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Magnetic model for alkali and noble metals: From diatoms to the solid state
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An effective Hamiltonian of the Heisenberg type is derived from the alkali-metal diatom poten-
tial curves. Its qualitative relevance is exemplified on small clusters. Approximate solutions for the
metal in various types of crystallization are obtained by consideration of one of the most-ordered
spin distributions and by perturbation under its coupling with the less-ordered spin distributions.
The results for Na are in good agreement with experiment for the lattice parameter (4.27 A, experi-

0

ment 4.225 A at 5 K), the cohesive energy (1.19 eV, experiment 1.113 eV), and for the bulk modulus
(0.0065)& 10' dyn/cm, experiment 0.0068 &C 10' dyn/cm ). The close-packed fcc and hcp struc-
tures are nearly degenerate, which explains the low-temperature martensitic transformation. The
model may be extended to noble metals, provided that diabatic (d' s') potential curves are used for
the 'X„+ state of the diatoms, as illustrated for copper, giving reliable results. The connection of the
present model with band models, and possible extensions to open d shells, are discussed.

INTRODUCTION

The alkali metals are frequently presented as the basic
example of the delocalized description of metals, "the
valence electrons are taken away from each alkali atom to
form a community electron sea in which the positive ions
are dispersed. "' The resulting theoretical approach rests
upon the electron gas zeroth-order approximation, the use
of plane waves, and results in the band-structure descrip-
tion. This dominant description has brought a lot of
successes, and seems to receive, for instance, experimental
confirmation from photoelectron spectroscopy. The elec-
tron correlation may be introduced later to this noncorre-
lated scheme, but its treatment remains rather difficult to
achieve. Moreover the direct calculation of the cohesive
properties of the crystal from this approach remains rath-
er difficult.

On a completely opposite side of this delocalized pic-
ture, one finds the Heisenberg description, especially
valid for Mott insulators. In this description the valence
electrons are no longer delocalized, they remain each on
its site, and are weakly coupled through exchange interac-
tions. As demonstrated by Anderson, these effective in-
teractions actually reflect the possible short-range delocal-
ization of electrons from their own site to the neighbor
sites. Both the band description and the Heisenberg ap-
proach suppose that for one valence electron per atom,
each atom has a mean electronic population of one elec-
tron, but the fluctuation is large in the band description
(this fluctuation being reduced by the electron correlation
treatment), while it is supposed to be very weak in the An-
derson approach, the resulting effective Heisenberg Ham-
iltonian dealing with situations without any charge fluc-
tuation.

The contrast between these two descriptions is so strong
that they seem to apply to completely different physical
situations. The first purpose of this paper is to show that

Heisenberg Hamiltonians may be derived and applied to
typical conducting metals as well, and may be very effi-
cient. A very crude effective Heisenberg Hamiltonian is
deduced from the alkali diatoms and introduced in the
solid-state problem, resulting in surprisingly good agree-
ment with the cohesion properties of the metal.

In such an unusual and risky attempt, we have been
directed by our experience on molecules. Following a way
opened by Ovchinnikov, Bulaewskii, and Klein, the
most delocalized chemical systems, i.e., the m electronic
systems of conjugated molecules, have been treated
through the quasidegenerate many-body perturbation
theory (QDPT), choosing the neutral determinants (in the
sense of valence-bond theory), i.e., the basis of X-
electronic functions relevant for the Heisenberg treatment,
as the model space. The solutions of the full vr electron
configuration interaction, i.e., the exact solutions of a
Hubbard, or Pariser-Parr-Pople' (PPP) type Hamiltoni-
an have been obtained to a high accuracy by building ef-
fective spin (i.e., magnetic) Hamiltonians which are a sim-
ple generalization to higher orders of the Anderson-
Heisenberg Hamiltonian. Some important collective
operators involving four or six sites and electrons were
shown to play a role in cyclic structures, but the simplest
Heisenberg Hamiltonian introducing only effective ex-
change between nearest neighbors alrey, dy gives a qualita-
tive estimate of the molecular electronic energy. The
model was applied to aromatic compounds which are sup-
posed to be the most metal-like molecules, suggesting that
its validity is not restricted to the case of weak interac-
tions (i.e., near degeneracies between singlet and triplet sit-
uations).

The effective magnetic-type Hamiltonian was first de-
rived by perturbing the degenerate subspace of neutral
configurations under the influence of the ionic ones, but it
may be shown that its structure remains the same besides
the radius of convergence of this perturbative develop-
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ment. Other (nonperturbative) approaches" may be used
to derive the effective Hamiltonian for the case of strong
couplings between neutral and ionic states (i.e., for the
case of highly delocalizable systems), and the resulting ef-
fective operators keep the same form, ' with larger ampli-
tudes.

In a later stage of work, ' ' a two-body Heisenberg
operator for conjugated molecules has been extracted from
accurate ab initio calculations on the ethylene molecule,
involving extended basis sets and large configuration in-
teractions (CI's). The operators were geometry dependent
and the resulting Hamiltonian allowed us to perform
geometry optimizations of medium size conjugated mole-
cules; the results' for the ground-state geometries were in
surprising agreement with experiment (agreement within
0.015 A with experimental bond lengths) for linear,
branched, (poly)cyclic, aromatic or nonaromatic, alternant
or nonalternant molecules; the Jahn- Teller distortions
were correctly treated. The model was able to treat neu-
tral excited-state geometries of linear polyenes; it also al-
lowed a discussion of the cis-trans photoisomerization
mechanism and a correlated treatment of the soliton de-
formations. '

Our experience on molecular problems therefore con-
vinced us that effective Heisenberg-type Hamiltonians
might be obtained and successfully used on typically delo-
calized systems. Our hypothesis may be related to an ear-
ly suggestion of a "resonating valence bond" description
of metals formulated by Pauling the relationship of this
model with the Heisenberg Hamiltonian and Neel antifer-
romagnetic state had been discussed by Anderson. '

I. THE EFFECTIVE MAGNETIC HAMILTONIAN

A. The effective Hamiltonian approach

For a molecular problem, assuming the Born-
Oppenheimer approximation, i.e., reducing the Hamiltoni-
an to its electronic part in the field of fixed nuclei, the nu-
merical calculations are generally done using a finite set of
monoelectronic functions X~ (usually atomic orbitals cen-
tered on the nuclei). For an n-electronic problem, one
may build a finite space of N electronic determinants from
these mono-electronic functions,

P= g )IC, )(E ~, (2)

the numerical problem of the full CI is the search for the
eigenvalues of a projected Hamiltonian

For nonminimal basis sets, this projected problem is al-

or from orthogonal combination of the XJ (the molecular
orbitals). The exact Hamiltonian is projected into this fi-
nite space X. If one defines the projector P on these deter-
minants,

ready a formidable task for polyatomic problems.
The basic idea of the effective Hamiltonian strategy is

to reduce the problem through a further reduction of the
number of determinants. One may choose a certain num-
ber of determinants E, i.e., a subspace S (hereafter called
model space) included in X but of much smaller dimen-
sion, on which one may hope that the few searched states
have large components. One defines the projector

Po g—~K)(K
~

K6S

and looks for an effective Hamiltonian defined on S only
satisfying the two basic equations

If p is the dimension of the model space, the effective
Hamiltonian is p dimensional and its p (nonzero) eigen-
values are p eigenvalues of H', the corresponding eigen-
vectors g of H' being the projections of p eigenstates
%~ of H'. The philosophy of the effective Hamiltonian
approach is (i) to reduce the dimension of the matrix to be
diagonalized, and (ii) to project the information of the ex-
act Hamiltonian into a reduced space of n-electronic wave
functions. The counterpart of this second statement is
necessarily the increased complexity of the effective Ham-
iltonian. Starting from the exact Hamiltonian (which only
deals with bielectronic r,z operators) in a huge basis of
determinants one wants to obtain the lowest states ener-
gies from diagonalization of moderate size matrices, but
the price to pay for that is the introduction of unusual
many-electron operators. '

Two ways may be followed to reach H' once Po has
been chosen. The first consists in using one of the various
perturbative expansions of the quasidegenerate (many-
body) perturbation theory (QDPT). One may also follow
the wave operator formalism, starting from Bloch's equa-
tions, ' in an iterative nonperturbative scheme, " which
converges for larger couplings between the model space
and the complementary space. '

The most famous application of the effective Hamil-
tonian approach concerns magnetism, and introduces
directly the Heisenberg spin Hamiltonian. One considers
a set of n atoms I, every one bringing one electron and one
atomic orbital i (i.e., two spin orbitals i and i) One ma.y
suppose that the lowest states of the problem have large
components on the so-called neutral or covalent configu-
rations in which each atom bears one electron

@«„«,i= J
(a)(b)(c) (n) f, (a)=a or a

with all possible spin distributions.
The neutral determinants only differ by the spin distri-

bution. Their number is C„" if one considers the S, =O
or —,

'
problem, while the total number of determinants for

this minimal basis set problem is (C„" ) . Then the model
space may be chosen as spanned by the neutral deter-
minants, and one may treat perturbatively their interac-
tion with ionic determinants such as A B+,

P;,„;,= ~

aa(c) (n)
~
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in which one atom (or k atoms) bears a negative charge
(two electrons) while another one (or k other atoms) has
no electron. The resulting effective Hamiltonian
transforms this delocalization effect into effective ex-

change operators coupling the different neutral deter-
minants, i.e., the various spin distributions. The simplest
of these effective Hamiltonians is the Heisenberg Hamil-
tonian; the effective exchange operator is typically antifer-
romagnetic (i.e., negative) since it results from a second-
order coupling with the ionic terms, as explained by An-
derson. The effective operator reduces drastically the
size of the CI problem through a projection into the sub-
space of the various spin distributions.

One should notice that the well-known diatomics in
molecules (DIM) method' is identical, for the case of
atoms containing one electron per center in one basic
atomic orbital (AO), to the simple Heisenberg Hamiltoni-
an

H' = Q K~Sp.Sq+f(R)

[f(R ) being a scalar functional depending on the
geometry], as will be evident later. The relative successes
and some failures of the DIM method for small clusters of
hydrogen molecules H„are summarized in the excellent
review by Tully. The derivation of the DIM method is
based on a partition of the Hamiltonian, the choice of
specific configurations and specific approximations, and it
is an amazing fact that such entirely different derivations
lead to the same effective Hamiltonian. The connection
between the two formalisms is evident from the equations
given in a recent work. '

ab aa

Fab

—Kb

—Fb
F b

F Fob

—Fb —Fb
E]+~E K b

E b Ei+~&

ab ab
—+QDPT~ EI —g

. —S E]-

where the diagonal terms E' and off-diagonal term g may
be approximated by a second-order development as

2F,bEi =E]—
AE '

2F~b
S =—Kab+

B. The diatomic problem

I.et us consider a diatomic molecule built from two al-
kalilike atoms A and B, each one bearing one valence elec-
tron only in an s-type atomic orbital (a' and b', respective-
ly). These two AO's may be orthogonalized first into a
and b, and the CI (S,=O) problem restricted to the
minimal basis set may be seen as a matrix in a basis of
four determinants, two of them being neutral (ab, ab ), the
two other ones (aa and bb) being ionic in the sense of the
valence bond (VB) theory. The neutral determinants are
much lower in energy and the QDPT may be applied to
build an effective 2 &(2 Hamiltonian

where g is an effective exchange operator.
The resulting eigenvalues are necessarily for the triplet

(ab+ab)/~2: E( X„+)=Ei—K,g

and for the singlet

(ab ab)/—~2: E('X~+)=E, +K,&
—2g

=E(3X+)—2g .

(10)

The same kind of treatment might be applied to larger
basis sets. One might introduce, for instance, other s orbi-
tals to allow for the change of the s distribution in the
molecule, or p orbitals to make possible the hybridization.
These supplementary AO's should be orthogonalized first
to the basic a and b AO's by projection into the orthogo-
nal subspace, then orthogonalized among themselves.
The resulting s,' or p,

' AO's would be involved in
i
s, sb

~

determinants (for the molecular contraction),
i s,'s,'

i

determinants (introducing the radial correlation of ionic
structures),

i p,'p,'
i

determinants (for the angular correla-
tion of the ionic structures), ip, pb i

determinants (for the
van der Waals dispersion forces), etc.

The resulting 2X2 effective Hamiltonian would keep
the same form and would incorporate these second- and
fourth-order effects in the effective g operator. As a limit
the effective Hamiltonian would allow us to reach the ex-
act energies of the 'Xs+ and X„+ states. If one knows then
the potential curves of these two states, it becomes possi-
ble to introduce an essentially repulsive function of the in-
teratomic distance r, R(r), which reduces to the X„+ ener-

gy

R(r)=E( X„+) . (12)

This function incorporates the van der %'aals dispersion
energies and may exhibit a long distance weak minimum.
The amplitude of the effective exchange operator g,b(r) is
given by

g,„(r)= [E( X+ ) —E('X+)]/2 (13)

as noticed by Poshusta and Klein for the Hz problem
and its extension to the H„cyclic situations.

To go to larger systems involving more than two atoms,
one might proceed in an analogous way. But in principle
the orthogonalized AO's for a three-atom problem are dif-
ferent from the orthogonalized AO's of the two-atom
problem, and the effective exchange operator g&z is not
transferable from one system to a larger one. It is well
known that the orthogonalization tails are rather large and
extend on a series of atoms for alkali clusters and solids.
This lack of transferability would result in a serious prob-
lem if the effective operator formalism had to be
developed on these orthogonalized AO's. Two approaches
may be followed, which should ensure a better transfera-
bility. The first one consists in building the effective
operator in a basis of nonorthogonal determinants, built
from local nonorthogonal AO's; the model space then de-
fined from the neutral VB nonorthogonal determinants,
and the resulting effective operator problem would turn to
be
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where S is an overlap matrix of scalar products between
the nonorthogonal neutral determinants. To reach H' in
such a problem, one should develop a nonorthogonal ver-
sion of the quasidegenerate (Rayleigh-Schrodinger) pertur-
bation theory, as has been done for the usual nondegen-
erate expansion.

A simpler procedure might be found by another choice
of the Po model subspace in Eqs. (5) and (6). Instead of
using the best valence atomic orbitals s of the atom, i.e.,
the s solutions of the atomic ground-state Hartree-Fock
problem, one might introduce nonoverlapping s-type orbi-
tals such that

&S. I~b&=o,

sa
I
so & Illaxl111u111,

or such that if

g=
I

1T, . . ,nns .
I

is the determinant built from the core AO s and the s orbi-
tal,

—= minimum .

The zero overlap conditions might be fulfilled in different
ways, either by cutting the long-range side of the orbital,
in a smooth or in a discontinuous manner, or by compel-
ling the wave function to be limited in a finite box; cf.
Fig. I.

Neutral orthogonal determinants would be built from
these s contracted s orbitals, and "virtual" orthogonal sup-

plementary orbitals should be added to the basis set to
correct the artificial defect of the s orbitals. The Po rnodi-
fied model space spanned by the neutral determinants
built from s orbitals would be used to build the effective
Hamiltonian. For a two-atom problem,

Po
I
ab——) & ab

I +
I
ab & & ab

I

while for a three-atom problem

Po ——
I
abc ) & abc

I
+ I

abc ) & abc
I
+

I
abc ) & abc

I

The resulting effective Hamiltonian would be identical to
the one obtained from S '~ orthogonalized atomic orbi-
tals. This comment illustrates the fact that the effective
Hamiltonian is not strictly dependent on the choice of the
model space: different model spaces (i.e., different projec-
tors Po) may lead to the same effective Hamiltonian in its
operatorial form (i.e., same matrices) but spanned by dif-
ferent (isomorphic) model spaces.

If one uses such a basis of intrinsically orthogonal
AO's, the transferability of the matrix elements from the
two-atom problem to a three-atom problem or to larger
clusters or to the solid is less questionable. Of course, in
the three-atom problem the effective ab exchange operator

should be different from the ab exchange operator in the
two-atom problem

gab = & I
&~

I I ~(2) I

even for identical Rab distances since the presence of the
third atom C should modify the energies of the excited
determinants outside of Po, and should allow some pertur-
bative travels through c. But the effective exchange
operator between a and b in ABC may be expanded as

gab(c) gab+~gab(c) ~ (15)

where the three-body increment 5gab(c) may be hoped to be
small. Such a development has been explicitly derived
elsewhere ' for a Hubbard-type Hamiltonian and it has
been shown through a perturbative expansion that 5g,b~, ~

is much smaller than g,b, in the
1 —I

I

C

or

geometries. In the same way it has been shown that the
through-bonds g„~b) exchange in the

FIG. 1. Possible spatial contraction (a) or truncation (b) of
the atomic orbitals (schematic view}. Solid lines, s Hartree-Fock
atomic orbital; dotted lines, s concentrated atomic orbital.

A —I —g

cluster remains very small.
As a first attempt, the present paper will reduce the ef-

fective Hamiltonian, which should in principle involve
three-atom, four-atom, etc., operators to the effective
two-atom interactions. The possible strategy to include
these many-body corrections will be discussed in the final
section. For the present time the effective Hamiltonian
simply includes
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R(r J )=E('X+(r~i)), (16)

(b) two-center effective exchange operators occurring on
atom pairs which present a spin alternation. These ex-
changes take place on both diagonal

(17)

and off-diagonal operators of opposite signs and equal
amplitude

(18)

also extracted from the diatomic problem

g(r;, ) = ['X„+(r;,) —'X„+(r;,)]/2 .

The effective Hamiltonian is bielectronic

H,« gR;;+——g;, +g;", . (19)

As an example one may illustrate its construction on
three- and four-atom clusters, which may give some esti-
mate about its qualitative relevance since such clusters
have been rather accurately studied through ab initio
well-correlated treatments. Let us specify before the ori-
gin of the potential curves used hereafter in the calcula-
tions.

Numerical assumptions about the diatomic potential
curves. The 'Xs+ and X~+ potential curves of the diatomic
X2 molecules have to be known not only near the equi-
librium distances of the ground state [r,(XI)] but at the
larger interatomic distance r of the metal [r lr, (X2)=1.2]
and at the metallic second-neighbor distance r =re or
r(2/1 3) since the second neighbors will play an impor-
tant role. Even for the ground state Morse curves or poly-
nomials fitted on the spectroscopic constants would not
give reliable values for these distances and accurate ab ini-
tio curves have been preferred when available. For the
triplet excited state, ab initio calculations aI'e necessary to
get some information on the very important repulsive
wall. As a consistent choice, the curves proposed by
Konowalow and co-workers have been utilized for Li2
(Refs. 25 and 26) and NRI. For Li2 the agreement with
experiment is almost perfect [for 'Xz+r, =2.69 A (experi-
mental, 2.67 A), D, =1.04 eV (experimental, 1.06 CV)].
For Na the core valence correlation begins to play a role,
and the calculations did not. include this effect, resulting
ip a somewhat too long [r, =3.172 A (experimental, 3.079
A)] and too weak [D, =0.715 CV (experimental, 0.748
CV)] bond. As a result of this slight lack of attraction, the
calculation of the Na solid should present a slight overes-
timation of the lattice parameter and a slight underestima-
tion of the cohesion energy with respect to what would be
obtained from the usc of the exact diatomic potential
CurvCS.

FoI' K and heavier atoms the lack of reliable potential
curves seems to prohibit calculations for the present time.

(a) two-center repulsive diagonal or scalar opeiators,
which disregard the spin attribution of the electrons on
two interacting atoms

R;~ =R(r~j ),
and which are extracted from the diatomic problem

[One of the best calculations on KI (Ref. 22) (including a
core-valence correlation correction) is in error of 0.03 CV

on the dissociation energy. ]

Sac

where gR =R,b+R„+Rb,
F01 1socc11c gcolTlctI'1cs

gR —gac —gbc

B

[r,b ——rb, ] this three-dimensional matrix splits into sym-
metric and Rnt1syIIlIIlctf1c parts by coIls1dcf1ng the vcctofs
(abc+abc)ll 2 The c.ombination (abc abc)/v 2—is a
symmctf1cal A ] clgcnvcctof ~ thc cofrcspond1ng clgcnvaluc
of which

E2 ——2R (r ~ )+R (rz ) —g(r l ) —2g(rl )
A)

may be transformed in terms of the potential curves

E,„=E('~,+(.,))+[3E('~„+(., ))+E('~,+(r, ))]/2
1

=Eo(XI)+[3E('&„+(r)))+E('&s+(r t ))]/2

which is identical to the DIM result.
The minimum corresponds to the diatomic ground-state

r2 distance and a somewhat larger r1 distance, i.e., to the
interaction between a diatom and a weakly attracted atom.
The association energy between X2 and L
(i.e. , E(XI)—[E(XI)+E(X)]) is a first crucial test for
the model. The resulting energies reported in Table I are
in reasonable agreement with the best ab initio estimates.
The interaction energy is somewhat too weak and the r]
distance is somewhat too large but the qualitative proper-
ties of the A& surface minimum are well reproduced
without introducing three-body operators.

The 82 antisymmetrical eigenvectors are solutions of
the 2&2 matrix

abc (abc+abc)/V 2

gR —2g(r 1 ) g(r 1 )1/2

g(rl)1 2 gR g(r~)—
The lowest eigenvalue of which is

E(182)=2R(rl )+R(r2) —3g(r, ) .

Tllc po'tclltlR1 sllrfRcc of this state cxlllbl'ts R valley foI' R

certain value of r, slightly larger than the equilibrium dis-
tallcc of tllc diatom (6.3 R.ll. fol NR3), wltll a nlllllnllll11
for an obtuse geometry. The rz optimal distance corre-

C. Three- and four-atom clusters

Thc three-atom problem Icduccs to R three-dlmcnslonal
matrix since three (S,= —,

'
) determinants may be built,

namely abc, abc, and abc (a pmper approach should use
the nonoverlapping a orbitals, but for the sake of simplici-
ty the tilde is omitted hereafter) and the effective Hamil-
tonian is
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sponds to the minimum of the X„+ dimer. This minimum
is slightly below the linear configuration which represents
a saddle point, as in the ab initio calculation. The B2
minimum is slightly below the A

&
minimum

[E( A') —E( B2)= 1.6 kcal/mole for Li3, 0.7 for Na3, in-
stead of 1.3 and 0.7, respectively, in the ab initio calcula-
tionsj.

I

These results summarized in Table I show that the
qualitative features of the two lowest potential surfaces of
the X3 problem are nicely predicted from this very simple
model. The main defect concerns the shape of the B2
minimum configuration, for which our r2 value is too
large. Some three-body contributions are lacking, espe-
cially some fourth-order contributions

t-) w) (+)

(where 0 and e represent a and P spins, respectively) resulting in attractive diagonal

'0* O~ ~O

and off-diagonal

O O+,
r r I

operators. These corrections involve 2 C+ intermediate states for which the electrostatic interaction would tend to
shorten the 2-C distance between the nonbonded atoms. This interaction would lower the energy of the Bz minimum
with respect to the linear B2 saddle point, which is underestimated in our two-body treatment. Nevertheless its results
are surprisingly good.

As a further test the X4 problem has been analyzed. Six (S,=0) determinants span the effective Hamiltonian

[abed
f

gac gad gtc Ad

/abed
/

gbc

fabcd/ fabcd
f

/abed/ /abed/

gac g bd gad

gbc XR gab ga'd gsc gcd gab gcd gad

/" i r2

DIM' or HH

CI'

r=2. 74

DE=9.8
r=2.91

DE=9.8

DE=4.6

a=50
r~ ——2.66
r2 ——3 ~ 17

AE= 10.1

a=52
r j

——2.70
r2 ——3.07

EE=9.2
a=54'
r )

——2.78
rg ——3.08

DE=9. 1

a = 101'
ri =2.75
r2 ——4.24

AE= 11.7
a =69'

r&
——2. 80

r, =3.17
DE=9.2

a=73
ri ——2.78
r, =3.30

hE= 10.4

Na3

O

TABLE I. X3 conformations {in A) and binding energies {in
kcal/mol) relative to X+X2 ~

[One may notice that the sum of the elements of a line (or
column) is equal to gR =g, R,z, as dem"onstrated previ-
ously. ] This 6&&6 matrix may be diagonalized explicitly
if sufficient symmetry is introduced. The minima are
known to correspond to planar D2& geometries (square or
rhombus or distorted tetrahedron geometries), for which
the solutions may be found explicitly in function of three
interdependent distances, the perimetric one rj and the
two diagonal ones r2 and r3.

The lowest solution is a symmetrical singlet state

'E"'= QRtj —6g(r~),

u(abcd+abcd——)+P(abcd+abcd+abcd ~abed)

which is dominated by the spin alternating perimetric dis-
tributions abed and abed. The energy minimum corre-
sponds to a planar square configuration with a rather long
interatomic distance (2.77 A for Li4, 3.16 A for Na4).

The second singlet state solution is

DIM" or HH

CI'

'Reference 28.
"Reference 29.
'Reference 30.
Reference 31.

r=3.4
DE=7.8

r=3 ~ 38

DE=5.5

a =51'
r I

——3.06
r2 ——3.56

DE=7. 1

a=52'
ri =3.22

2 3.72
b,E=7.8

a =89'
r~ ——3 ~ 16
r, =4.47

DE=7.8
a=73

r~ ——3 ~ 31
r, =3.95

DE=8.5

'E"'= gR'J —2g(r') —2g(r2) —2g(r3)

which may be expressed from the energy of the diagonal
diatomics as

(~) (~3) (~~)E =E„c+EgD+4R(r~)—2g(r~) .

It is clear that the corresponding minimum is obtained for
a distorted tetrahedron representing the interaction be-
tween the AC and BD molecules in their ground-state
geometry. This intermolecular configuration is less stable
than the square. Surprisingly enough this interaction has
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been found to be repulsive in early ab initio CI calcula-
tions and recent works have not reexplored it.

The best CI calculations find (see Table II) a slightly
bonded square (2 kcal/mol for Li4) which distorts into a
rhombus [stable by about 15 kcal/mol with respect to
2Li2, 9.4 kcal/mol with respect to 2Naz (this ordering be-

ing rather unexpected)]. The rhombic solution should be-
long to the 'E'2' surface, but the Heisenberg-type Hamil-
tonian or DIM Hamiltonian suggest that the planar
rhombus is a BD singlet molecule surrounded by two
weakly interacting atoms A and C. The stabilization of
the rhombus comes from specific large interaction with
the dionic configuration 2+8 C+D . The CI predicts
the triplet lowest configuration to be a bent square. This
would agree with the MM solution

atom minus the energy of the isolated atom). From our
experiment on molecules, one may suggest a perturbative
procedure, which allows a deductive approach to the
cohesive energy and properties.

A. Method: example

Let us consider a well-behaved graph, such that it al-
lows one or several perfectly alternative spin distributions.
For instance, the graphitelike hexagonal planar structure
allows one to write two equivalent perfectly alternating
spin distributions where the open circles indicate P spins,

=E3(AC)+E'(BD)+4R (r i ) —2g(1)

II. SOLIX) STATE

The solution of the Heisenberg Hamiltonian for the
three-dimensional crystal cannot be obtained exactly, and
specific approximations must be proposed to reach an esti-
mate of the cohesive energy E«h (i.e., the total energy per

0

TABLE II. X4 conformations (in A) and energies (in
kcal/mol) relative to 2X2.

square rhombus distorted tetrahedron

Li4

which represent the interaction between the BD singlet
molecule and the long AC triplet molecule.

The conflict concerning the DIM or Heisenberg Hamil-
tonian predictions and present CI results reflects the lack
of important four-body contributions in the Heisenberg
Hamiltonian which had been noticed in the study of the vr

systems. However, as will be explained below, the four-
body terms should play a less important role in the metal
than in the small clusters.

/
/VJ
/

/
/

The corresponding determinants
I

0 & and
I

0'
& neces-

sarily have the lowest energy on the diagonal of the
magnetic-type Hamiltonian since they present spin alter-
nations on all the chemical bonds, i.e., between all the
nearest neighbors. In this specific example each atom is
engaged in three alternating bonds, and neglecting the
long range 1-4 interactions, the energy of

I
0 & and

I

0'&
1s

(0
I

H"
I
0 &

= (O'
I

H"
I

0'& =n(3R —3g)/2, (20)

where R is the repulsion between nearest neighbors and g
the corresponding attractive effective exchange. The —,

'

coefficient avoids counting each interaction twice. This
gives a zeroth-order estimate of the cohesive energy,

DIM'

Na4
DIM'

r=2.77

DE=23.4

r=3 ~ 16

AE= 15.7

r i
——2.74

r, =3.04
hE= 15.4

r l
——2.67

rq ——3.18
BE=20.1

r (
——3.08

r2 ——3.56
EE=13.8

E,',h
——(3R —3g)/2 .

But these perfectly spin-ordered determinants interact
with less ordered distributions. They interact first with
the determinants which result from

I
0 & or

I

0'
& under a

single spin interchange W,~ between bonded atoms a and
b,

&0 IH I o'ababo; I 0& = &o
I
~

I ~ah I
0& =g.»

'Reference 28.
Reference 33.

rl ——3. 15
rq ——3.48

DE= 9.4
~'.b I

0&=
o

o /
r
e
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Such a determinant is less ordered than
I
0), and its

energy is much higher, since four spin alternations have
been lost by this single spin exchange

&~.',0 a "I~.', 0& —&o a"Io&=4g

It is clear that u, (, I
0) and

I

0') do not interact since
the spins still differ on n —2 atoms

& ~.', 0 Ia'"Io') =o.

and to a negative energy contribution

2 2
4gabgef

(4g.b)(4g,f)4(g b+g f)
gab gef

16(gab+gef )

32

while the two bonds also contribute to the double summa-
tion e' '((tI"'

I

1()"') by
One may therefore be tempted to forget the spin degenera-

cy between
I
0) and

I

0') and to perturb
I
0) only, as if

it was not degenerate. The resulting second-order estimate
would be

2
gab gef

4gab 4gef

2
gef gab 1=W(gab+ gef )

(2)
&0 =

bonded

I &o Ia "I~,o& I'
(o Ia "Io) —(~' o Ia'"I~' o)

2

= —X = —X—gab g.b
bonded

(21)

and the second-order contribution to the cohesive energy
will be

32
'

For equal bond lengths the two contributions cancel, and
with them the fourth-order contributions varying as the
square of the number of atoms, as physically desired.

Such a cancellation cannot occur when two bonds are
connected; if they have a common atom such as ab and bc,
the double spin exchange on ab and bc cannot occur, the
bc exchange becomes impossible after the ab exchange

~Fcoh = — ~Eeoh = I:3&—3(1+ 6 )g 1 2co
8

(22)

()
IIK AEgr AE0JEEOg

The perturbation expansion may be pushed to fourth or-
der (the third-order contribution being zero). The general
expression of the fourth-order energy is

/a b

/ o

V. /
/a bg

/ o

and there is no contribution from the ah+bc pair of
bonds to the "triple" summation, while that pair of bonds

contribute to e' '(p'"
I

()'I'"). Each of these pairs of con-
nected bonds gives a repulsive contribution

(2)(y(1)
I

y(1))

r

(2)&~1
I

~1&
r aEor J AEOJ

(23)
1

64 (gab +gbe )

Moreover in the double summation of e' '(p'"
I
1tI'") I

and J may be equal and since each bond has four correc-
tion bonds, the repulsive fourth-order correction may be
taken as

It is clear that in the triple summation I and K must result
from one spin exchange on two different bonds, ab and ef
for instance, and that J is then necessarily obtained by
performing both spin exchanges.

The triple summation actually reduces to a double sum-

mation, and important cancellations occur between the
two double summations, as is well known for the many-

body problem, where the cancellations are expressed in
terms of the linked cluster theorem. In ihe present case,
the cancellations are easily understood by considering two
independent (nonconnected) bonds ab and ef Then these.
two spin exchanges give rise to four possibilities in the
"triple" summation

I J E
0) M $Wgf I

0) Wef I
0)

~ah I
0 & ~ab~ef I

o & ~ S I
0 &

~;, I
0& ~.',~,', I

0 & W, I
0 &

W, I0& WbW, I0) ~., I0&

e(4) y g
6

ab

and the fourth-order contribution to the cohesive energy is

(24)

The perturbation expansion seems to be nicely converging.
An improved expression of e( ' might be found by no-

ticing that while the M,be I
0) intermediate state J in

the triple summation actually lies Sg above
I
0) if ab and

ef are sufficiently remote, its relative energy is only 6g if
ab and ef are nonconnected neighbor bonds, such as in

././' 'X. f/'

/

energy 0
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B. The alkali metals: Derivation and results

This prevents a strict cancellation with the corresponding
contributions in e( )&g'"

I
P'"&; the resulting negative

contribution would slightly diminish the preceding
fourth-order estimate.

However, one must remember that the perturbation ex-

pansion from
I

0 ) only cannot converge strictly since
after a certain number of permutations one should ap-
proach or even reach the degenerate

I
0') determinant.

But for a well spin-ordered cluster
I

0') can only be
reached after a spin exchange on all bonds, i.e., at a high
order of perturbation if the number of bonds (or of atoms)
is sufficiently large. The divergence should occur at a
very high order of perturbation. In other words, the per-
turbation should be asymptotically convergent.

Another more rigorous approach would consist in ap-

plying the quasidegenerate perturbation theory again,
choosing now I I

0),
I

0') J as the model space. The re-
sulting effective 2)&2 Hamiltonian 4 on the most spin-
ordered distribution would give the lowest states of the
problem. In practice for sufficiently large clusters this

QDPT approach will lead to the same low-order energies
as the independent perturbation of

I
0 ) or

I

0') since the
effective coupling between

I
0) and

I

0') ((0
I
~

I

0') )

can only be reached through a travel

& o
I
a

I
I ) (I

I
H

I
J ) . (I('

I
II

I

o'&

which changes the whole spin distribution and which can
only appear at a very high order of perturbation. The
direct perturbation of

I
0 ) only may be considered as the

construction of the diagonal part (0
I
A

I
0 ) of the new

2g2 effective Hamiltonian. The difference between the
nondegenerate and quasidegenerate approaches is zero at
the fourth order (except for the four-atom cluster

Three (or four) types of crystallizations have been
analyzed. One is the simple cubic system which will be
shown to be very high in energy. The body-centered-cubic
(bcc) system is shown to give correct estimates of the lat-
tice parameter and cohesive energy, and the perturbation
converges quite well for both cases, due to the possibility
of introducing a highly ordered zeroth-order spin distribu-
tion. The compact packings Inamely the face-centered-
cubic (fcc) and hexagonal-close-packed (hcp) systems] do
not suggest such a highly ordered zeroth-order spin distri-
bution and the perturbation expansion is less nicely con-
vergent, exhibiting some oscillations from the zeroth to
the fourth order. Nevertheless these compact packings
appear to give a nearly degenerate cohesive energy and a
correct lattice parameter, in agreement with low-
temperature experiments.

The basic distance parameter r will be the distance be-
tween nearest neighbors. Owing to the rapid decrease of
the effective exchange parameter g it is clear that the
choice of the zeroth-order spin ordering must determine
the spin alternation between nearest neighbors. However,
for three-dimensional lattices the distance r' to the second
neighbors is rather small (2/V3r=1. 155r for bcc crys-
tals), and we decided to include it in the calculation of the
energies. More remote atoms have been disregarded in the
calculation but their neglect does not mean that our ap-
proach only includes short-range effects since the intro-
duction of highly ordered spin distributions and their sta-
bilization are collective effects.

The simp/e-cubic crystallization

E,',t,
——3R (r)+48 (r') —3g(r) . (25)

The second-order correction results from the coupling

The highest spin ordering is given in Fig. 2 and corre-
sponds to a perfectly ordered distribution in the three per-
pendicular planes; each atom i has six neighbors, all of
them of opposite spins and the eight second neighbors at
r'=rv 2 all have the same spin as i The zerot. h-order
cohesive energy is then (remembering that each interaction
must be counted once only)

Xd/
for which the exact diagonalization of H' is easy work).

The preceding example of the graphite-type hexagonal
planar lattice has been treated explicitly in detail for a
pedagogic purpose; the handling of the same method for
tridimensional lattices is a bit more difficult, but may be
achieved similarly by hand.

FIG. 2. Zeroth-order spin distribution on the simple cubic
lattice. The circles (stars) represent a (P) spins.
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g(r)'aE,".„'=—.. . , , ,
=3 .)f )

(with f(r) =g(r) l[10g(r) —16g(r')])

(26)

E,',), ——3R(r)+4R(r') —3g(r)[1+f(r')] . (27)

The fourth-order correction will result from the processes
in e' '(g'"

~

f'") [cf. Eq. (23)] which concern the same or
connected bonds. Each bond has 10 spin alternant con-
nected bonds and the repulsive fourth contribution to the
cohesive energy will be

aZ,".„' =3X11
[10g(r) —16g(r')]

=3g(r) &&11f'(r)

TABLE III. Structural properties of metallic lattices.

bcc
Order 0
Calc. order 2
Calc. order 4
Expt. '

fcc or hcp
Order 0
Calc. order 2
Calc. order 4
Expt. ' fcc
Expt. hcp

Simple cubic
Order 0
Calc. order 2
Calc. order 4

le
(a.u. )

5.87
5.66
5.83
5.71

6.01

6.2
5.85
5.88

5.68

5.69

(a) Li

(eV)

1.789
2.150
1.979
1.63

1.728

= 1.63

1.46

1.63

Bulk modulus
(10' dyn/cm )

0.122
0.153
0.152
0.116

with Wb
~
0), i.e., from one spin exchange on bonds; the

resulting determinant loses 10 spin alternations between
nearest neighbors and restores 16 spin alternations with

the second neighbors. The second-order energy is then

resulting in

E„'t,——3R(r)+4R(r') —3g(r)(1+f 1—1f3) (2&)

which will be nicely converging iff & 0.3.
The resulting variation of the cohesive energy, as calcu-

lated to the various orders of perturbation, is given in
Table III. The best estimate (fourth order with second
neighbors) of the cohesive energy (1.03 eV for Na) is sig-
nificantly lower than the corresponding estimates for the
bcc and compact crystals. If it existed, the simple cubic
crystal would exhibit shorter interatomic distances than
experiment. The repulsive fourth-order term increases
significantly the interatomic distance.

2. The body cettt-ered cubi-c (bcc) lattice

The lattice also makes possible a perfect pairing be-
tween nearest neighbors. Figure 3 pictures the projection
of the maximum spin ordering, represented by alternation
of fully a and fully P spin planes, defining some sort of
planar spin wave. Each atom is surrounded by eight
nearest neighbors of opposite spin. The six second neigh-
bors of i, which lie at a distance r'= (2IV 3)r, all have the
same spin as i. The zeroth-order cohesive energy is then

E,".„'=4R(r)+3R(r ) 4g . — (29)

f(r) =
14g(r) —12g(r')

(30)

The second-order correction results from all a,b ~

0).
Any exchange between two planes of Fig. 3 leads to a
determinant in which 14 bond exchanges between nearest
neighbors have been lost, but 12 exchanges with second
neighbors have been introduced, i.e., to a determinant
which lies at 14g(r) 12g(—r') above the reference perfectly
spin-ordered zeroth-order determinant

~

0). The second-
order contribution to the cohesive energy is

~E(2) 4g(r)'
14g(r) —12g(r')

with

bcc
Order 0
Calc. order 2
Calc. order 4
Expt. '

hcp or fcc
Order 0
Calc. order 2
Calc. order 4
Expt. '

Cubic
Order 0
Calc. order 2
Calc. order 4

7.18
6.97
7.07
6.99

7.35
6.18
7.20
7.19

7.02
6.61
6.82

(b) Na

1.06
1.253
1.191
1.113

0.993
1.34
1.164

= 1.11

0.866
1.020
1.015

0.053
0.065
0.065
0.068

I

I

I +
I

I *
I

I

I

I

I

I

(

I

I

I

I

I

'Reference 1.
The second-order results are meaningless.

'Reference 36.
FIG. 3. Zeroth-order spin distribution on the bcc lattice.

Solid lines: upper xy plane. Dotted lines: lower xy plane.
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E'„„'=4R(r)+3R(r') 4g—(r)[1+f(r)] (31)

The fourth-order correction may be easily obtained by
considering the 15 (i.e., 14+ 1) spin permutations which

become impossible after a first spin exchange between

nearest neighbors. The resulting correction
4

b,E' ' = =4 ( )15f ( )
[14g(r)—12g(r')]

leads to

E,oh 4R(r——)+3R(r') 4g—(r)[1+f(r) —15f(r) ]

(32)

and the perturbation seems to behave nicely if f(r)
remains smaller than 0.2. The calculated values for f(r)
would be 14 '=0.071 if one neglected the role of the
second neighbors and varies from 0.165 to 0.136 for Na
when r goes from 6.5 to 7.5 a.u. when the second neigh-
bors are taken into account.

The resulting energies at the various orders are given in
Table III. The most complete evaluation (E,'oh including
second neighbors) is somewhat exaggerated (1.98 eV for
Li, 1.19 eV for Na2), but becomes very reasonable. The
bond distances are in good agreement with experiment, al-
though a bit too long.

3. The compact hcp or fcc lattices

The compact hcp lattice is rather difficult to visualize
simply, while the fcc lattice may be represented simply
through the square containing planes (Fig. 4). Each atom
has 12 nearest neighbors (distance r) and 6 second neigh-
bors at distance r'=V2r. It becomes now impossible to
find a total spin ordering between nearest neighbors. One
can introduce a full spin ordering in two perpendicular
square planar lattices, but in the third direction, one will
find successions of fully a and fully 13 planes. The best
spin ordering

~
0), as pictured in Fig. 4, is of course six-

fold degenerate (instead of twofold degenerate in the
preceding problems), and one may predict that the conver-
gence behavior of our treatment will be more questionable.

Each atom i is then surrounded by eight atoms of oppo-
site spins (four in the xy plane of Fig. 4, two above and
two below in the xz plane), while four nearest neighbors
(in the yz plane) have the same spin as i. The six second
neighbors all have the same spin as i. The zeroth-order
cohesive energy is then

E,',h
——6R(r)+3R(r') —4g(r) . (33)

Comparing this expression to that relative to the bcc lat-
tice [Eq. (29)] one sees that the fcc lattice exhibits the
same stabilizing spin exchange but larger repulsions and
should be less stable than the bcc. This zeroth-order state-
ment will be balanced by higher-order corrections, which
necessarily will be larger in a less ordered situation.

The second-order correction actually goes through

0 ii 0 Q 0
I I l l

I ~ I

I

(\ I

I I I I')0
I I I
l

I
I

I I &i 1 ~g I

g Q,

FIG. 4. Zeroth-order spin distribution on the fcc lattice.
Solid lines: upper xy plane. Dotted lines: lower xy plane.

~E~()h=,= 4g(r) f(r), —4g (r)—
6g (r ) —12g(r ')

where

g(r)
6g(r) —12g(r') '

E„h ——6R(r)+3R(r') —4g(r)[1+ f(r)] .

(34)

(35)

The denominator appearing in f(r) (which is characteris-
tic of the perturbation ratio) is likely to be small due to
the appearance of new spin alternations when some disor-
der is introduced in the maximum spin alternation. Actu-
ally the quantity 6g(r) —12g(r') becomes very small for
r &6 a.u. for Na resulting in meaningless second-order
cohesive energies for this distance.

One may go now to the fourth-order energy correction,
but one must notice that in that case, where the zeroth-
order wave function is not perfectly spin alternating, the
first u, i, spin exchange in the xy or xz planes makes pos-
sible connected spin alternations in the yz planes which
were previously impossible, and which have no counter-
part in e' '( P'"

~

P" '
&

Referring to Fig. 4 one should take into account that
after an ab (in xy plane) spin permutation 15 bc or ac spin
permutations become impossible in the xy or xz planes, re-
sulting in a repulsive contribution from e' '(g'"

~

g'"), 8
bc or ac spin permutations become possible in the yz plane
which contribute to the general fourth-order triple sum-
mation, without canceling with repulsive contributions in
e' '(P'"

~

P"'). The resulting fourth-order correction will
be

W&
~
0) determinants in which the a and b atoms have

lost six spin alternations. If the ab exchange occurs in the
xy plane, for instance, for the a atom three spin alterna-
tions are lost in the xy plane, and four in the xz plane, but
four new spin alternations are obtained in the yz plane. If
the spin exchange occurs in the xz plane the conclusions
are identical. In both cases the spin exchange results in
the building of 12 spin alternations between second neigh-
bors. The spin permuted determinants W, i, ~

0) lie at
6g(r) —12g(r') above the

~

0 ) reference determinant, and
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(4)

[6g(r) 1—2g(r')]

=4g(r)
7g'(~)

[6g(r) —12g(r')]

=4g(r)7 f'(r),
(36)

perature dependent and its calculation would require the
knowledge of the vibrational energies which is beyond the
scope of this preliminary work.

The curvature of the cohesive energy near the minimum
should give us the compressibility or the bulk modulus

BECOII

BV

E'„s——6R(r)+3R(r') —4g(&)[1 +f(&) 7f —(&)] .

If one considered only nearest neighbors f would be —,
'

and

the perturbation would seem to converge nicely but the in-

clusion of the second neighbors introduces large values of
f (for Na, f=0.346 for r =6.5 a.u. , 0.233 for r =7 5a.u. .)
and the oscillations from zeroth to second and from
second to fourth orders are important.

The highest spin alternation for the hcp lattice is more
difficult to picture, but it also consists in the introduction
of eight spin alternations over the 12 nearest neighbors of
a given atom, while the six second neighbors (also at dis-

tance r'=re) have opposite spins. A careful examina-
tion of the lattice shows that the fcc and hcp lattice
remain degenerate to the present level of treatment. This
degeneracy might only be broken by considering third
neighbors and/or higher orders of perturbation.

In the present treatment the compact hcp and fcc lat-
tices appear to be lower in energy than the bcc at the
second-order perturbation level which becomes meaning-
less for Li (r, =5 a.u. , E„q-=4.7 eV). This estimate of the
cohesive energy is significantly overestimated, and the
fourth-order treatment brings the cohesive energy of the
compact lattices to a slightly smaller value (1.16 eV for
Na, 1.88 eV for Li) than the analogous value for the bcc
lattice (1.19 eV for Na, 1.98 eV for Li) but the oscillatory
behavior of the series for the compact lattices allows one
to consider the compact and bcc lattices as nearly degen-
erate.

These results would be discouraging if one considered
only the room-temperature bcc crystallization. But it is
known that at low temperature [ &70 K for Li, 35 K for
Na (Ref. 37)] a transformation occurs, and an hcp phase
appears. This transformation is not total; bcc remains
present [20%%uo for Li (Ref. 38), 50% for Na (Refs. 38 and
39)]. For the lithium, a new fcc phase is obtained at low
temperature under deformation, which confirms the
near degeneracy of the bcc, hcp, and fcc lattices. The
lowest energy lattice at low temperature seems to be com-
pact and their disappearance at higher temperature is evi-

dently due to the vibrational properties; since every atom
has a larger number of neighbors in compact lattices, for a
given temperature, i.e., a given number of quanta, the vi-

brational energy will be larger in compact lattices than in
the less dense bcc lattice.

The experimental bond distances in the compact forms
[r= 5.85 a.u. (fcc) or 5.88 a.u. (hcp) for Li, 7.12 a.u. for
Na (hcp)] are slightly larger than for the bcc lattice, as ex-
pected, and in good agreement with our calculated values,
which are about 0.1 A larger.

The bcc form having a lower density than the compact
lattices, a phase change occurs under pressure from bcc to
compact forms, but the value of this pressure is tem-

X'Xs+(calc)r, =2.14 A,

X 'Xg+(expt)r, =2.21 A,

a X„+(calc)r, =3.49 A,

D, =1.54 eV,

D, =2.05 eV,

D, =0.111 eV .

The ground-state well depth is underestimated. However,
we decided to use the calculated potential curves to study
the copper solid; the main interest of this exploratory
work comes from the fact that the noble metals crystallize
in the fcc lattice, ' and it was a challenge to see whether
our model might reproduce this qualitative difference
with the alkali metals. The results are given in Table IV.
In the present case the fcc results are lower than the bcc
ones; while the reverse was true for the alkali atoms. If
one remembers that the series is poorly convergent for the
fcc lattice, the fourth-order cohesive energy is underes-
timated for this lattice and the energy difference between
the fcc and bcc lattices should be larger than the calculat-

and the calculated values agree very well with the experi-
mental one. '

Extension to noble metals. For noble metals, the
relevant atomic configuration to build the crystal is d' s'.
This configuration is nearly degenerate with the d s con-
figuration (which is 1.5 eV above the preceding one on the
Cu atom). This second configuration should not play a
role in the crystal building since the s distribution is rath-
er diffuse and would induce large repulsive interactions
with the neighbor atoms. In other words, the d s config-
uration would lie very high in energy in the solid. This
configuration does not play a significant role in the Cuq
dimer ground state. However, it is involved in the X„+
minimum recently studied by Bondybey, which appears
to occur at a very short interatomic distance. This
minimum should be essentially (d s )(d' s') in nature,
due to the construction of a three-electron (sz —sz) bond
of about 1.6 eV depth. The study of the copper clusters
and solid require the knowledge of a diabatic X+ poten-
tial curve remaining (d' s') at all distances. The lowest
X+ adiabatic potential curve, as grossly calculated by

Witko and Beckmann actually appears as dominated by
an avoided crossing between the X„+(d' s') configura-
tion and the X„+(d s )(d' s') configuration. To obtain
the former essentially repulsive diabatic potential curve,
the Cu2 dimer has been calculated as a two-electron prob-
lem, the d' electrons being kept in the core and treated
through a nonempirical pseudopotential extracted from
atomic Hartree-Fock (HF) calculations according to the
technology of Barthelat and Durand. The effect of the
high polarizability of this "core" is treated through the
core-valence correlation method recently proposed by
Jeung et al. This method gives the following characteris-
tics for the ground 'Xg+ and excited X~+ potential curves:
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TABLE IV. Structural properties of copper solid.

fcc
Order 0
Calc. ' order 2
Calc. order 4
Expt b

bcc
Order 0
Calc. ' order 2
Calc. order 4

Pe

(a.u. )

2.567
2.324
2.545
2.55

2.527
2.454
2.490

D,
(eV)

2.568
3.257
2.920
3.49

2.606
3.015
2.88

Bulk modulus
(10 dyn/cm )

0.086
0.048
1.689
1.37

'From calculated 'Xg+ and X„+ potential curves (Ref. 46).
bReference 1.

ed 0.04-eV fourth-order difference (and smaller than the
0.24-eV second-order estimate).

III. DISCUSSION

A. Possible refinements of the model
for alkali and noble metals

The rather unexpected success of this very simple
scheme for the ground-state properties of the solid state of
alkali metals deserves a few comments concerning (i) the
possible refinements of the model for alkali metal, (ii) the
relation between this model and the apparent contradicto-
ry band model, and (iii) the possible extension to other
types of metals involving either p or d open shells besides
the s electron contribution.

of cyclic four-body terms which for instance perform a
cyclic spin permutation

a b
I Heff

C

10g
E

C

H
eff

C

g ~ 6g

This modification of the g,j operator for cyclic situations
should be easy to handle. The second type of operators
changes the spins of four atoms simultaneously, such as
the operator mentioned above, or

where hE is a transition energy to ionic structures, and
which should contribute significantly to the cubic lattice
energies. These four-body operators should in general de-
pend on six geometric parameters and their extraction and
handling may become rather expensive for nonregular
clusters. The situation would become worse if n-body
terms (n &4) are required to get a reasonable estimate of
the energy and of the stable conformations. The involve-
ment of very collective operators would prohibit the
present strategy for the study of medium size clusters.
For solid-state studies where the relative positions are well
defined, the approach would remain practicable even if
eight-body terms were important.

Two types of four-body operators should be dis-
tinguished. The first type concerns the operators which
act on two spin only (in presence of other spins on the two
other atoms) and which modify the g;J two-body operator
by a cyclic increment

1. Improvement of the effective Hamiltonian

As mentioned previously the effective Hamiltonian used
in this work kept the simplest possible form since it
remained a bielectronic two-body Hamiltonian. The nu-
merical success of the model may be partly fortuitous as
the result of canceling errors since the effective Hamil-
tonian should include at least three-body and four-body
terms. Ab initio calculations already show that the repul-
sion between three atoms is not strictly additive; specific
three-body repulsive terms contribute up to 20%%uo of the
two-body contributions in three-body clusters of rare
gas. Such three-body repulsive terms should be extract-
ed from the study of X3 in its S,= —,

'
quadruplet state as a

function of the geometry of the cluster A, B,C in a non-
symmetrical geometry (r& ——AB, r2 BC, 8= IABCI)——

~(a,a, c) = A'(r&, r2, 8) R(AB) R(AC) —R(BC) .— —

The same methodology should be applied (and will be ap-
plied) to extract the three-body magnetic operators such as
the three-body contribution (involving C) to the exchange
operator between A and Bg,'b ' in the ABC cluster

(C)
~gAB(C) gab gab

which will be geometry dependent.
Previous work on ~ systems have shown the importance

b a
H

eff

C d C

One should notice that when one starts the perturbative
treatment from the most alternant

~

0 ) spin ordering, the
four body cyclic operators

a b a b,

G

acting on
~

0) lead to a determinant
~
I) in which a lot

of bond alternations between nearest neighbors have been
broken. The excitation energy from

~
0) to

~
I) should

be

bEpt ——(I iH'
i
I)—(0 iH'

i
0)

=4
~

(n„"'—2)—n„""'
( g,

where n„"' is the number of spin alternant neighbors and
n„""' is the number of non-spin-alternant neighbors. The
excitation energy is then equal to 16g for simple cubic sys-
tems, 24g for body-centered-cubic systems, 8g for compact
systems, and the second-order contribution of these four-
body terms

2

coh gEOI
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should remain rather small, at least for bcc systems.
In the present stage, the success may be due to cancella-

tions between many-body repulsive and collective magnet-
ic contributions and/or higher orders of the perturbation
theory. This will be studied in future work. Nevertheless
some extensions might be attempted to analyze the vibra-
tional properties of the solid, the effect of a local defect.

We shall discuss later (Sec. III 8) the possible extensions
of the model to non-ground-state properties, namely the
possible extraction of electrons (photoelectron spectros-
copy} and spectral properties.

choice of a model
space of n eutral

situations

S (without charge
f luc t u at ion

implicit introduction
of short range

delocalization through
effective exchange

operators

delocalization through
independent - parti cTe

t

approximation

HF model (high
fluctuation of

the charge)

t
correlation

separated atoms
one electron per center

2. Improvement of the calculation

The perturbative expansion used in this work might be
replaced by variational procedure which would avoid the
divergence problem. Among these, one should mention
the results obtained by Anderson' ' and Kubo ' calculat-
ing the zero point correlation energy of spin waves. One
might also use a cluster expansion from

~

0 ), using a trial
wave function of the form

0(s)= g (1—A~ b)
~
0) (37)

nearest

neighbors

where A, would be a unique parameter to determine by
minimization.

Such cluster expansions have been proposed for the
correlation problem (where

~

0) represents the Hartree-
Fock determinant and ~,~ is replaced by double excita-
tions), and also for solution of effective magnetic Hamil-
tonians for the linear polyenes by Klein and Garcia-
Bach, and for treatment of correlation in molecules and
solids by Stolhoff and Fulde. Another promising ap-
proach might consist in using statistical methods.

B. Connection with the band model

In some sense our treatment is strictly opposite to the
basic assumptions of the band model. Instead of being
delocalized in plane waves, the electrons are kept on the
atoms, without fluctuation of the charge per atom, the
fluctuation concerning only the spin distribution. It is
well known that the band or Hartree-Fock models (i.e., the
independent particle descriptions) overestimate grossly the
charge fluctuation, and the correlation treatment intro-
duced later on diminishes this fluctuation and the weight
of the ionic instantaneous structure through the self-
repulsion of the electrons (the Hubbard Hamiltonian sim-

ply introduces the self-repulsion U of two electrons on the
same center). The present procedure avoids the first delo-
calized step, keeps on the one electron per center hy-
pothesis as the basic assumption, and treats the delocaliza-
tion implicitly through effective exchange operators which
actually reflect short-range ionic instantaneous situations.

projected exact ~ explicit coupling ~ exact
wave function with ionic wave function

structures (low fluctuation of
the density)

The two strategies are summarized above. The obtain-
ment of the exact wave functions from the projected
wave-function solution would require an explicit treat-
ment of the coupling between the neutral and ionic struc-
tures.

One should keep in mind that the magnetic effective
Hamiltonian can only reproduce the lowest part of the
spectrum of the n-atom, n-electron problem, i.e., the n-
electron states of the n-atom problem which have large
components on the neutral determinants. One cannot ask
this model to give the lowest allowed transition energy,
since the dipole transition would lead to a state which is
essentially ionic in nature, and which cannot be given
through this effective Hamiltonian. Its obtainment would
require the production and solution of a different effective
Hamiltonian built for the (lowest) ionic states.

The magnetic effective Hamiltonian is unable to treat
the problem of the positive or negative ions [i.e., the prob-
lem of (n+1) electrons on n centers]. The treatment of
this problem (i.e., of the photoelectron spectra) requires
the construction of a specific effective Hamiltonian, as
shown by Gadea et al. for the m electron problem. This
effective Hamiltonian is defined on a model space of all
the determinants which involve one hole only (all the
atoms except one bear one electron); this model space is
analogous to the space of the neutral states in the Heisen-
berg Hamiltonian, since it represents the most neutral
states. The coupling with more "ionic" situations (with
two positive centers and a negative one) leads to the con-
struction of an effective Huff Hamiltonian for a posi-
tive ion which involves both Fza; aj, monoelectronic
operators introducing the delocalization (or hopping) of
the hole from one site to another and g,j.a; a-.aja;, effective
exchanges between atoms bearing different spins, already
present in Heisenberg Hamiltonians.

The purely magnetic Hamiltonian is a special case, a
particular and extreme case of a much more general class
of effective Hamiltonians which involve both the delocali-
zation hopping integrals and the effective exchanges. In
fact, the Heisenberg Hamiltonian is only valid for the case
of the exactly half-filled band (one electron per center or
AO). The treatment of H,'tt' is not easy (the number of
one-hole neutral states in the positive ion problem is larger
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than the number of the neutral states for the ground-state
system).

However, an illuminating remark makes easier the
understanding of the connection between the Heisenberg
model and the band model. Let us assume that a given
spin ordering dominates the projected ground-state eigen-
function, which may be kept as

~

0 ) or as the cluster ex-
pansion /~i& of Eq. (37). Then one may think that the
spin ordering factors will be active also in the positive ion.
The one-hole determinants of lowest energy are obtained
from

~
0) by the annihilation of one electron on any site

Pq
——ap

~
0),

the energy of which is easily obtained from the energy Eo
of i0),

(y,' [
a")y,') (0—(H'") 0)=I+nfg,

where I is the atomic ionization energy and n~ is the num-
ber of neighbors of the atom p presenting a spin alterna-
tion with p. Other one-hole determinants of higher ener-
gies are obtained from the &Pz by spin permutations.bkr ~

One may guess that a set of low-energy functions for
the positive ion are obtained from the local ionizations of
the cluster expansion of Eq. (37) which introduces the spin
ordering and its relative disorder

g~=a~fx a~ ff (1 ——~ob)10)
ab

and a reasonable approximation for the positive ion lowest
states will be given by the interaction between these locally
ionized states, i.e., by solving the n &&n submatrix of H'
reduced to the gz functions

(@p (
H'

( fq) =(0
(
apH' aq

~

0)
—X[(O)a,IIa,Wb (0)+

and the matrix element between az
~
0) and aq ~

0) is of
course the hopping Fzq integral which allows for the delo-
calization of the hole

(1(,'
~

H "~ q,') =F„

The ionization problem is then reduced to a n X n matrix,
the off-diagonal elements of which are the interatomic
hopping integral. This matrix, which is an approximation

of the N-electron Hamiltonian is identical to the
monoelectronic Huckel or Pock matrix, the solutions of
which are the band functions.

The conclusion of this remark is that the effective
Hamiltonian approach, which rests on the hypothesis of
one electron per center, and which allows simply for in-
teratomic spin permutations in the neutral state, is not in
contradiction with the band structure for the positive ion.
If the wave function is dominated by the spin ordering
and its fluctuations, this stabilizing spin ordering will be
maintained in the positive ion for the regions which are
sufficiently far from the hole, but the hole is delocalized.

The present magnetic treatment is not strictly limited to
the systems involving one electron and one atomic orbital
per atom; it might be generalized to atoms involving
several electrons in several atomic orbitals on each atom
(such as polyacetylenic chains, or transition-metal atoms)
provided that the monocentric ferromagnetic coupling (ex-
pressing the atomic Hund rules) is explicitly treated.
Work is in progress along this direction.

One should notice that the present model is related to
an early suggestion by Pauling' of a resonating valence-
bond description of metals. This description kept the lo-
calization of the electrons on the atoms and assumed that
the metal might be described as a resonance between vari-
ous diatomic couplings in random arrangements. This
possible description of the metal, as well as its connection
with the Heisenberg model has been discussed by Ander-
son. ' The present perturbative procedure allows us to
reach better estimates of the energy and to take into ac-
count the repulsive components. As already noticed by
Pauling and as emphasized by Anderson, a purely neutral
state could not explain the electric conductivity. Howev-
er, one must recall that the Heisenberg model is obtained
through a truncation of the wave function to its neutral
components, chosen as model space in the quasidegenerate
perturbation theory. The eigenfunction of H' is not an
eigenstate of the exact Hamiltonian; the latter involves
ionic situations as well and possibly long-range charge
fluctuations. The truncated wave function, which may
give the correct energy through the corresponding effec-
tive Hamiltonian, cannot explain by itself the electric con-
ductivity but one cannot say that it corresponds to an in-
sulating state since the part of the wave function which
would be relevant to the understanding of conductivity
has been deleted at the very beginning of the model. A
perturbation of the truncated wave function would be
necessary to restore the full wave function.
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