

The problem addressed in that paper was the inherent
contradiction of using the Green s-function technique
when the defect potential had a Coulomb tail. Two pur-
poses of the present paper are (a) to present the formula-
tion of Ref. 10 in much fuller detail, and (b) to describe
improvements, either in accuracy or efficiency, which
could not be included within the format constraints of
Ref. 10.

In this paper we also examine the calculational alterna-
tive of using the Green's-function technique for the elec-
tronic structure of the defect crystal in conjunction with
the kinetic energy form-ulation of the total-energy expres-
sion. We shall show that the practical necessity of trun-
cating the Green's function when the defect is charged
causes the two formulations to give different values of the
defect energy. In the course of this study we find that the
kinetic-energy formulation is consistent with the require-
ments of dielectric response theory, while the eigenvalue
formulation is, in principle, not. Our preliminary studies
suggest that, for reasonable truncation radii, the differ-
ence between the two formulations may lie in the
(0. 1 —0.2)-eV range, and should be quite insensitive to
atomic displacements. This may be sufficiently small and
insensitive, depending on the situation being studied, to
recommend use of the numerically simpler eigenvalue for-
mulation. If not, use of the kinetic-energy formulation
presents no major difficulties.

The central problem for formulating the defect energy
is how to separate and recombine short-range and long-
range effects. There are several aspects to this, but before
treating them, let us outline the general viewpoint and
then outline the ideas we shall explore. To describe a
point defect, we first consider an infinite, perfect semicon-
ductor crystal. The point defect is created by, e.g., remov-
ing one crystal atom, or replacing it by an impurity atom,
or inserting some atom into an interstitial location, or by
similar operations. %'e define a sphere of radius R ~

con-
taining region 1 in which strong chemical effects occur as
a result of creation of the defect (see Fig. 1). These effects
are, e.g., the formulation of dangling bonds near a vacan-
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FIG. 1. Operational subdivision of space around a localized
lattice defect. Region 1 contains all the primary changes in lo-

cal chemistry; region 2 can be regarded as reacting macroscopi-
cally to changes in region 1.

cy, or conversely, the attempt to form new bonds between
an extra interstitial atom and its neighbors, or simply the
modification in the strength of bonds around a substitu-
tional impurity. In general, atoms in region 1 wi11 distort
significantly from their original perfect-crystal position.
Ri is thus operationally defined as being the range of
direct chemical action leading to strong changes in the
electronic structure. In semiconductors, R& is typically a
few screening lengths ( =3—5 A) and region 1 contains of
the order of 30 atoms.

Surrounding region 1 is a much larger region, region 2,
in which the crystal's response to the defect can best be
described by elastic and dielectric means. The point is
that small distortions and polarizations can persist, in
principle, up to infinite range without significant pertur-
bations on a local scale. A useful description has to in-
clude both regions 1 and 2, although treated with different
means and emphasis.

The tools we use for treating region 1 include the local-
density-functional forinalism, ' ' nonlocal norm-
conserving' pseudopotentials, and a Green's-function
technique for implementing the calculations in an
isolated-point-defect geometry. Two conceptual problems
arise at this stage: (a) the energy-gap problem, and (b) the
truncation problem. The energy-gap problem arises be-
cause local-density-functional theory used with first-
principles pseudopotentials or in all-electron calculations
of semiconductor band structure gives an eigenvalue
difference e, —e„between the bottom of the conduction
band and the top of the valence band which is consistently
smaller than Eg, the experimental band gap. ' ' Al-

though there is fundamental research in progress aimed at
resolving this problem, ' there is at present no scheme
for doing so which is sufficiently simple to be used with
self-consistent defect calculations. Among the various
palliative techniques that have been applied to defect cal-
culations for coping with the band-gap problem are ad
hoc adjustment of the local exchange-correlation poten-
tial, ad hoc adjustment of the pseudopotential, and ad
hoc adjustment of the conduction-band eigenvalues them-
selves. We have been doing the latter for some time
now. In this work we examine the effect of the adjust-
ment of the conduction-band eigenvalues on the calculat-
ed defect-energy and bound-state eigenvalues.

The truncation problem arises because the Green's-
function method really presupposes the use of a defect po-
tential with finite range. Consequently, the form chosen
to represent the Green's function, no matter how accurate
it is in the neighborhood of the defect, is allowed to fail
completely, e.g. , identically, far from the defect. "'
Clearly, one should carefully consider the consequences of
using such a truncated Green's function with an infinite-
range defect potential. This we will do here.

The tools we use for investigating the outer region are
macroscopic dielectric theory for the long-range polariza-
tion and a spring model for the long-range stress. We
mention the latter for completeness only. Actually, there
is no difficulty in joining the atomic displacements at the
inner part of region 2 with those at the outer part of re-

gion 1 because the energy associated with relaxation of the
more distant atoms can be subtracted afterwards from a
total-energy calculation in which the energy is calculated
with the distant atoms held fixed in their unrelaxed posi-
tions. A wide variety of sping models would probably
serve equally well here. No specific model will be dis-

cussed in this paper.
Unlike the situation for the long-range mechanical

stresses, the discussion of the role of the long-range elec-
tric polarization is somewhat subtle. Although there are
accepted models for calculating the polarization around
point defects in insulators and for its contribution to the
defect energy, ' we find here that if the inner region is
large enough to fully screen the defect, reducing its nomi-
nal charge n to n/e, where e is the dielectric constant of
the crystal, then the polarization in the outer region,
though finite, makes no contribution to the energy of the
system.

Having finished the survey of what the paper will con-
tain, we describe the organization of the paper itself: In
Sec. II we obtain a general expression for the energy func-
tional which is compatible with our use of shifted eigen-
values. In Sec. III we discuss the truncation problem. We
explore how truncating the Green's function leads to loss
of screening at distances of the order of 2R, from the de-
fect. This happens even though the screening is fully
developed at a distance of order R, . The loss of screening
between R, & r & 2R, has no adverse effect on the calcula-
tion because charge in this region is not going to be in-
cluded in the construction of the defect potential. In Sec.
IV we apply the ideas developed in Sec. III to an evalua-
tion of the difference of energies described in Sec. II. In
Sec. V we describe the correction term which arises when
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"smeared" ions, which are convenient numerically, re-

place the point ions, which are a better physical descrip-
tion. In Sec. VI we recast the energy expression into the
familiar and convenient eigenvalue form. Section VII is
devoted to the comparison of the two basic energy formal-
isms, eigenvalue and kinetic energy, when th truncated
Green's function is used for both, and that comparison
serves as the conclusion of the paper.

II. TOTAL-ENERGY EXPRESSION,
INCLUDING EIGENVALUE SHIFTS

Use of local-density-functional theory for describing ex-
change and correlation interactions between the electrons,
use of nonlocal pseudopotentials to describe the interac-
tions between the electrons and pseudoions, and use of
point-charge repulsion between the pseudoions themselves
gives a total-energy expression of the form

t

E[P„IRA j]=gn; f ((t);*(r)(——,'V )g;(r)dr+ —,
' f f " ", [p, (r')+p;(r')][p, (r)+p;(r)]

+gn; f fg,'(r)U&~'(r, r')f;(r')dr dr'+E„, + —,
' g g —ff, p;(r')p;(r)

A B(~A) A B

(2.1a)

where

E„,—:fp, (r)~„,(p, (r))dr . (2.1b)

The electronic density p, (r) is defined in terms of
independent-particle occupation numbers n; and wave
functions g; (r):

where

e(r)=f, [p;(r')+p, (r')],

Ur'(r)g; (r) =—g f UA~'(r, r')f; (r')dr',

(2.3c)

(2.3d)

p, (r)=gn;P;(r)g*, (r) . (2.2)
and

(2.3a)

The term CAB expresses the fact that smeared ions A and
B do not repel each other as strongly when they start to
overlap as do point ions A and B. It vanishes rapidly
with increasing Rzz. The term Jz, which is independent
of atomic position, is the interaction of the smeared ion A
with itself. Expressing the smeared ionic charge as a su-
perposition of Gaussian functions is useful in that it
makes possible an analytic evaluation of CAB, of JA, of
p;(r), and of p;(q), the Fourier transform of p;(r). That
evaluation appears in Sec. V. If Czz is appreciable, then
the cores are starting to overlap and the frozen-core ap-
proximation, on which the pseudopotentials are based, is
starting to break down.

The density p, (r) to be used in (2.1) is the one which
minimizes the functional. Carrying out this minimization
subject to the constraint of wave-function normalization
leads to a Schrodinger-type equation, '

[—,' 7' +@(r)+Ur'(r)+ V„,(r)]—g;(r)=e;g;(r), (2.3b)

The ionic charge p;(r) arises as a result of the way we
break up the electron-ion interaction into a nonlocal
short-range part UA~'(r, r') referring to ion A at position
Az, and a long-range but local potential whose source is a
smeared charge distribution with total charge QA. This
latter has spherical symmetry and a limited Gaussian
spread about location Rz.

The last term in (2.1a), enclosed in large square brack-
ets, corrects for the difference between the smeared ion-
ion repulsion included as a convenience in the Coulomb-
energy term, and the point-ion interaction we actually use.
That correction takes the form

b,E=E...—E...—pn,0

where

E('(=E[p' {&A' j]
Et.(=E[p. I&A j] .

(2.4)

(2.5a)

(2.5b)

In the initial situation, each unit cell of the perfect crystal
is identical. Any numerical scheme for performing self-
consistent band-structure calculations may be used to
solve the Schrodinger equations. This gives wave func-

[p~-(p)]p-p (.) ~ (2.3e)

Equations (2.3) and (2.2) must be solved self-consistently
using a given e„,(p), UA'(r, r'), and p;(r).

The defect energy we wish to calculate, b,E, contains
the difference between two energy expressions of the form
(2.1), one for the defect crystal with its ions located at
[RA j giving rise to an electronic charge density p, (r), and
the other for the perfect crystal [IRA j,p, (r)]. In order
that the reference level of the electrostatic potential (say
its average value (4) far from the defect) should not in-
fluence the defect energy, the initial and final situations
must have the same total charge. Since the perfect initial
crystal is most naturally taken to be neutral, the defect
crystal should also be taken as neutral. A defect with
nominal charge n (n more electrons than protonic charges
in the system; n an integer, positive, negative, or zero)
must then be thought of as being compensated by some
distant reservoir states which are now lacking n electrons.
If we denote the change in reservoir energy as (M per added
electron, then the change in reservoir energy when the de-
fect has nominal charge n will be pn. This chang—e is
also a component of the defect energy. Thus, the full def-
inition of the defect energy is
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p, (r)=gn;p, (r)[1(;(r)]* . (2.6)

When the defect is present, the Schrodinger equation
differs from that for the perfect crystal. The difference in
Schrodinger operators is the defect potential U. The per-
turbed electronic charge density p, (r) can be expressed as
an integral over the defect-crystal Green's function
GF(r, r'),

tions g;(r) in the form of Bloch waves f„(k,r), eigen-
values e, =e„(k), and an unperturbed electronic charge
density,

(2.4) and the bound-state eigenvalue.
We start by recognizing that the problem arises from

the use of a local-density-approximation (LDA) potential
in the density-functional treatment. Rather than trying to
find improved potentials (i.e., local operators) within
local-density theory, we conjecture that an improved
theory might have a nonlocal, but still energy ind-ependent,
potential X(r, r') similar to the self-energy operator of the
quasiparticle equation when its energy dependence is
small over the energy range of interest. In that case, the
E„ term in the total-energy functional (2.1) would have
the form

p, (r) = —— dE Im Gr+;„(r,r) (g~0+ ), (2.7) E„,=g n; f fg;*(r)X(r,r')g;(r')dr dr'' . (2.10)

g„(k,r)g*„(k,r')
GE(r, r')=g fd'k

n Pl

(2.&)

or as a related contour integral in the plane of complex
E. The Green's function Gz is obtained from the defect
potential U and the perfect-crystal Green's function Gz,

The nonlocal kernel X is in principle a functional of the
electron density p, .

The impressive successes of local-density-functional
theory ' suggest that X has a local component equal to
the usual exchange-correlation energy. It would then be
useful to write the kernel as

by solving I3yson's equation,

G~(r, r')=GE(r, r')+ f fGE(r ir)U( lrr2)

X GE(r2, r')dr, dr2 . (2.9)

X(p, ;r, r') =5(r r')E„,(p, (r—))+S(p, ;r, r') .

This conjecture, used in (2.10), yields

Exc= pe ~ &xc pe ~

(2.11)

A substantial amount of literature already exists relating
to various aspects of the calculational procedure implied

by these equations.
The energy-gap problem has been mentioned. We have

chosen to deal with this by making an ad hoc shift of all
the conduction-band eigenvalues. After the shift, the
difference e, —e, is equal to the experimental band gap
Es. [In actual use, we have shifted every conduction-band
state upward by the same amount A. It would have been

equally possible to shift e„(k) by b,„(k) if this had been

desired. ] We then evaluate the perfect-crystal Green's
function G@ Eq. (2.8), using the shifted eigenvalues, and
with no alteration to the defect potential U we carry out
the iterative solution to self-consistency. This procedure
cannot be justified at any fundamental level, but, given
the seriousness of the energy-gap problem, it is probably
better than doing nothing. Therefore, in the remainder of
this section, we motivate it as best we can and examine
what effect it has on the evaluation of the defect energy

I

+gn; f fg;"(r)S(p„r,r')P;(r')dr dr' . (2.12)

XS[p, ]„"„P*„('kr') (2.13)

must have coefficients which vanish if n or n' is in the
valence band and p, is the perfect-crystal density p, .

The Schrodinger equation which results from minimiz-
ing the energy acquires an extra term which results be-
cause of the nonlocal kernel S. It is

There is no theory to dictate a form for the "scissors
operator*' S. However, if we want to build an ad hoc
correction term which does not affect the valence-band
density or eigenvalues for the perfect infinite crystal, then
the Bloch-wave expansion of S,

S(p„r,r') =g g f fdk dk'g„(k, r)
n n'

, gnj f fPJ(r)$(p„r, r')PJ(r')dr dr'= fS(p„'r,r')f;(r')dr'
n; 5P,(r)*.

+. QnJ fPj~(r&) $(p„rl, rz) QI'(r2)dridr2 fi(r) .
5p, (r)

S depends on p„but, lacking a theory of the dependence,
we are forced to ignore that dependence and to proceed as
though S(p, )=S(p, ). That means that there is no

S(p, ) —$(p, ) contribution to the defect potential U. It
also means that the second term in (2.14) vanishes. Only
the first goes into the Schrodinger equation, where, be-
cause of the restriction that S have no valence-band com- S [p, ]=S[p, ]=b „(k)5„„5(k—k'), (2.15)

(2.14)
I

ponents, it can, at most, change the conduction-band
Bloch states and eigenvalues. In the absence of any theory
for how the Bloch states change, we arrange to leave them
undisturbed by choosing the expansion coefficients for S
to be diagonal, i.e.,
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where h„(k) is zero for n in the valence band. The effect
of including (2.12), (2.14), and (2.15) in the Schrodinger
equation for the perfect crystal is to shift the eigenvalues
from e„(k) to e„(k)+b„(k). The effect of including
(2.13) and {2.15) in the energy functional (2.1), in general,
is to bring in an extra term which is added to the energy,

r close to the defect and equal to zero for r far from it.
The details of how A (r) goes from 1 to 0 depend on the
energy, but the energy dependence is not important, and,
for simplicity, we can ignore it .The r dependence, how-
ever, is important I.t may be useful to regard A (r) as be-
ing approximately equal to 8(R, r—), where 8 is the unit
step function and 8, lies at the edge of region 1.

E„, =+nip Jdk h„(k) Jf*„(k,r)P({r)dr (2.16)

This raises the energy of the system according to how
much of its density is contributed by perfect-crystal
conduction-band wave functions. The term {2.16) does
not appear overtly in the energy when the eigenvalue form
of total energy is used. Nonetheless, its value is included
automatically once the perfect-crystal eigenvalues have
been shifted. The kernel 5 will appear overtly in the
Schrodinger equation for both the perfect and the defect
crystal. Its effect on @II, the eigenvalue for a bound state
wllosc wave fllllctloll ls lpII (r), Is, 111 lowest ol'dcr, glvcll by
the expectation value

@II-eII+ JJ /II(r)S(r, r')/II(r')dr dr'

=CII+g Jd k b,„(k) JP„(k,r)/II(r)dr . (2.17)

The shift in cII depends on the fraction of /II derived
from conduction-band states.

In this section we discuss the consequences of using a
truncated Green's function with a defect potential which,
in principle, has infinite range.

GE{r,r')= {r
~

(E —Ho—)
'

~

r') . (3.1)

A. Description of Green 8-fQnction tA1ncation

The perfect crystal has a Green's function (2.8) which
we denote as GE(r, r'), the superscript T denoting "true. "
Another notation is

GE —Gg +GE UGE ~ (3.4R)

Having solved (3.4a), the change in electronic charge den-
sity is given by an energy integration of

(3.4b)

However, we can neither solve (3.4R) nor evaluate (3.4b)
because we do not have GE available. %e do have GE
available and we use it instead. Our experience has been
that, without further adjustment, use of G@ instead of Gz
in (3.4) produces a change in electronic charge density
4p (P) wllosc spatlR1 111tcglR1 ovcl' tllc neighborhood of thc
defect (say, r &R, ) leads to a charge neutral defect. This
is true even if the occupation numbers n; are such that the
dcfcct sllould 11avc bccll 110111111ally chal gcd. When thc
nominal charge on the defect is n, the net charge in the
neighborhood of the defect should be n/c, where c is the
dielectric constant of the crystal. The charge we find
empirically is always a small fraction of n/e

The simplest adjustment which restores the proper
cllalgc n/Eto thc defect Icgl'oil wllllc d01ng thc lcRst to
alter the distribution of that charge is to add a constant
potential 4 to U, choosing 4& by trial and error if neces-
sary. Thus, instead of (3.4), the equations we actually
solve and use are

B. Effect of Green's function truncation
on the defect potential

The Green's function for the defect crystal is supposed
to satisfy the Dyson equation (2.9), which, in symbolic
form, is

In almost all of the recent work this Green's function has
been represented by an expansion in terms of a limited set
of localized orbitals """""

GE ——Gb+Gs(U+4)Gb,
b, Gb =Gb —Gb GE(U+4)Gg . ——

(3.5a)

(3.5b)

(3.2)
Given the form (3.3) and Eq. (3.5a) for GE, it is evident
that GE(r, r') can be written as

The localized orbital P, (r) is centered at location R~.
The set of locations IR& I need not be the same as the set
of atomic positions of the perfect or defect crystal. How-
ever, the types of orbitals and their locations are chosen so
that GF(r, r') is an adequate approximation to Gz(r, r')
for r and r' both near the defect. The set of locations
IR~I does not extend far beyond the defect region.
Therefore G@, unlike G@, will vanish if either r or r' be-
comes too large, even if r and r' are close to each other.
Because of the construction, the two Green's functions are
related to each other by

Gz =GE+GE U~ GE (3.6b)

G~(r, r') =A (r)G@(r,r')A*(r')

because substitution of (3.3) and (3.6) into (3.5a) leads to

AGEA*=AGEA'+AGUA*(U+k)AG@A* .

At all values of r and r' for which A (r)&0 and
A (r )+0, dlvldlng tllc above cquRtloll by A (r)A (k ) ls
legitimate. %'e do so, and the resulting equation for GE is

GE(r, r') =AE{r)GE{r,r')AE(r'), (3.3) U =A*(U+4)A .

where Az(r) is some sort of cutoff function, equal to 1 for This shows that the defect Green s function Gz is a trun-
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cated approximation to that defect Green's function GE
which, by (3.6b) and {3.4a), would have been exact if the
defect potential had been U~.

The defect potential U (henceforth, the truncated or
model potential) differs from the real defect potential U
in two ways. First, its long-range tail, if present, has been
cut off by A*(r& )A {r2). Second, within the region where
it is not cut off, the model potential appears to be shifted

by 4 from the true one. This apparent shift, however, is
vastly reduced by the self-consistency requirement. That
is, the average value of U calculated without 4 present
and iterated to self-consistency is rather close to the aver-
age of U~ calculated self-consistently unth the correct 4
present.

C. Effect of truncation on the charge disturbance

In analogy with (3Ab) and (3.5b), it is conceptually use-
ful to consider the change in the untruncated Green's
function GE associated with the model potential U,

(3.9) and (3.10) gives

Since there is no net accumulation in the bulk of a uni-
form dielectric crystal, i.e., since the nl»r defect potential
implied by {3.10) persists out the surface of the crystal,
the net charge accumulation implied by (3.11) resides at
the outer surface of the crystal. There is certainly no sig-
nificant net accumulation of charge at, or slightly beyond,
r =R, .

Now let us consider the second type of electronic
charge disturbance, b, p, (r), given by (3.8b). This is the
charge disturbance in a crystal governed by the exact
Green's function GE, but acted upon by the model, trun-
cated defect potential U [Eq. (3.6b)l. The value of 4 for
a defect of nominal charge n has been adjusted so that the
analog to (3.10) is still true. The occupation numbers n;
have been chosen so that (3.9) is still true. Thus, analo-
gous to (3.11), it is still true that

Correspondingly, there are three charge disturbances
which are of interest, namely,

4 p, (r)—:——f dEImh GE(r, r), (3.8a)

b p, (r)= ——f dEImh GE(r, r),
E

b p, (r):———f dEImb, GE{r,r) . (3.8c)

(3.8b)

The charge disturbance 5 p, {r) is that which the true
crystal would support: There is no truncation involved in
its definition. Even though we cannot calculate it, we can
make some general statements about it. (These statements
are simpler to make if we temporarily ignore the presence
of the reservoir states and regard the defect crystal as
charged. ) Suppose that we have a charged defect with
nominal charge n. ThcI'c 1s an 1ntcgcI change ln thc 1onlc
charge caused by the creation of the defect,

hN, = f bp;(r)dr . (3.9a)
crystal

There is also an integer change in the electronic charge for
thc saIHc I'cason,

ET', =—f b p, (r)dr .

The nominal charge n associated with the defect is

(3.9b)

n=h &, +AX; .
The polarizable nature of the sen1iconductor is such that
tl1c total cl1a1gc change near thc dcfcct, say %1thln f QR,
wHI be nf»,

f [bp;(r)+b ,pr){] rd

=AX;+ f 5 p, (r)dr =n j». (3.10)

(In writing 3.10, we have assumed that R, fully encloses
the dielectric screening region 1 and that all of the change
in the ionic charge is confined to region 1.) Combining

(3.12)

Evan Kane has pointed out to us that the charge being
integrated in (3.12) is really located rather close to R„say
in the region R, ~

I
r

I
&2R, . His argument can be most

simply expressed as follows: All experience with calcula-
tions of the charge disturbance around neutral defects
with a strong defect potential near r =0 shows that the
charge disturbance vanishes by r =R, . Therefore a po-
tential which is zero beyond r =A„as is the truncated
potential, will produce a charge disturbance which cannot
persist bcyolld P =28, .

This argument may need to be strengthened because one
might object that the limited range of charge disturbance
surrounding a strong but neutral defect potential comes
about because of self-consistency and the Coulomb poten-
tial. These two effects are absent when the potential is
truncated. Nonetheless, it is very Hkely true that the
perfect-crystal Green's function GF(r, r') effectively does
have a limited range, vanishing when r and r' are too far
apart. Certainly, Callaway's work shows that if E is in
the gap, then GE decays exponentially with

I
r r' I, the-

rate of decay being governed by the separation between E
and the nearest allowed bands. His work also shows that
if E lies in a band, then Gz behaves like

GE(v r )
I
r r'

I
'exp(iq

I
r r

where q depends on E. An energy integration, such as
that in (3.8) for evaluating the charge, will cause the
imaginary exponential to phase-osciHate to zero at large

I
r r' I, thereby intro—ducing an effective cutoff. An ef-

fective range to GE(r, r') is all that is needed to establish
that the charge disturbance vanishes at some finite dis-
tance beyond the range of a truncated potential. There-
fore, Kane s conclusion is basically correct. Defining the
distance where the charge disturbance vanishes as 2R„
i.e., defining 28, =—potential range + Green's-function
range, we have b, p, (r)=0 for r ~28, . Equ—ations (3.9)
and (3.12) can then be written with finite outer limits as
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6 p, r r=n 1

~c ( r&2Rc

f [Ap;(r)+b, p, (r)]dr =n .
r &2R

(3.13)

(3.14)

the same amount, but of opposite sign, spuriously resides
on the inner surface at r =R„rendering the system to
which (3.17) refers neutral. This is in conflict with (3.11).
For that reason, it is better to use the alternative formula-
tion of (3.17), namely

5U= —,
' fpd, f(r)P~(r)dr, (3.19)

b, p, (r)=A(r)b, p, (r)A*(r) . (3.15)

6 p, (r) will then be very much like the true distribution
h~p, (r). They should both agree for r &R, . For r &R,
they both vanish on the average —5 p, (r) identically,
5 p, (r) only on the average. They should both give rise
to the same defect potential U(r) except for the
microscopic-scale, finite-amplitude fluctuations in the re-

gion r &R, . The effect of these fluctuations will vanish
on the average because of the following argument.

D. Dielectric polarization at large distances

The true charge disturbance b, p, (r) in the response re-

gion r &R, is a polarization charge, varying on a length
scale of the bonds, having an overall amplitude which
drops like 1/r, existing because the electric field of the
defect pushes charge along bonds or across them, but
piling up no macroscopic charge except perhaps at the
outer surface of the crystal. It might be tempting to re-
gard it as being the divergence of a macroscopic polariza-

tion vector P, averaging over some macroscopic (but still
small region) as is conventionally done,

This is a startling result. It means that the screening
disappears at 2R„not at the surface of crystal if a trun-
cated potential is used. It implies that 5 p, (r) and
5 p, (r) differ significantly in the region R, &r &2R„
and therefore that it is wrong, in principle and in practice,
to use the charge density arising from a truncated poten-
tial as an approximation to the actual charge in the region
beyond the cutoff.

The third type of charge disturbance is 6 p, (r), Eq.
(3.8c). It is clear from Eqs. (3.S)—(3.8) that

where Pz(r) is the potential which arises from the polari-
zation charge,

IV. EVALUATION OF THE DEFECT ENERGY

All the major ideas needed for the evaluation of the de-
fect energy are now in place. We evaluate energies with
no relaxation of the atomic positions in region 2. As a re-
sult, the ionic charge disturbance

hp;(r) =p;(r) p;(r)—0 (4.1a)

Pz(r) = f, [—V'.P(r')], (3.20)

and pd, f(r) is the charge associated with the defect for
r ~R, . Doing so allows one to ignore the spurious sur-
face charge at r =R, . The remaining contribution to the
energy 5U goes to zero as the crystal becomes infinite (see
Appendix).

Correctly applied then, the macroscopic dielectric
response theory yields no contribution to the energy, ex-

cept within that region near the defect where charge has
actually been moved to do the screening. If the micro-
scopic quantum-mechanical calculation is formulated so
that the energy is expressed as the integral of an energy
density composed of a sum of partial energy densities
(e.g. , kinetic, exchange, etc.) then in the defect situation
macroscopic response theory justifies confining that in-

tegral to the inner active region. For the charged defect,
the long-range polarization means that there is finite
b, p, (r), and demonstrably, nonzero partial energy densi-
ties, in the outer region. The partial densities must, to
conform to the macroscopic theory, sum to zero on the
average.

p(r)=—ff (
i
r —r'

i
)Qrp, (r')dr'= —p'.p(r)

with f&0, ff(r)dr =1 . (3.16)

is identically zero for r & r, . The electronic charge distur-
bance

Macroscopic dielectric theory provides an expression for
the energy of a polarizable dielectric in an electric field,

5U= ——,
' fP(r).E(r)dr, (3.17)

and, considering the ease of evaluating (3.17), it is tempt-
ing to use this expression, carried over the outer region,
for its contribution to the energy.

It is wrong to do so, because this formalism implies
that P(r)=0 outside the region of integration. The im-

plied discontinuity in P then gives rise to a surface charge
density equal to the outgoing normal component,

bp, (r) =p, (r) p,(r)— (4.1b)

n (r, r') =gn;@;(r)P;'(r'), — (4.2a)

is also identically zero in region 2, because we evaluate

bp, (r) using the truncated Green's function GE. Thus
Ap, (r) is really b, p, (r) [cf. (3.5) and (3.15)].

In this section we shall merely assemble the terms need-
ed for evaluation of the defect energy (2.4). For dealing
with the nonlocal operators in (2.1) and (2.12), it is useful
to make use of the one-particle density matrices for the
perturbed and unperturbed systems,

(3.18) n (r, r')=gn;g, (r)[f, (r')] (4.2b)

In the Appendix we present a simple evaluation of (3.17)
and (3.18) to show that the correct amount of charge [cf.
(3.11)] resides on the outer surface of the crystal, but that

b, n (r, r') =n(r, r') n(r, r') . — (4.2c)

Once the Green's function GE(r, r') is expressed in terms
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of localized orbitals, as in (3.2), the change in density ma-

trix quite naturally takes the form of an expansion based

on the same orbitals,

hn (r, r') =yp, beati, (r)yb(r'),
a, b

(4.3)

and so, this is also a truncated expansion. The change in

electronic density is then evaluated as

bp, (r)=An(r, r) . (4.4)

We now turn to an enumeration of the terms in the defect

energy, b,E [Eq. (2.4)], using the basic energy functional

(2.1), augmented by the scissors operator S [Eqs. (2.15)
and (2.12)], which represents exactly the effect of the
eigenvalue shifts.

The change in the kinetic-energy term is, using (4.2),

hT= fdr[ —,' V„bn(r, r—')j„ (4.5)

b T=gbp bTbo
a, b

(4.6a)

We should not include the integral over the entire crystal,
only over region 1. Therefore, use of the truncated densi-
ty matrix of the form (4.3) in (4.5) is helpful for it does in-
troduce a cutoff just where it is needed. Inserting (4.3)
into (4.5) gives

3 removed 8 added

(4.10)

where "A removed" denotes a count over all atoms which
are removed from the crystal in forming the defect and"8 added" denotes a count over all atoms which are add-
ed to the crystal in forming the defect. The individual
terms in Czz vanish unless atoms 3 and 8 are close
enough for their pseudocores to overlap. In practical
terms, this restriction rules out all AB pairs except first-
nearest neighbors. The pairs surviving in Agz sC~s are
thus only those whose bond A —8 is created, broken,
stretched, or compressed in the process of creating the de-
fect.

The change in the electrostatic Coulomb term is

this can be used in evaluating the first term in (4.8a) with
no approximation caused by truncation. For the second
term in (4.8a) we count on the use of the form (4.3) to pro-
vide the desired cutoff. This term is the most trouble-
some of all numerically because it involves the evaluation
of the matrix elements of many nonlocal potentials in the
local-orbital basis.

The evaluation of the exchange and correlation part of
(2.1) is straightforward, as is the change in the sums in-
volving C~ii and Jz [Eq. (2.5)]. In particular, the change
in the J~ term is

where

Tb,
—= fyb(r)( ,

' V')y, (r)« —. — (4.6b)

Next, consider the contribution of the scissors operator S.
It is

E d'd' pr pr pr pr
d d= ff, [p'(r')~p(r)+ —,

' ~p(r')~p(r) j

(4.11a)

ES= f fS(p, ;r, r' )An(r', r)dr dr' . '4" w~ere

Again, we limit the integration over r and r to region I,
and so again use of (4.3) is desired

We have the change in the pseudopotential, expressible

p(r) =p, (r)+p, (r), —

p'(r) =p, (r)+p;'(r),

(4.lib)

(4.11c)

U»(r, r') =g UJ'(r, r'), (4.8b)

U, (r, r') =g U~'&&(r, r'), (4.8c)

b, U»(r, r') —= U»(r, r') U~, (r,r')— (4.8d)

as

b, U» ——f f [ U(»r, r')n(r', r) —U»(r, r')n (r', r)]dr dr'

=f f [EU»(r, r')n (r', r)+ U»(r, r')bn(r'r)]dr dr',

(4.8a)
where

and

hp(r) =p(r) p—(r) . — (4.11d)

In this case, restricting the contribution of EE„ to region
1 applies to the terms involving bp(r) only. The p (r')
term has to be carried over the entire crystal. In analogy
to (2.3b), we write

d' p'r' =e'r, (4.12)

which is the periodic electrostatic potential of the perfect
crystal. It has an expansion in reciprocal-lattice vectors,

refer to the short-range parts of the pseudopotential in the
defect crystal (pseudoions located at ER~ I) and the per-
fect crystal (pseudoions located at {Rz] ). Because of the
short range and the fact that only atoms in region 1 are
involved in creating the defect, b, U»(r, r') will automati-
cally restrict the integrations to region 1. If we then have
an n (r'r) expressed in the localized-orbital form (and
hence truncated) as

(yo(r) y@0(G)eiG r

where

4 (G) = p (G), G~O

(4.13a)

(4.13b)

(4.13c)

n (r,r') =gp, bP, (r)p~b(r'),
a, b

(4.9)
and



30 CALCULATION OF THE TOTAL ENERGY OF CHARGED POINT. . . 1861

4 (G)=(@'&, G=o. (4.13d)
V. POINT-ION VERSUS SMEARED-ION

CORRECTION

is the volume of the unit cell in the crystal. (4 &, the

average value of the potential in the infinite crystal, is ar-

bitrary. The value of the first integral in (4.1 la) is thus

f f ", po(r')hp(r) = (4 & f hp(r)dr

+g, p (G)hp(G),
6@0G

(4.14a)

where

We start with the general expression for the electron-
ion interaction in which a nonlocal pseudopotential
Uz(r, r') describes the interaction of an electron with a
single pseudoatom of type A located at Rz. It is con-
venient to express this interaction as being the sum of a
truly short-range nonlocal pseudopotential Uz~'( r, r ')

which vanishes if
l

r —Rz
l

or
l

r' —Rz
l

exceeds (typi-
cally) a core radius, and a long-range local potential, the
Coulomb potential of a smeared charge distribution with
total charge Qz centered at R~. That charge distribution
is conveniently described as a sum of Gaussians. We have

hp(G) =f hp(r)e'G'"dr, G~o . (4.14b) Uz(r, r')= o(r —r')Qz

The last term to be included in the energy of the defect is
that of the reservoir states, namely pn-

We consider the question of what value to assign to the
first term on the right-hand side (rhs) of (4.14a). This
term depends on the reference level of the potential. The
only other term which depends on this reference level is
—pn, because p, the energy needed to add an electron to
the reservoir, depends additively on (4 &, the average
electrostatic potential in the reservoir region. We group
the two terms together as

+ Uq~'(r, v'),

where

gC~ =1
j

(5.1a)

(5.1b)

and
(@ & f hp(r)dr pn=(4 & f—hp(r)dr n pon, ——

g~j(r): (a~„lm) ex—p( aj„r ) . — (5.1c)

where

po=—p —(C'& .

(4.15)

(4.16)

Then the electron-ion —interaction energy is

V, ; =gn; f fg; (v)g Uz (r, r')P; (r')dr dr'

hp(r)dr =n . (4.17)

We therefore make the assignment (4.17). This means
that, in spite of the r &R, limitation, we have put on
hp(r), for this one usage, an integral over the entire crys-
tal is needed. Combining (4.14)—(4.17) gives

drdr or' 6 r — n

Since p depends additively on (4 &, po is independent of
(@0&. Its value can be assigned: Recall that it is proper
to measure p relative to the eigenvalue e„(k), because p is
the systems energy change upon adding one electron to
the reservoir, while e„(k) is the energy change upon add-

ing one electron to a particular band state. Subtracting
(4 & from each of these, we conclude that e„(k)—(4 &

is the appropriate scale to measure po. However, obtain-
ing a numerical value for e„(k) in an actual calculation
can be carried out only by assigning a numerical value to
(4 &, so e„(k)—(4 & is always known and independent
of (@ &. Therefore, po can be assigned a numerical value,
according to whether the reservoir is at the bottom of the
conduction band, or top of the valence band, etc.

Returning to Eq. (4.15), this result, and therefore hE, is
independent of (4 & only if

+ f f Ur'(r, r')n(r', r)dr dr', (5.2a)

where

p «) =—QQ~ QC~g~j (
l

r —&~
l
),

A j
n ( r', r) =gn;g, (r')P*, (r),

l

p, (r) =n (r,r),
and

U"'(r, r') =g U~~'(r, r') .
A

(5.2b)

(5.2c)

(5.2d)

(5.2e)

The point-ion interaction between all of the distinct ion
pairs can be described as the self-interaction of the ionic
charge density p;(r) and two correction terms, C~z and
JA. Wehave

Q~Qa ) f f dvdr'

&aI—
where, using (5.1),

p (G)hp(G) pan, (4.18)—
G~o G

and there is no ( @ & dependence anywhere in hE.

+g g c~a —QJ~, (5.3a)
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Cga —= 2 /CA~ Cae«[RAB( YA~'B )
~AB

JA —=Qa +Ca Cg (X~/n)'
j,k

(5.3b)

(5.3c)

R~a —=IR~ —Ra
I

Fwa =—&a&ai(&a+rrs) .

VI. FORMULA FOR THE DEFECT ENERGY
IN THE EIGENVALUE FORMULATION

(5.3d)

(5.3e)

We now evaluate the defect energy (2.4) using the eigen-
value form of the energy functional. First, however, it is

I

useful to assume that complete self-consistency has not
yet been achieved. We start with a defect potential U~
which is input to the Schrodinger equation. The solution
to that equation gives a bp, . This bp, (r) is truncated at
r =R, and the truncated form is used to give a model
output potential U~"'. Lack of self-consistency means
that U'"' and U'" still differ by an unacceptable amount
and that quantities being studied still fiuctate from itera-
tion to iteration. The first step is to use the eigenvalue
sum to replace the one-particle terms, following Ihm
et al. ' We multiply the defect Schrodinger equation by
n;P;(r}, integrate over r and sum over i to obtain

f dr[ —,'V,—n(r,r')], „+f [4 (r)+V„,(r)]p, (r)dr+ f f [Uz, (r, r')+U~(r, r')]n(r', r)drdr'=gn;e; . (6.1)

The model potential U~ here is that given in (3.6c) where

U = [b@(r)+b.V„,(r)]5(r r') +b, U„,—(r,r'),

I

b4(r)—:@(r)—4 (r)=f, &p(r'), hp(r)=Ap, (r)+hp((r),

6 V„,(r):V„,(r) ——V„,(r), bp, (r) =p, (r) p, (r) . —

Using this expression to replace the kinetic-energy term in the total-energy expression (2.1) gives

Q [p IR I ]—yn, ~,. + fd„[ @(r)—p(r) @0(r—)p (r)]+f [U, (r, r') Ur, (r, r'—) U~ (r, r')]n—(r', r)dr dr'
l

+ f [~..(p.(r)} V'..(—r)]p.(r)«+X X C~~ —XJ~
A B~A A

Rearranging slightly,

df dr[ —,'@(r)p(r) —4 (r)p, (r)]=fh@(r)p, (r)dr ~ —,
' f f " ", [p;(r)p;(r') p, (r')p—,(r)],

(6.2)

(6.3a)

Uz, (r, r') U~, (r, r') =b, U~, (—r, r') .

Using the definition of the defect potential U,

fb4(r)p, (r)dr+ f b, U~, (r, r')n(r', r)dr dr'= f U'"'(r, r')n(r', r)dr dr' f b.V„,(r)p, (r)dr .—

(6.3b)

(6.4a)

(6.4b)

d
E[p [RA I ]=En;~;+ ~ f f " ", [p;(r)p;(r') —p. (r)p. (r')]

Recalling (3.6c), the definition of the model potential U, right-hand side (rhs} of (6.4a) can also be written as

fb4(r)p, (r)dr+ fAU~, (r, r')n(r', r)drdr'

=f U~"'(r, r')n(r', r)dr dr' 4 f p, (r)dr—+f, f, U'"'(, r, r')n (r', r)dr dr' f b.V„,(r}p,(r)dr —.

In the next-to-last term in (6.4b), the b U~, (r, r') and EV„,(r) parts of U'"'(r, r') do not contribute because b, U~, is con-
fined to the region r (R„and because b. V„,(r) vanishes when Ap, (r) vanishes beyond R, by reason of truncation.
Thus,

f f, U "'(r, r')n(r', r)dr dr'= f dry@(r)p, (r)dr . (6.4c)

Inserting (6.4) and (6.3) into (6.2) gives

+ f f [U "'(r, r') U'"(r, r')]n(r', r)dr —dr' 4 f p,(r}dr—
+f dry@(r)p, (r)+ f [e„,(p, ) —V„,(r)]p, (r)dr++ g Czz —gJ& .

A B {+A) A

(6.5)
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Since the b, U~, (r, r') part of U'" and of U'"' is the same, U,„,—U;„ is a local potential, and we can define

f fdr dr'[U~"' —U'"]n (r', r) =f [U,',",'(r) U—',"„(r)]p,(r)dr =E,~
where

(6.6)

U„,(r) =hN(r)+ b, V„,(r) + 4& (6.7)

is the local screening part of the model potential. It is U„,(r) that has to be iterated to self-consistency. At self-
consistency, E,„vanishes. Finally, we define

E„,= f [e„,(r) —V„,(r)]p, (r)dr,

CIRA j =g g CAB
A 8 (+A)

J—:pe,
and the energy of the defect crystal is then

E[p„IR&J]=gn;e;+E,„+E„,+CtR& I
—J+ f bA&(r)p, (r)dr

(6.8a)

(6.8b)

(6.8c)

cE+ 2 ff, [p;(r)p;(r') —p, (r)p, (r')] 4 f— z p, (r)dr . (6.9)

The corresponding energy for the initial situation, having been obtained via a band-structure calculation, is fully-self-
consistent. It is

I

E[po, IROI]=gnoEO+Eo, +CIR„'I J'+ —,' f f-" ", [po(r)p', (r )—po(r)p', (r )]. (6.10)

In forming the defect energy (2.4), we subtract these last two expressions. The difference in eigenvalues is evaluated
using b,n (E), the change in density of states, as

gn;e; gn;—e; = ——f E P(E)dE0 1 F 6
(6.11)

l dEl

with the phase shifts P(E) given in Ref. 39. Evaluation of the terms E,„,and b,E„,=E„,—E„,cause no particular dif-
ficulty because the integrands are confined to the region r (R,.

Next, we consider the change in the electrostatic terms in (6.9) and (6.10). In rearranging these, it is helpful to add and
subtract the following finite term:

d d

Having done so, it becomes possible to group terms to show that

.ff—,(p p pp p.p. +p—'p')+—f, ~+(r)p. (r)«

=f4 (r)bp;(r)dr —f b4(r)p, (r)dr+ —,
' f f " ", [Ap;(r)bp;(r') bp, (r)bp, (r')] . (6.—12)

In arriving at (6.12), we have used the fact that hp;(r) =0 for r )R, because the region R, has been chosen to be large
enough to fully enclose bp;(r), and that bp, (r)=0 for r )R„because that is part of the prescription for evaluating
hp, (r).

The first term on the rhs of (6.12) is evaluated using the periodic charge density of the perfect crystal as

f~"( )&p;( )d =g, [p;(G)+p, (G)]&p;(G)+(C")~&; .
G&0 6

In (6.13),

(6.13)

p;, (G) = f p;, (r)e ' '"dr
C

(6.14a)

is a Fourier component of the charge density of the perfect crystal, evaluated over the periodic cell of volume Q„and
available either analytically (p; ) or in numeric form from a previous band-structure calculation (p, ): The term

&p;(G) =f4p;(r)e'G'dr (6.14b)
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is a Fourier integral of the change in ionic density, a quantity which, with the choice (5.1) and (5.2), is available in ana-

lytic form. (N ) is the spatial average of the electrostatic part of the perfect-crystal potential. It is arbitrary. Its value
affects the eigenvalues in (6.11) and the reservoir energy p additively. The zero of the eigenvalue scale must be taken
compatible with the choice of (4 ). The quantity b,N; is the change in ionic charge upon creation of the defect.

The second term on the rhs of (6.10) is usefully combined with the last remaining term in (6.9) as

—f ~ [b4(r)p, (r)+@p,(r)]dr = —f a [U,',",'(r) E—V„,(r)]p, {r)dr 4—f bp, (r)dr . (6.15)
C

Finally, adding the reservoir energy pn —and collecting all of the term described above, we obtain the defect energy (2.4)
in the following form

&E= -f—E „dE+&CI~.]+ g ~a g—~.+2 ff, [~p;(r)~p;(r') ~p, —(r)~p, (r')]1 r dg(E) dr dr

removed added

z [p;(G)+p, (G)]Lp;(G)+ (e )LNt pn——f [ U,',",'(r) b, V„,—(r)]p, (r)dr62 C

4—f bp, (r)dr+E, „+DE„,. (6.16)

p p 1 dQ(z)ne — n e=- z dz,
21Tl dz

(6.17a)

P(z) =»[det( U —UG,')/det( U)] . (6.17b)

A contour parallel to the imaginary axis, intersecting the
real axis at E~, and completed by the semicircle at infini-
ty, provides the smoothest integrand, one for which it is
particularly easy to devise integration schemes which
make use of our knowledge of the asymptotic (large-z)
behavior of the integrand. We have been using this con-
tour consistently instead of the real contour in (6.16). We
find that it has very much to recommend it, although at
the price of losing all the physical interpretive informa-

Equation (6.16) is the expression we have used to evaluate
the defect energies reported in Ref. 40. We conclude this
section with three comments about the above expression.

(1) Although the term E,„,Eq. (6.6), vanishes at self-
consistency, including it in (6.16) stabilizes the calculated
value of AE remarkably as self-consistency is approached.
Our experience has been that the largest value of
U,',",'(r) —U',"„(r) that can be tolerated is typically a factor
of 10 greater when E,„ is included than when it is not.
This can be traced back to the variational nature of the
energy expression (2.4). ' Fortunately, much of the under-
lying variational insensitivity is retained here, even though
there has been truncation of the Green's function, of the
potential, and of the charge.

(2} The phase shift 4(E) often has sharp structure, ex-
hibiting resonances, etc. , that make difficult an accurate
evaluation of (6.11), the integral giving the eigenvalue
change. A similar difficulty occurs in evaluating bp, (r},
Eq. (3.8), the integrand having the same sort of structure.
Just as WiBiams et al. and earlier workers have noted
that (3.8) can be replaced by a contour integral in the
complex plane surrounding the occupied spectrum, exact-
ly the same replacement is possible for (6.11), requiring
only that the expression (5.3) for phase shift be general-
ized to the complex plane. The appropriate generalization
of (6.11) is

tion contained in P(E} for real E Aco. mpromise, report-
ed to us by Scheffler, is to use a contour parallel to, but
somewhat above, the real axis, which will smooth, but not
obliterate, the structure in P(E).

(3) To demonstrate that (6.16) is independent of (@ ),
imagine that (4 ) is replaced by (4 )+X, where X is
some constant. This replaces the eigenvalues e; by 6 +g,
and e,. by e;+X, which changes the integral in (6.16) by

Ep dP Er——f X dE=Xf b,n(E)dE=XAN, .—e) dE —oo

The reservoir-energy change p is measured on the same
energy scale as the eigenvalues. Therefore, p is replaced
by @+7, and —pn is changed by —gn. Finally,
(4 )AN; is changed by XbN;. There are no other (4 )-
dependent quantities and the total change in hE is

5bE=X(EN, +bN; n) . —
This is zero because AX, +AX; =n is the nominal charge
on the defect, with charge supplied by the n particles lost
from the reservoir.

VII. COMPARISON BETWEEN THE EIGENVALUE
AND KINETIC-ENERGY FORMULATIONS

The kinetic-energy formalism is consistent in ignoring
all contributions (except the purely elastic) to the energy
density in region 2. All kinetic-energy, exchange-energy,
and Coulomb terms were systematically discarded in this
region. In that way, macroscopic dielectric theory and
microscopic linear-response theory, which must agree
with each other, are made to agree in this situation.

The eigenvalue formulation of the defect energy is not
consistent in this regard: In all derivations of the eigen-
value form of energy functional there is a step where the
Schrodinger equation for g;(r) is multiplied by n;f;*(r),
summed over i, and integrated 0Uer all space. The nor-
malization of the wave functions P; P;*dr = 1 then
brings in the familiar eigenvalue sum &n;e;, which, after
correction for overcounting, replaces the one-particle
terms in the energy functional. Therefore the eigenvalue
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sum necessarily contains contributions from some, but not
all of the individual energy terms in region 2. Since the
underlying Schrodinger equation which gave rise to the
wave functions Pt in the defect crystal contained the po-
tential Um rather than U, the eigenvalue sum will pick up
spurious energy contributions associated with b, p, (r) in
the region R, &r &2R, .

Formal expressions for the difference in energy between
the eigenvalue and kinetic-energy formulations can easily
be derived. Evaluating them demands knowledge of
5 p, (r) (and its density-matrix equivalent) in the region
R, &r &2R„something which we do not have. This sit-
uation calls for a direct numerical evaluation of the differ-
ence. This is work in progress whose results will be re-
ported elsewhere. "

In summary, the choice is between use of a kinetic-
energy formulation whose treatment of the outer response
region, ignoring it, is compatible with the consequences of
using macroscopic response theory in this region and use
of the numerically simpler eigenvalue formulation which
does include some of the energy contributions from this
region in a way which cannot be justified formally but
whose effects, at this preliminary stage, seem to be small.

ACKNOWLEDGMENT

P =(D E—)/4m=. n 1 ——1

E'

1

4m.r

1

Ro

The surface charge density (3.18) on the outer surface is
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giving a total charge on the outer surface of n(1 —1/e), in
agreement with (3.11). The energy expression (A 1) will be
recognized as being of the form (3.19) provided that there
are two sources of polarization potential P& [Eq. (3.20)],
namely o'"', at Ro, and

ino. = —n 1 —— 1

4m.R,

the charge density (3.18) located at R, . The polarization
potential Pz(r) acts on the defect charge for which

Let the crystal be spherical, with an outer radius Ro, and
let the inner radius of the response region be R, . Then
the integral (3.17) is

5U= —— 1—— (Al)
2 e e R,
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APPENDIX: ILLUSTRATIVE EVALUATION
OF DIELECTRIC ENERGY

For a defect with nominal charge n, the macroscopic
averaged defect potential is P(r) =n/er, the E, D, and P
fields will be directed radially outward with E =n!er,
D =eE, and

The a'" is spurious, arising from improper use of the po-
larization formalism: Dropping its contribution to (A 1)
gives

5U= —n PRO 1 ——2, E

which goes to zero as Ro —+ 00.
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