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Magnon contribution to the magnetic specific heat of the spin-glass
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We calculate the magnon contribution to the magnetic specific heat of the spin-glass
Cdg sMng sTe. Good agreement is obtained with the measured values in the interval 0.5< T <4.5 K
with the interactions Jyn=10/ynn= —12 K and an anisotropy gap ~2—4 K. The theoretical re-
sults are obtained from a numerical calculation of the energies of the magnon modes in finite arrays
of spins with ground-state configurations found by minimizing the energy of the corresponding clas-
sical Heisenberg Hamiltonian. The values chosen for the exchange integrals also account for the in-

elastic neutron scattering at Q =(1,0,0), T=1.8 K.

I. INTRODUCTION

A number of previous studies have demonstrated that
the magnetic specific heat at low temperatures of various
metallic’"? and insulating® spin-glasses was dominated by
the contribution from the magnon modes associated with
small-amplitude spin oscillations. In this paper we show
that a similar conclusion can be drawn in the case of the
dilute magnetic semiconductor Cdy sMng sTe. As noted
elsewhere,* Cd;_,Mn, Te shows spin-glass behavior for
0.2<x <0.6. For 0.6 <x <0.7 there is some evidence for
an alternative type of disordered phase, while only
mixed-crystal phases are obtained for x >0.7. The Mn
ions in Cd;_,Mn, Te occupy sites on a fcc lattice, with
antiferromagnetic exchange interactions between nearest
and next-nearest neighbors. Estimates of the next-
nearest-neighbor interaction Jynn indicate that it is ap-
proximately 0.1Jny, where Jyy is the interaction between
nearest neighbors.’

The magnitude of Jyy is a matter of some controversy.
Specific-heat and susceptibility measurements® of pairs
and triplets of Mn ions in dilute Cd;_,Mn,Te indicate
that Jyxn=—1.1 K.” However, for 0.2<x <0.6 one
finds Jyn=~ —15 K from measurements of the paramag-
netic Curie temperature.® Recently, inelastic-neutron-
scattering data have been obtained for Cd, 3sMng ¢sTe at
1.8 K.° From a comparison between the measured and
calculated spectra at Q =(1,0,0) one infers Jyy~—12 K
~—1 meV.>!® As will be shown, one obtains a good fit
to the magnetic specific heat in the interval 0.5 <T <4.5
K with this value of Jyy.

II. CALCULATION

The magnon contribution to the specific heat per mol
of Cdy sMny sTe is written as follows:
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where E, is the energy of the vth magnon mode and R is
the gas constant. The calculation of E, in the case of
Jnnn =0 is discussed in Ref. 11. Since the distribution of
modes is virtually the same when Jynn=0.1JnN, We
present only our results for C(T).

Figure 1 shows the theoretical curves along with the ex-
perimental data from Ref. 6. The three curves are ob-
tained using Eq. (1) and the combined data from four ar-
rays of 250 spins. Each array was a 5X 5X 5 fcc supercell
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FIG. 1. Magnetic specific heat of CdysMngsTe. Curve a is
the theoretical curve obtained with all eigenvalues. Curve b is
the theoretical curve obtained omitting the lowest two eigen-
values. Curve c is the theoretical curve obtained omitting the

lowest four eigenvalues. Solid circles are data points from Ref.
6.
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with 500 sites, half of which were occupied at random by
Mn ions. The calculations utilizied ground-state configu-
rations obtained by minimizing the energy of the corre-
sponding classical Heisenberg Hamiltonian. Periodic
boundary conditions were assumed. The experimental
data are the measured values of the specific heat from
which the following have been subtracted: the nuclear
contribution, 5.85X 107372 JK/mol, and the lattice
specific heat, 3889 [ T/®,(T)]® J/(mol K), where @ (T)
is the effective Debye temperature. The latter is approxi-
mated by the effective Debye temperature of CdTe (Fig. 2
of Ref. 6). Curve a is obtained with the use of all of the
eigenvalues. To simulate the effects of a gap in the spec-
trum due to dipolar anisotropy we have omitted the
lowest two (out of a total of 1000) eigenvalues, E;=1.48
K and E,=1.57 K, in calculating curve b. Curve ¢ was
calculated by omitting the lowest four eigenvalues,
E,E;,,E;=1.91 K and E;=1.92 K, with the first level
counted having an energy of 4.39 K. We have limited the
analysis to T <4.5 K since the rapid variation of the ef-
fective Debye temperature of CdTe above 4.5 K (Ref. 6)
makes the approximation for the lattice specific heat
somewhat doubtful at higher temperatures.

III. DISCUSSION

The results of the calculation show that the magnon ex-
citations dominate the magnetic specific heat of
Cdy sMng sTe in the interval 0.5<7T <4.5 K. Similar to
the cases of CuMn'!, PdMn,? and Eu,Sr,_,S,’ there ap-
pears to be no experimental evidence for a contribution

from interconfigurational excitations, tunneling modes,
etc. From a comparison between the experimental data
and the theoretical curves, we infer the existence of an an-
isotropy gap on the order of 2—4 K. This value is some-
what below the usual estimate for antiferromagnets
2,u.3(2HEHdip)1/2=5.9 K, in which up is the Bohr mag-
neton, Hy is the average exchange field 6J\nS/(2up),
and H g, is the dipolar field, 12135 /rx.

The results displayed in Fig. 1 depend on the choice of
Jnn. As noted, the value Jyy= —12 K, which we use in
our calculation, is consistent with the value needed to fit
the inelastic-neutron-scattering data. However, it is
15—25 % less than the estimates obtained from the high-
temperature susceptibility data. If we used the latter
values we would obtain curves which were below the ex-
perimental data.

In conclusion, it appears that there is a good agreement
between the measured and calculated values of the mag-
netic specific heat of CdjysMng sTe over the interval 0.5
<T<4.5 K. However, this conclusion is still somewhat
tentative and can be made firm only with more precise
values of the exchange integrals.
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