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Pseudopotential density-functional calculations have been performed on silicon self-interstitial su-
percell model geometries to yield extensive information on electronic states. %'e present band struc-
tures, charge densities, and densities of states to identify and characterize electronic states associated
with silicon self-interstitials in the geometries studied. Total energies obtained yield migration bar-
riers for both Si' ' and Si' +' interstitials. %'e also present the results of preliminary total-energy re-
laxation studies and show their effects on electronic states and total-energy calculations, demonstrat-
ing the importance of relaxation in determining migration barriers. Electron-assisted migration is
shown to occur, thus solving the mystery of the disappearing self-interstitial and providing an initial
understanding of migration in low-temperature irradiated silicon.

I. INTRODUCTION

Understanding point defects in semiconductors is one
of the most exciting challenges currently facing con-
densed-matter theory. Even in silicon, the most studied
semiconductor both experimentally and theoretically, our
understanding of the electronic states and formation and
migration energetics of point defects is still primitive.

Total-energy pseudopotential density-functional calcu-
lations are currently the most powerful tool for the calcu-
lation of ground-state properties of crystals. ' Recently,
the scope of calculations has been extended to the study of
surfaces, interfaces, and defects. Here, we report a
study of defect migration.

Silicon self-interstitial migration has been an interesting
subject for two decades. In 1964 Watkins et al. began a
study of low-temperature irradiated silicon which provid-
ed considerable information and several interesting puz-
zles about defects and their migration. Among these puz-
zles was the lack of detection of self-interstitials. Self-
interstitials were not detected even at 4.2 K when vacan-
cies were detected in large numbers. Since interstitials
must be created, the lack of detection presented a mystery.
An important clue was the detection of interstitial alumi-
num impurity atoms which are normally substitutional.
Thus, it was suggested that interstitial silicon could mi-
grate at high speeds even at such low temperatures, and
upon encountering substitutional Al the silicon interstitial
would kick the Al out of the lattice into the interstices
and replace it.

The important question then became how could the mi-
gration of self-interstitials proceed rapidly at low tem-
peratures? One possibility is that the migration barrier is
very low so that even at 4.2 K migration could proceed
thermally. However, such a low barrier is inconsistent
with high-temperature diffusion results, which indicate a
significant energy barrier.

Several suggestions were made to resolve this difficulty.
One of these proposed that electron-assisted transport
might enable transport even if the barriers were high. The
argument proceeds by recognizing that in low-temperature

irradiated samples there is a lot of energy in the form of
electrons in excited states. This energy can lead to migra-
tion if there are different possible charge states of a defect
which have different migration barriers or minimum-
energy positions. Electron-assisted transport was pro-
posed and various possible mechanisms were detailed by
Bourgoin and Corbett. Electron-assisted transport is now
considered to be a very common occurrence for many de-
fects, including the silicon vacancy and aluminum inter-
stitials in silicon.

In 1971 simple electronic energy extended Hiickel
theory (EHT) calculations with only nearest-neighbor in-
teractions were performed by Watkins et al. ' on the sil-
icon self-interstitial. These calculations indicated a very
large energy difference (10 eV) along the previously gen-
erally assumed path of migration, which is the path
through the low-electron-density regions of the crystal.
Using their results they proposed a path through the
bonds as a candidate for electron-assisted migrations.

These theoretical results were challenged recently by
Pantelides et al. ,

" who demonstrated via a Green's-
function pseudopotential calculation of the tetrahedral
density of states that the EHT calculations were unreli-
able. He further argued on the basis of effective-medium
theory' that the low-electron-density path is a more likely
low-barrier path than the path through the bonds.

In a recent paper Baraff and Schliiter' presented
Green's-function transition-state calculations for both the
tetrahedral and hexagonal sites. On the basis of their cal-
culations they were able to argue for a barrier lowering of
Si' +'~Si' ' of 2.2 eV. This suggested that electron-
assisted migration might occur along the low-electron-
density path.

In this paper we describe the first ab initio total-energy
migration calculations. We performed calculations for
both Si' ' and Si' +' migration through the low-electron-
density path. In a later publication, '" total-energy calcu-
lations which demonstrate that this path is one of several
migration paths will be described in detail.

In Sec. II we describe the calculations, methodology,
and geometries. Results are presented in Secs. III and IV.
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Section III contains electronic state results: band struc-
tures, delisltles of states, aild elgelistate chai'ge densities
for unrelaxed and relaxed configurations. Total-energy
migration-barrier and relaxation calculations are present-
ed in Sec. IV. Conclusions are given in Sec. V.

BL

II. CALCULATIONAL METHOD AND SUPERCELL
GEOMETRY

iai ~~ ~ (b)

FIG. 1. Supefcell geoHlet~ I vAth eight host atoQls and an
interstitial near the center. (a) Tetrahedral site. (b) Hexagonal
site.

In order to study the silicon self-interstitial we used two
supercell geometries containing eight and sixteen crystal
atoms, respectively. The superlattice in the first geometry
is simple cubic and is displayed in Fig. 1; the superlatticc
in the second geometry is face-centered cubic (not shown).
The interstitial-interstitial nearest-neighbor distances are
5.4 and 7.6 A, respectively. A11 calculations were per-
formed in both geometries, which enabled us to test the
effects of the supercell model geometry on results. The
interstitial was studied along the low-electron-density path
which passes through the tetrahedral and hexagonal sites
as shown in Fig. l. To assist the readeI in visualizing the
path we show in advance (Fig. 2) the total valence charge
density in the (110) plane obtained from our calculations
for pure silicon and after placing the interstitial at the
tetrahedral and hexagonal sites.

Electronic energies and wave functions were obtained
from momentum-space diagonalization of the Hamiltoni-
an. A plane-wave basis corresponding to an energy cutoff
of 6 Ry (-S50 plane waves in geometry II) was treated
exactly and an additional set up to 11 Ry (-1350 total
plane waves in geometry II) was included in perturbation
theory.

The silicon pseudopotential used was norm conserving"
with S,P,D nonlocal components and the core cutoff radii
of Bachelet et al. '6 Perdew-Zunger Ceperley-Alder'
(PZCA) correlation was used. '

Total energies along the migration path were obtained
using the self-consistent momentum-space formalism of
Ihm et al. '9 Special k pointsz were used for total-energy
integrations. Convergence was checked in the number of
k points. Equivalent sets were used for tetrahedral and
hexagonal sites and for comparison between geometries I
and II. Specifically, for geometry I, four k points were
used at the tetrahedral site, corresponding, after symmetry
breaking, to ten k points at the hexagonal site. After
Brillouin-zone folding, these corresponded to two and five
k points, respectively, in geometry II.

For Si' +' calculations an inert (noncorrelating) uni-
form charge background was used to neutralize the sys-

i,'b)
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FIG. 2. Total valence charge densities (in units of electrons
per bulk primitive cell) in the (110) plane for (a) pure silicon, (b)
Si self-interstitial at tetrahedral site, and (c) Si self-interstitial at
hexagonal site. Dashed circles in (1) and (c) represent unrelaxed
atormc positions.

tern. This affects only the 6 =0 term of the potential (el-
iminating the divergence). This approximation can be
directly tested, along with others, by increasing the size of
the supercell. For thc results reported here, which are en-
ergy differences corresponding to barrier heights and re-
laxation energies, this approximation was found to be ex-
tremely good.

Changes In mIgratlon barflel s and relaxatlon energies
for Si' +' from geometry I to II were found to be less than
0.2 eV. This includes all errors due to the finite supercell
size. The largest error (close to 0.2 eV) was for
hexagonal-site relaxation where, in geometry I, nearest
neighbors have neighbors which also relax due to the sys-
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tern periodicity. All other errors were O. I eV or less.
For Si' ' calculations it was necessary to make a correc-

tion to the energy of the highest occupied band, which is
described in the Appendix. The error due to this correc-
tion process is estimated to be less than 0.3 eV.

III. ELECTRONIC STATE RESULTS

The use of supercell geometries makes it possible to
present electronic state energy eigenvalues as band struc-
tures. In comparison to the pure crystal, the Brillouin
zone of the superlattice is folded smaller, in reciprocal
correspondence to the enlargement of the real-space unit
cell.

First, we will present results for the hypothetical case
of a silicon self-interstitial in an unrelaxed host. Later, we
will allow breathing-mode relaxation of nearest neighbors
and investigate the effects of relaxation on the electronic
structure.

A. Unrelaxed host: Geometry I

Unrelaxed crystal band structures for geometry I (I —L)
are shown in Fig. 3. Figures 3(a) and 3(c) are for the
tetrahedral and hexagonal sites, respectively. For compar-
ison, we show the pure-silicon band structure in Fig. 3(b).
Concentrating for the moment on the pure-silicon band
structure, we note that in the ordinary (two-atom) unit cell
of silicon, the I' Lband struc—ture would show only the
curves shown as solid lines in Fig. 3(b). Because of the
enlarged real-space unit cell of geometry I (with eight
atoms per unit cell), the Brillouin zone is folded in and the
segment X—( —,, —,, —, ) overlaps I L. These a—re triply de-

generate lines and they are indicated by dashed lines in
Fig. 3(b).

Placing the self-interstitial in the crystal shifts bands
and breaks degeneracies. We see from Figs. 3(a) and 3(c)
that although the band structure is extensively modified it
is still possible to associate bands with unperturbed bands
in Fig. 3(b). Thus, we also use solid and dashed lines in

these figures to aid in the comparison with Fig. 3(b).
Note that the triply degenerate states are split into doubly
and singly degenerate states. In addition to the shifting
and splitting of valence-band levels, there appears in the
valence band one additional level which cannot be identi-
fied with those of pure silicon (but corresponds to a
conduction-band state in pure silicon), which has been in-
dicated by a dotted line. At the hexagonal site there is an
additional state which is seen to span the gap in this
geometry, which is also indicated by a dotted line. These
states and resonances should be clearly identified with the
interstitial. Other states which have been shifted signifi-
cantly will also have significant amplitude on the intersti-
tial and will also be identified with changes in the density
of states. Before describing, these states in detail, we
display the band structures of geometry II.

B. Unrelaxed host: Geometry II

Unrelaxed crystal band structures for geometry II are
shown in Fig. 4. Doubling the unit cell from geometry I
to geometry II causes halving of the Brillouin zone. In
the direction I L the ef—fect of this halving is simply to
fold over the L point onto the I point. This unit cell cor-
responds exactly to an eight fold volume change over the
ordinary silicon unit cell by doubling the length of primi-
tive lattice vectors (halving the reciprocal-lattice vectors).
For additional guidance in interpreting the band struc-
tures we also display rough densities of states for the
tetrahedral and hexagonal sites. These are obtained by us-

ing two (five) special k points at the tetrahedral (hexago-
nal) site which correspond to ten k points in the ordinary
unit cell of silicon. More k points would be needed for
good accuracy in the density of states. However, the
present number is adequate when used along with charge
densities for the purpose of identifying defectlike states.
(We note that the density of states for the tetrahedral site
is in reasonably good agreement with that of Pantelides
et al. )
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FICi. 3. Band structures for geometry I (unrelaxed). Center panel is for pure silicon. Left- and right-hand panels are for
tetrahedral- and hexagonal-site interstitials, respectively.
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FIG. 4. Band structures for geometry II (unrelaxed) with density of states. Center panel is for pure silicon. Left- and right-hand
panels are for tetrahedral- and hexagonal-site interstitials, respectively. Thick solid line in DOS plots are for geometries with the in-
terstitial; thin solid line is the pure-silicon DOS for comparison.

1. Tetrahedral site

Looking first at the tetrahedral site we have placed ar-
rows pointing to defectlike states and resonances on the
density-of-states curves. We recognize these states as be-
ing "defectlike" by changes in the density of states and by
looking at charge-density plots which display the nature
of the states. Contour plots of the charge density of these
states are given in Figs. 5(a)—(g) in order of decreasing
binding energy.

From charge densities we can identify the characteris-
tics of these states (some symmetry information is ob-
tained by looking at the degeneracies and the wave func-
tion itself). To clarify the charge-density contour plots we
describe the neighboring atoms of the tetrahedral intersti-
tial [compare Fig. 1(a)]. There are four nearest neighbors
of the interstitial which are located in a tetrahedral con-
figuration at a distance equal to the bulk silicon-silicon
distance. Two of these atoms are located in the plane of
the charge-density plots; they are the atoms of the con-
nected chain displaced upwards. There are six second-
nearest neighbors located on the faces of the conventional
unit cell at a distance 15% larger than the bulk sihcon-
silicon distance. Two of these atoms are shown in the
plane of the charge-density plots located directly above
and below the interstitial. The final set of atoms which
are important in the description of electronic states is ac-
tually comprised of fourth-nearest neighbors which are at
a distance of twice the bulk silicon-silicon distance. Of
the eight fourth-nearest neighbors which are located at the
corners of the conventional cube only four are important.
These four are the outer ends of straight lines of three
atoms which start on the interstitial and pass through the
first-nearest neighbors. Two of these atoms are in the
plane of the charge-density plots. For convenience of
reference they will be called corner atoms. As will be-
come clear, the three-atom linear chains are an important
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FIG. 5. Charge densities of tetrahedral-site interstitial associ-
ated electronic states. See text for details.
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factor in the electronic states of the interstitial.
The defect-associated states in Figs. 5(a)—5(g) can be

described as follows. '

(a) At —13 eV, a state of A& symmetry (thus s-like on
the interstitial) has dropped out of the bottom of the
valence band and can be seen to be almost exclusively s-
like on the interstitial with some bonding to nearest neigh-
bors.

(b) At —11 eV, a resonance of T2 symmetry (thus p-
like on the interstitial) shows strong bonding of p-like in-

terstitial orbitals with s orbitals on first- and second-
nearest neighbors.

(c) At —8 eV, there is a resonance of primarily A&

character. The charge density shown shows that this state
is surprisingly extended and is thus characteristic of the
host. Thus, the supercell used may not be sufficiently
large to give an accurate charge density.

At —5.5 and —7 eV two peaks appear in the density of
states, which, upon looking at the charge density, are ac-
tually bulk-hke states. Closer inspection shows that the
peaks are most likely a result of inaccuracy in our density
of states and would be eliminated with a better sampling
of the Brillouin zone.

(d) At —5 eV, there is a resonance of A~ symmetry
with strong bonding to p-like orbitals on the first-nearest
neighbors and both s- and p-like states on the corner
atoms.

(e) At —4 eV, a resonance of T2 symmetry which is a
clear companion to the A ~ state at —5 eV shows bonding
to p-like states on the corner atoms and some p-like char-
acter on the second-nearest neighbors.

(f) At —0.5 eV, the final resonance in the valence band
with interstitial character is the state which was pulled
down from the conduction band. Having A

~ symmetry it
can be seen to be s-like on the interstitial bonding to p-like
states on the corner atoms.

(g) The companion of the A &-like state at —0.5 eV is in
the conduction band at + 1.5 eV.

The most important structural feature which deter-
mines the nature of electronic states is the buckled hexag-
onal ring formed of nearest neighbors which is perpendic-
ular to the plane of the charge-density plots. These
nearest neighbors are at a distance of 96% of the bulk
silicon-silicon distance. Two of them are in the plane of
the charge-density plots and can be easily identified as the
atoms closest to the interstitial. Charge-density plots for
the hexagonal site are given in Fig. 6.

Most of the defect-associated states identified at the
tetrahedral site can be followed over to the hexagonal site.
Energies and characteristics change somewhat during the
movement. A j[ states become 3 ~+ and T2 states split into
one A2 and two E states With one important exception
the 32 state becomes bulklike.

(a) The defect state which dropped out of the bottom of
the valence band drops still further and is now located at
—13.5 eV. It has A ~+ symmetry and can be seen to be
largely s-like, but flattened and stretched in the hexagonal
ring.

(b) The companion T2 state is now of E symmetry
and forms a torus of charge in the hexagonal ring. Its en-

ergy is only slightly lowered.

We observe that these results show that there is a relative-

ly small A, -T2 splitting of about 2 eV which results in
the pairing of states as follows: (a) and (b), (d) and (e),
and (f) and (g).

Finally, we note that special care must be taken in the
interpretation of charge densities to identify defect states.
For example, in Fig. S(h) we show a state of T& symmetry
which appears to be associated with the defect. However,
this state was obtained by breaking the crystal Hamiltoni-
an symmetry to tetrahedral-site symmetry without the
presence of an interstitial. We distinguish defect states
from bulklike states by comparing such symmetry-broken
bulk states with states of the interstitial calculation.

2. Hexagonal site

Moving to the hexagonal site, the states are complicated
by symmetry breaking leading to degeneracy splitting.
The [111]direction is no longer equivalent to the [111]
direction. For our purposes we will continue to consider
only the [111]direction as shown in Figs. 3 and 4.

FIG. 6. Charge densities of hexagonal-site interstitial associ-
ated electronic states. See text for details.
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(c) The state in the s-p gap (A 1+ ) remains surprisingly
extended and seems to have transformed to a nonbonding
s orbital on the diagonally displaced atoms. It is difficult
to identify as a defectlike state.

(d) and (e) The next pair of states at —5 and —4 eV
(A I+ and E ) can again be seen to be comprised of bond-
ing states with further neighbors. [For comparison of the
density of states (DOS) with the band structure we note
that the state at —5 eV has higher energy along the [111]
direction in this geometry. ]

(f) and (g) Finally, the two states which have dropped
from the conduction band are s-like and p-like at —0.5
and 0 CV, respectively. The state at the bottom of the gap
is remarkable in that it is almost pure p perpendicular to
thc plRIlc of thc hcxagollal ring. Tlllls I't ls R1111os't com-
pletely nonbonding to the crystal. This is the unique 3 p

state associated with the defect. Here, again, in Fig. 6(h)
we show a bulk state which can be obtained by
symmetry-breaking the crystal Hamiltonian,

tended or less extended depending on the nature of their
bonding to the crystal. For example, the lowest-lying lev-
el which is bonding in nature becomes more extended
upon outward relaxation and moves upward in energy,
whereas the defect state at —5 eV—which is nonbond-
ing —tends to become slightly more localized.

D. Charge-density changes

In Fig. 8 we show the charge-density difference upon
adding the Si' +' interstitial at the tetrahedral and hexag-
onal sites. We see the rapid decay of the electron charge
density contributed by adding an interstitial atom.

In Fig. 9 we show the change in charge density upon re-
laxation. Relaxation expands the region of influence of
the interstitial. In particular, the relaxation increases the
nearest-neighbor bond distance and transfers charge from
the interstitial "overbonded" nearest-neighbor bonds to
the contracting bonds further away (reflecting the deepen-
Illg of those bond potcll'tlRls).

We now investigate the effects of relaxation. The
total-energy breathing-mode —relaxation calculation of
nearest neighbors which will be described in Sec. IV leads
to the result that the nearest neighbors relax outwards by
3.5% at the tetrahedral site and 5% at the hexagonal site.
Total valence charge densities for this case were shown in
Fig. 2 with the relaxed and unrelaxed positions indicated
for comparison. The band structures are given in Fig. 7.

Generally, the effect of relaxation on the defect elec-
tronic states is either to cause them to become more ex-

~ y ~ t ~ ~ ~ ~ g

~ ~
~ ~

L/2 L/2

FIG. 7. Band structures for geometry II (relaxed). Left- and
right-hand panels are for tetrahedral- and hexagonal-site inter-
stitials, respectively.

FIG. 8. Total valence charge-density differences upon adding
an interstitial (in units of electrons per bulk primitive cell) (a) at
a tetrahedra1 site and (b) at a hexagonal site.
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TABLE I. Migration energy barriers {in eV).

Si(2+ )

Unrelaxed

1.9+0.1

Relaxed

1.2+0.2

0.5+0.3 1.2+0.3

IV. TOTAL-ENERGY MIGRATION-BARRIER
CALCULATIONS

(b)

FIG. 9. Total valence charge-density differences upon relaxa-
tion (in units of electrons per bulk primitive cell) {a) at a
tetrahedral site and {b) at a hexagonal site.

We now proceed to a description of the total-energy re-
sults and describe migration-barrier and relaxation calcu-
lations. The results for Si' ' and Si' +' migration barriers
in p-type silicon are presented in the left-hand panel of
Fig. 10 and in Table I.

As before, we first consider the case of placing the in-
terstitial in an ideal host environment without allowing
the crystal atoms to distort. The total-energy migration
curves are shown as dashed lines in Fig. 2. We observe
that the energy curve for Si' ' is relatively flat with a
(0.5+0.3)-eV barrier to migration. The stable-charge
state, however, is Si' +' which has a large migration bar-
rier of (1.9+0.1) eV and a minimum-energy position at
the tetrahedral site.

We now allow the host-crystal atoms to relax. Since
the filled electronic states for both Si'o' and Si' +' are
nondegenerate, symmetry-breaking (Jahn- Teller) distor-
tions of the lattice sites should not be important. Thus we
consider nearest-neighbor breathing-mode relaxation at
the tetrahedral site as a first approximation to the relaxa-
tion. Relaxation was studied by evaluating the total ener-

gy at 0%, 5%, and 10%%uo relaxation of nearest-neighbor
bond distances. A parabola was fitted to these points to
determine the minimum energy and relaxation distance.
For the hexagonal site, total energy was minimized in a

Unre I axe d

rel axed

pSi
wL

I-
O

Tet Hex Te t Tet
FICx. 10. Silicon self-interstitial migration barriers for unrelaxed and relaxed Si' ' and Si'2+' along the [111]direction for p-type

{left-hand panel) and n-type {right-hand panel) silicon. The zero of energy is arbitrarily set at the p-type minimum-energy site.
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TABLE II. Relaxation of nearest neighbors in units of bulk silicon-silicon nearest-neighbor distance
and associated energy change. For the hexagonal site, (a) represents breathing, and {b) represents ring
buckling (see text).

Tetrahedral
Relaxation (%%uo) Energy change (eV)

Hexagonal
Relaxation (%) Energy change (eV)

S1(2+) 3.0+1.0 —0.24+0.1 (a) 4.1+1.0
(b) 2.3+1.0

—0.74+0.2
—0.16+0.1

Si'" 3.2+ 1.0 —0.26+0.1 (a) 4.2+1.0
{b) 2.3+1.0

—0.80+0.2
—0.10+0.1

two-parameter space including breathing and buckling
(displacing three atoms of the ring in the [111]direction
and three in the opposite direction, thus preserving sym-
metry). Results are presented in Table II. We note that
the relaxation energies of Si' ' and Si' +' are essentially
the same.

The most dramatic result from the relaxation studies is
that the hexagonal-site relaxation energy is much greater
than the tetrahedral-site relaxation energy, the difference
being -0.7 eV. Thus the barriers are significantly
changed by the relaxation. The Si' ' migration barrier is
found to be (1.2+0.3) eV and is stable at the hexagonal
site. The Si' +' migration barrier is reduced to (1.2+0.2)
eV and remains stable at the tetrahedral site.

In the right-hand panel of Fig. 10 we display the results
for n-type silicon. These are obtained simply by shifting
the Si' +' curves with respect to the Si' ' curves by twice
the gap energy, which corresponds to moving the Fermi
level from the top of the valence band to the bottom of
the conduction band. Thus we see that in n-type silicon
the stable charge state is Si' ', and that it is stable at the
hexagonal site.

V. CONCLUDING REMARKS

Our calculations show that electron-assisted migration
occurs. The electron-assisted transport mechanism is the
Bourgoin mechanism which proceeds as follows. In p
type silicon the stable silicon interstitial will be Si' +' at
the tetrahedral site (see Fig. 10). In the presence of elec-
trons excited into the conduction band by irradiation,
Si' +' can capture two electrons and become Si' '. Since it
is unstable it will fall to the hexagonal site. Then it can
capture two holes, become Si' +', and then fall to the
tetrahedral site, providing a mechanism for transport even
if thermal energy will not enable crossing of the barrier.

In n-type silicon electron-assisted migration will also
occur, as can be seen from the right-hand panel of Fig. 10.
Proceeding now, Si' '—+Si' +'—+Si' '.

Since electron-assisted transport occurs for the two-
electron process,

S'( +) S'(o) S ( +)

it is clear that electron-assisted transport must occur for a
single-electron process,

Si' +)~Si'+)~Si' +'

or

Sl Si ~S1
These one-electron processes will also occur in irradiated
systems. The Si'+' barrier can be obtained to reasonable
accuracy by averaging the Si' + and Si' ' barriers. Our
study indicates that the Si'+' barrier may in fact be very
low and thus may enable electron-assisted transport for
both single-electron mechanisms.

Finally, we would like to note that after this manuscript
was written we became aware of recent similar total-
energy calculations ' using a Green's-function ap-
proach, the results of which are generally consistent with
ours.

Note added in proof. It has come to our attention that
semiempirical total-energy calculations of high-symmetry
interstitial configurations have been attempted by P. Mas-
ri et al. Our conclusions differ from those of P. Masri
et al. ; however, direct comparison is difficult because of
large error bars dictated by self-consistency tests of their
results.
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APPENDIX: Si' ' ENERGY-EIGENVALUE
CORRECTION

In order to obtain accurate total-energy calculations for
Si' ' it was necessary to make a correction to the contribu-
tion of the highest occupied energy level (unoccupied for
Si(2+ ))

At the tetrahedral site this energy level can be seen
from Fig. 4 to be in the conduction band. If we take the
large supercell limit of this calculation we see that the
contribution of this eigenvalue will be that of a hydrogen-
ic level just below the bottom of the conduction band.
The current calculations using density-functional theory
places this level at an energy of 0.6 eV above the valence
band (i.e., the gap is 0.6 eV instead of 1.2 eV). Thus we
must make a correction to the eigenvalue to place it at the
correct energy above the valence-band maximum.

At the hexagonal site there is no need to correct the
eigenvalue for the band-gap error since now it is at the top
of the valence band [see Figs. 4 and 6(g)].
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