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Electrical resistivity in amorphous metals: Consequences of phonon ineffectiveness
in the diffraction model
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Electrical transport in amorphous metals is analyzed in the context of the Baym-Faber-Ziman
theory. The theory is generalized to incorporate electron mean-free-path effects through the
Pippard-Ziman condition on the electron-phonon interaction. Various model t matrices are con-
sidered. The geometrical structure factors are modeled by Percus-Yevick hard-sphere forms and a
si.ngle-branch Debye phonon spectrum is assumed. Detailed results for electrical resistivity p versus
temperature T and the temperature coefficient of resistivity are presented for extensive ranges of
2kF/k~ and electron mean free path. The results, incorporating the Pippard-Ziman condition, are
consistent with the observed p versus T in low-resistivity glassy metals. However, although in-

clusion of the Pippard-Ziman condition dramatically improves agreement with the data, quantita-
tive agreement is not obtained in high-resistivity amorphous metals.

I. INTRODUCTION

a (K)=—g exp[i K.(m —n )],
iV

m, n

(2)

where m is the averaged position vector for the mth ion,
plays the central role in determining S~(K) and hence
p(T). The scattering vector corresponding to the first
peak in a(K) is denoted k~ and the ratio of 2kFIk~ is
prominent in the diffraction-model description of electri-
cal transport in amorphous alloys.

To apply the diffraction model in the general case [not
restricted to the dominant backscattering approximation
of Eq. ( I)], one requires expressions for S~(K) and

~
&(K)

~

for 0(K &2k'. S~(K) has been computed '

for Debye phonon spectra and for model a (K), although,
in principle, one could employ a more realistic phonon
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The electrical resistivity p of amorphous metals is usu-
ally described in the context of the diffraction model, i.e.,
in terms of the Baym-Faber-Ziman' theory. The tem-
perature ( T) dependence of p(T) is essentially determined
by that of the resistivity static structure factor S~(K),
where K is the scattering vector. The resistivity is actual-
ly given by a weighted average of the product of S~(K)
and the absolute square of the scattering matrix element
or r matrix t(K) which is independent of T. (It is to be
understood that references to a (K), S~(K), and t (K) are
to be generalized to the appropriate partial structure fac-
tors and constituent t matrices in alloys. )

For transition metals, it is often assumed that back-
scattering (i.e., K=2kF, where kF is the Fermi wave
number) is dominant. In such cases one has

p( T)lp(8) =SF(2k')IS~o(2k') ~

where the T dependence of the resistivity static structure
factor is explicitly indicated and 0 is the Debye tempera-
ture. The geometrical structure factor

spectrum and measured a (K). This is done for reasons of
simplicity and because a(K) can be nicely approximated
by analytic Percus-Yevick hard-sphere forms for K in
the region of the first peak and because the details of the
phonon spectrum are believed to be unimportant in deter-
mining S~(K). The t matrix is usually approximated by
tabulated pseudopotential forms or in terms of expressions
involving scattering phase shifts ri~(EF) evaluated at the
Fermi energy E~ for angular momentum quantum num-
ber /. The pseudopotential applications in liquidsz'0
agreed reasonably well with experiment although there
were indications that the Born approximation was inade-
quate even for column-I and -II metals. " The t-matrix
forms, which incorporate single-site multiple scattering,
are believed to be necessary for the treatment of most
glassy metals.

Many of the predictions of the diffraction model for
electrical transport in amorphous metals are approximate-
ly independent of t(K) Some of th. e results are the fol-
lowing.

(i) The concentration dependence of p is determined
(essentially) by a(2k~), which can be approximated by
simple functions of 2kFIk~. (The concentration depen-
dence of kF is assumed to be known and kz is often as-
sumed to be fixed in this prescription. )

(ii) The temperature coefficient of resistivity (TCR) at
the Debye temperature is defined as

The diffraction model, in the "dominant backscattering"
approximation yields

Bln[S~(2k@ )]
ter
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Results based on Eq (3') are i.ndependent of the actual
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constituents of the alloys and have the appealing attribute
of depending solely on 2k~/kz and the atoinic arrange-
ment. For typical amorphous metals negative TCR is
predicted for 0.9(2kF/kz (1.1. (This range of 2kF/kz
is broader than that seen in liquid metals). The magni-
tude and sign of the TCR may be expressed in terms of
the Debye-Wailer exponent 2 W(2kF), evaluated at T =8
and K=2kF, the averaged resistivity structure factor
Af(&), and the Debye integral I2, defined in Ref. 5.

(iii) At low temperatures, the S~(E) and hence the
normal-state resistivity varies like [1+ (vr /6)a(T/8) ]
independent of the sign of the TCR as defined in Eq. (3).
The constant a, which also appears in the standard ex-
pression for the Debye-Wailer exponent, is given by

for a Debye phonon spectrum, where i' is Plank's constant
divided by 2m. , M is the averaged ionic mass, and kz is
Boltzrnann's constant.

(iv) Small maxima in Sl'(E) are predicted in negative-
TCR cases. We denote the temperature corresponding to
the maximum in S~ by T~. The theory then yields the
result that both T~ and Sf (2k+)/S~oz(2k+) —1.0, and

thus p(TM)/p(0 K)—1.0, decrease as 2k+ approaches k~
from either side.

The success of the diffraction model in describing elec-
trical transport in amorphous metals has been mixed. The
concentration dependence of the magnitude of p is ap-
parently well described. However, only qualitative agree-
ment with the T dependence has been obtained in low-p
alloys' ' and serious disagreements are seen in high-p
alloys. ' ' Some of the discrepancies between the
theoretical predictions and the data include (i) consider-
ably larger range of 2k+/k~ than predicted yields negative
TCR, (ii) the observed negative TCR's are generally larger
than predicted (unless unreasonably small 8 values are as-
sumed), and (iii) the quadratically increasing resistivity at
lowest T is often not observed (high-resistivity alloys even
exhibit monotonic decreasing p versus rin most cases).

The inconsistency of theory and experiment in the
high-p (i.e., p& 100 pQcm) cases has been viewed as an
example of Mooij phenomena' or saturation effects. '

Meisel and Cote' and Morton et a/. ' formulated a gen-
eralization of the theory by incorporating the Pippard-
Ziman condition ' ' on the electron-phonon interaction.
The condition as stated by Ziman takes the following
form: "Phonons whose wavelengths 2m/q exceed the elec-
tron mean free path A are ineffective electron scatterers. "
The concept had originally been applied to describe ul-
trasonic attenuation and was subsequently also shown to
be relevant to thermal conductivity and degradation of
superconducting transition temperature in high-
resistivity alloys. Incorporating this constraint into the
diffraction model yields improved agreement with experi-
ment in high-resistivity metals.

Recently, low-resistivity (p(100 pQcm) amorphous
non-transition-metal alloys were the subjects of detailed
experimental study by Mizutani and co-workers. ' Deter-
minations of p(T) for 4(T(300 K, kF, and kz were
made. It had been expected that the diffraction model

unadorned with saturation effects would give a good
description of electrical transport in such alloys because
of the relatively long electron mean free path A. Thus,
calculations were performed for a-MgZn. ' An effective
scattering matrix element (i.e., t matrix) was constructed
to yield the observed magnitude of p, to have s and p
character only, and to satisfy the Friedel sum rule. The
geometrical structure factor was assumed to be of
Percus-Yevick hard-sphere form with i)=0.525. The re-
sult of this calculation was in qualitative agreement with
the data. ' However, when phonon ineffectiveness effects
with appropriate electron mean free path were incorporat-
ed, remarkable agreement was obtained, including such
features as (i) the magnitude of the TCR, (ii) the magni-
tude and position of the maximum in p(T)/p(8), (iii) the
shape and extent of the approximate (T —T~) ~ region
to the right of TM, (iv) the shape and extent of the quad-
ratic in T region, and (v) the position and magnitude of
the minimum in p( T) observed near 5 K.

Calculations were also performed for four other values
of 2k~/k~ employing the a-MgZn effective t matrix and
electron mean free path. These results were used as a
basis for discussing electrical transport in general 1ow-

resistivity alloys. A principa1 conclusion in that study
was that a procedure incorporating phonon ineffectiveness
into the diffraction model (as had been suggested for
high-resistivity amorphous metals' ) yields much better
results, especially in regard to low-temperature
"anomalies" in p( T) and the magnitude of the TCR.

The results of Ref. 12 suggested that further detailed
investigation of the implications of the diffraction model,
incorporating the Pippard-Ziman condition on the
electron-phonon interactions, were justified. We have be-

gun a program of such studies. Initial results were
presented at the Fifth International Conference on Liquid
and Amorphous Metals (LAM). This paper extends the
range of qDA investigated to considerably smaller values
(corresponding to p&150 pQcm) and presents p(T) re-
sults on a denser 2k+/kz grid and a broader selection of
model t matrices is employed. The theoretical p(T)
curves provide a basis for the interpretation of the low-T
behaviors seen in amorphous metals (especially nonmag-
netic alloys) and for the observed magnitudes of the TCR.

Reviews of the theoretical concepts described here and
summaries of the experimental data are given in Refs.
25—27.

II. THEORY

The Baym-Ziman-Faber' expression for the electrical
resistivity is

'3

i
U(E)

f2kF

where 8 =12mQO/e A'V+, Qo is the atomic volume, V~ is
the Fermi velocity, e is the electron charge, and
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I
U(K)

I

2= g c;c,S(J(K)t,*(K)t,(K)

gc; It;(K)
I

~ —gc;c, t (E)t;(K) It'(K),
l /, J

where c; is the concentration of the ith constituent and, in
the Sham-Ziman approximation, incorporating the
Pippard-Ziman condition, and for a Debye phonon spec-
trum, the partial resistivity structure factors are given by

T r

Stj(K)=e ' 'a;J(K)+a —— f d
T 2k~ O qa

n(x)[n(x)+1]F(qA) f a; (K+q)
qa

'2

n (x)[n (x)+1]F(qA),

where

fina 0 qX =
k~T T qa

n(x)=(e"—1) ', and F(qA} expresses the reduction in
electron-phonon interaction for small qA (where q is the
phonon wave number and A is the electron mean free
path}. We employ the Pippard form ' in the calculations
presented here, i.e.,

2 y tan y 3F y
y —tan y

t)(K) =

&& g (21 + 1)sing~(Ez)e Pt(cos8),
E

where m is the electron mass, PI(x) is the lth Legendre
polynomial, and cos8= 1 —2(K/2k+) . These equations
are generalizations' ' ' of those usually employed in
liquid- and amorphous-metal electrical-transport studies.

The scattering matrix element ( t matrix) of the jth con-
stituent is expressed in terms of scattering phase shifts
Q(FF) evaluated at the Fermi energy Fz for angular
momentum quantum number I as

27763

m (2mE~)'i Qo

We do not present results for general alloy systems.
Two types of models, which we refer to as the "binary
substitutional model" and the "effective potential
models, "are discussed. We define them as follows.

A. Binary substitutional models

We refer to systems which satisfy

a;)(K) =a (K) for all i,j
as "substitutional, " since Eq. (11) will be obtained if the
alloy constituents are randomly substituted for each other
on a given network of sites. For binary systems satisfying
this condition, Eq. (6) reduces to

I
U(K)I =c,c It, (K) —t (K)I It'(K)

+
I
c, t, (K)+c,t, (K)

I

'St'(K) .

We have obtained results for two cases.

1. Model A1: Constant t matrix (pure s waue scatter-ing)

Equation (5) reduces to

p=B cic2b, f dxx It'(2kFx)+
I

t
I f dxx St'(2kFx)

»

=c,c2B~'rD(qDA, T/8)+B
I

t
I

~r (qr A, 2kF/kp, T/O) .

(12a)

(12b)

One can conceive of an extensive class of t matrices for
which Eq. (12a) would be approximately valid (6 and t
would be averages of the actual linear combinations of t
matrices); for example,

b, =
I
ti(2k'. )—t2(2k'. )

I

t =c~t&(2k+)+c2t2(2k+)

might produce useful approximate expressions for the dis-
cussion of p (qDA, 2kF/kz, T/0).

2. Model A2: Generalized a-Mgg «Xn» for x=0.225

The t matrices in this model, representing Mg and Zn,
were employed in the calculations presented at the LAM
conference. The t matrices were computed by the Slater
Xa method with Herman-Skillman neutral-atom wave
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functions and free-electron EF, employing computer rou-
tines based on those given by Loucks. The Kmetko '

value of Xa (viz. , 0.75) was taken for Mg and Xa=0.85
was chosen for Zn in order to place the d bands in accord
with photoemission data. The resulting phase shifts
were gt "(EF)=0.354, 0.294, —0.057, and 0.002 and

g& s(EF) = —0.175, 0.085, 0.034, and 0.001 for 1=0 to 3,
respectively. The gt(EF) for l) 3 were set to 0. (The re-
sults obtained for this potential will be seen to be well ap-
proximated by the constant —t-matrix results with

~

t
~

2))c)c2b,2. )

and

p(r) =p(0) I 1 +a[KDRo(r)+KR (~)] I (20)

1 Blnp
=KL,(c„,)D+Kc„, ,B'r

(21)

where

K—=
I

t
I
'r(o)/[

I
t

I
'r(O)+c, c,a'r, (0)] (22)

Thus, in the constant —t-matrix substitutional model
(Model Al), one has

B. Effective potential model

When the scattering t matrices are all equal, i.e.,

t;(K)=tz(K) for all i,
then

(13)

ED=—1 —E .

We have suppressed the q&A and 2kj;/k~ parameters in
these equations, and c«, and (c«, )D are deduced from
r(v) and rD(r), respectively. Equation (21) is approxi-
mate because we have neglected aRn(1) and aR (1) with
respect to unity.

Sg (K)—:g c;c,S,(J'(K). '
(15)

IV. RESULTS

A. Substitutional models
One refers to tE(K) as the effective t matrix and Sg(K) as
the effective resistivity static structure factor. The
effective-potential results discussed in this paper assume
that Sg can be computed according to the usual prescrip-
tions with aF(K) again a Percus-Yevick hard-sphere form
with g=0.525. Thus, these effective-potential results are
identical with substitutional-model results when
t&(K)= t2(K). One might expect Eq. (13) to be a good ap-
proximation if the t matrices are pseudopotential forms
(because they are generally very similar), or if the constit-
uents come from the same column of the Periodic Table
(e.g., a-MgZn). We have performed effective-potential
calculations for t matrices (i) computed for Zn as
described in the generalized a-Mgp 775Znp 225 model, (ii) s-
and p-based forms described in Ref. 12, and (iii) the
pseudopotential-based forms given by Young, Meyer, and
Kilby, "particularly for potassium.

We introduce the following normalized variables:

I. Model AI: Constant —t-matrix substitutional model

Most of the results presented in this paper are comput-
ed for this model. The value of a was fixed at 0.168, but
the "normalized" results do not depend strongly on u.
We also assumed qD ——kF in all calculations. Thus, when
considering an alloy series one might have to allow for the
possibility that qa might be essentially constant while kF
varies with concentration. The geometrical structure fac-
tors were modeled by Percus-Yevick forms with g=0.525
and include the N5x p term.

Figure 1 shows plots of RD(qDA, ~) versus ~ for
qDA=2, 4, 6, 12, 18, and 300. We notice the following.
(i) Although for ~))1 the RD(300, ~) curve is essentially
flat, RD(300, ~) still has a relatively large positive slope
near ~=1. (ii) RD(18,~) is essentially flat near ~= l. (iii)

T/8— (16)

(17)
0.04-

2kF 1 r (qD A, 2kF /kp, ~)
R qg)A, —1, (18)

k~
' a r(qDA, 2k'/kp, O)

RD

0,08

0.00

rD(qDA, ~)
RD(qDA, r) =

a rD(qDA, O)
(19) -0,02

We refer to R or RD as normalized resistivity differences.
We shall also denote by c„, the result of replacing p by
r(qDA, 2k+/k~, ~) or rD(qDA, r) in Eq. (17). The c„„R
and RD, are approximately independent of a. [We shall
also use Eq. (18) to define a normalized R when p is sub-
stituted for r on the right-hand side (rhs). ]

0.5

r
i, 0

FICr. 1. Normalized resistivity difference [Eq. (19)] for the

~
t~ t2

~

term in Eq. (12b) versus —normalized temperature [Eq.
(16)] for the constant —t-matrix substitutional model. The
curves in Figs. 1 through 7 parametrized A, 8, C, D, E, and F
designate results for q&A =300, 18, 12, 6, 4, and 2, respectively.
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0, 0

0.5

T

0.02

-0.02
0.15 0,3

FIG. 5. (a) and (b) Normalized resistivity difference versus
normalized temperature as in Fig. 3 for 2kF ——1.15k~.

2k+ ——1.15k&, is very similar to Fig. 4, except that the
negative c„,are smaller, etc.

Figure 6, for which 2kF ——1.30k~, exhibits a change
from positive to negative c„,between q&A=300 and 18.
The curves for qDA=18 to 6 then show the same trends
in r and r~ as seen in the curves for q&A=300 to 12 in
Figs. 4 and 5. The curve at q&A=4 is monotonic with a
knee at &=0.2.

Figure 7, for which 2kF ——1.4k~, is similar to Fig. 6
with a transition between positive and negative c„,occur-
ring between qDA=12 and 6, with maxima and minima
and the expected trends in r~ and r~ in the curves for
qDA=6 and 4, and with monotonic decreasing variation
for qDA=2.

The effect of mixing in some RD(qDA, r) according to
the prescription in Eq. (20) is to increase the size of the
maxima, to increase ~M, and to decrease ~ . Also, if the
difference term were dominant (i.e., ED »K), then p
would vary as c~(1—c~ ) rather than as a (2kF) for an al-

loy series.
It is also interesting to consider families of p-versus-r

curves for fixed qDA. We show detailed results for
qDA=12 and 6 in Figs. 8 and 9. These figures exhibit in-
teresting trends with 2kF/k~. In addition, for a qDA
value between 12 and 6 (actually at qDA=10) monotonic
decreasing p versus r begins to occur for small ranges of

k2~/k~. We see, in particular, that R (12,2kF/k~, r) does
not decrease monotonically with r for any 2kF/k~, while
there is a small range of 2 kF /k~ for which
R (6,2k~/kz, r) decreases monotonically with r. As q~A

0.1-

0, 1-

0, 0

-0.1- -0.1-

0.0 0, 5 1.0 0, 0 1,0

0.02 0.02

0, 00- 0.00--

-0, 02

0.0 0.15

r

-0, 02

0.0 0.15 0.3

FIG. 6. (a) and (b) Normalized resistivity difference versus
normalized temperature as in Fig. 3 for 2kF ——1.30k~.

FIG. 7. (a) and (b) Normalized resistivity difference versus
normalized temperature as in Fig. 3 for 2kF ——1.40k~.
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0,00-

I
2kF Ik» —1.05

I

increases. The largest minimum occurs
for 2k»/k» = 1.00 and decreases in both directions.

The curves in Fig. 9 (q&A=6) show all the features
seen in Fig. 8; in addition, Fig. 9 exhibits several mono-
tonically decreasing p-versus-~ curves for the range of
2k»/k» near 1.05. For considerably smaller qDA, the p-
versus-~ curves are monotonically decreasing and vary as
1 —AT near v=0 for all 2k» in the vicinity of k».

-0.01

0.0 0.15

o,oi

R o,oo-

-0.01
0.0 0.3

FIG. 8. (a) and (b) Normalized resistivity difference versus
normalized temperature as in Fig. 3 for qDA =12. The parame-
ters are 2k~/k~ values. Parts (a) and (b) are from the left and
right of 2kF/k~ corresponding to the largest negative ct„.

decreases, the range of 2k»/k» corresponding to mono-
tonically decreasing p versus ~ expands.

For qz&A=12 the maximum negative c„, occurs for
2k»/k» = 1.05. Figure 8(a) shows a selection of curves for
2 kF /k» ) 1.05 and Fig. 8(b) shows those for
2kFIk» &1.05. Negative-c„, curves exhibit maxima (at
~~) and minima (at ~~ ); positive-c«, curves exhibit mini-
ma. As

I
2k»/k» —1.05

I
increases, rM increases,

R (12,2k»/k», rM ) increases, and r decreases. Eventual-
ly, values of 2k»/k» are reached for which positive c„,
occurs and the maxima are gone; however, there are sti11
sma11 minima and ~ continues to decrease as

2. Model A2: Substitutional a Mgt -„Zn for x=0.225

0.4-

0.2—
300

The substitutional a-Mgo775Zn02$5 model matrix ele-
ment (and others for different x) was employed in an ear-
lier study of electrical resistivity in low-resistivity amor-
phous metals. ' A denser set of 2k»/k», qnA values is
studied here.

Figure 10 shows c„,versus 2k»/k» with qDA as a pa-
ratneter. (There is a slight difference between this graph
and that shown in Ref. 24 since the interpolation is now
conducted on a finer grid. ) One sees that the curves are
very similar to those obtained with constant t matrix (Fig.
2). The principal difference appears to be that the
substitutional-model (A2) curves are shifted to the left
with respect to those computed for the constant —t-matrix
model (Al). (For example, for qDA=300, model A2
yields negative c«, for 0.97&2k»/k» &1.18 with max-
imum negative c„, at 2k~-1.03k&, while model A1
yields negative c«, for 0.99&2k»/k» &1.22 with max-
imum negative c„, at 2k»-1.05k». ) The substitutional
a-MgZn model also yields slightly larger maximum
negative-c„, values.

Employing Eq. (18) again to define R(qDA, 2k»lk», r)
with p substituted for r on the rhs yields graphs of the
form shown in Figs. 3—9. Except for the shifts in

0.005

0.000

-0 4-
-0.005

-0, 010 i

0.0 0.15 0.30

I

1.4

FIG. 9. Normalized resistivity difference versus normalized
temperature as in Fig. 3 for q&A=6. The parameters are
2k+/k~ values.

FIG. 10. Normalized temperature coefficient, of resistivity
c„, [Eq. (17)], versus 2k»/k» for the a-Mg7Zn3 substitutional
model. The parameters are qDA values.
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0, 06

D.QQ3- 0.04

Q.QQQ- 0.02

-0.002

Q, Q 0.15 0.3 -0.02
0.0 0.5 1.0

FIG. 11. Normalized-resistivity difference [p substituted for
r in Eq. (18) versus normalized temperature for the a-Mg7Zn3
substitutional model with qDA = 12. The parameters are
2kF/k~ values. (N.B. Normalization is with respect to p at
~=0.01 rather than v.=0 in this and the next figure only. )

FIG. 12. Normalized resistivity difference versus normalized
temperature for the potassium pseudoatom effective-potential
model with q&A=12. The parameters are 2kF/k~ values.

2k»/k» discussed in regard to Fig. 10 the families of
R (q&A, 2kF/k», r)-versus-r curves produced by model A2
appear to be essentially the same as the
R (qDA, 2k»/k», r)-versus-r curves from model Al.

There is another difference which could be discerned in
such graphs. For model A2, the qDA required for the
equivalent curves (i.e., with the shift of 2k»/k» incor-
porated) is slightly larger than for model Al. For exam-
ple, the a-MgZn matrix-element results for qDA=12,
which are shown in Fig. 11, look very much like those for
the constant r matrix at q~A = 10 (not shown); in particu-
lar, the A2 model at qDA= 12 exhibits a range of 2k»/k»
for which monotonic decreasing R(12,2kF/k», r) is ob-
tained. However, for the R scale appropriate for r be-
tween 0 and 1 and the model-Al and -A2 p-versus-~
curves, a strong family resemblance is seen for the same
qDA. (When one examines p versus r for an R scale ap-
propriate for r between 0 and 0.3, the correspondence is
improved, for example, by comparing curves for model
A2 with 2k»/k» shifted at qDA = 12 with those of model
Al at qDA=10, i.e., shifting qDA as well as 2k»/k» im-
proves the correspondence. )

Other results, based upon the substitutional a-MgZn
model for a selection of 2k»/k» and qDA values, were
presented in Ref. 24. A general conclusion to be drawn is
that the R versus-r curves f-or model A2 are well approxi-
mated by R versus rcurv-es for m-odel Al. The E depen-
dence of the t matrix for the a-MgZn substitutional
model apparently only slightly increases the phonon inef-
fectiveness for a given q~A and increases the "effective
2k~/kz" with respect to the constant —t-matrix model.

B. Effective-potential models

1. Model B1: a-MgZn adjusted s ar4 p model t matrix

This model was discussed for 2kF-l. lk» (the ap-
propriate condition in the a-Mg„Znt „alloys) in Ref. 12.
The s and p phase shifts were adjusted to satisfy the
Friedel sum rule and to give the observed magnitude of p
with a11 other phase shifts zero. The 8-versus-~ curves
for this model are essentially equivalent to those for the

a-MgZn substitutional model (or R-type curves deduced
for the constant —t-matrix case with small 2k»/k» and
qDA shifts).

2. Model 82: Pseudopotential scattering matrix elements

We noted in Ref. 12 that the p-versus-r curves for a-
MgZn could not be well represented by pseudopotential
results. We suggested there that the problem with the ap-
plication of diffraction models incorporating pseudopo-
tentials could be in the use of the Born approximation.
Thus, the work of Young, Meyer, and Kilby, " in which
single-site multiple scattering on pseudopotentials was
treated to produce sets of scattering phase shifts, seems
especially interesting. We have performed calculations
based upon the pseudoatom phase shifts of Young, Meyer,
and Kilby. " Figure 12 shows a selection of results com-
puted for the potassium pseudoatom phase shifts for
qDA=1.2 and a set of 2k„/k» values which span the
range for negative c«, . All the p-versus-r curves exhibit
relatively large maxima and w~&0.35. The potassium
pseudoatom —phase-shift results are quite similar to those
described in Ref. 12 for Born-approximation pseudopoten-
tial in Mg and Zn and are representative of our calcula-
tions for all the monovalent-pseudoatom phase shifts
given in Ref. 11.

3. Model B3: Zn-phase-shift effective t matrix

The Zn phase shifts used in model A2 are used to de-
fine this effective t matrix. Results based upon this t ma-
trix were given in Ref. 24. The magnitude of these phase
shifts are comparable to those of the monovalent pseudoa-
toms (model 82), but the results more closely resemble
those of the constant t matrix except that the magnitudes
of the maximum negative c„,'s are larger, the range of
2k»/k» for negative c„, is smaller, and the qDA value re-
quired for monotonic decreasing p-versus-v. is larger.

V. DISCUSSION

The effect of saturation (as treated in this paper) is to
reduce the electron-phonon interaction. We have assumed
that the longitudinal Pippard function F(y) defined in
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Eq. (9) gives a reasonable representation of the reduction
of the electron-phonon interaction at small qA. Although
we have not done extensive studies of the sensitivity of the
results to the specific form assumed for F(y}, we believe
that the results do not depend strongly on how one
smoothly interpolates between the small and large qA
limits for which exact expressions are available.

With regard to the suitability of applying the longitudi-
nal Pippard function to general phonons, we might con-
sider the corresponding transverse Pippard ' function,

F,(y)=-
(1+y )tan 'y —y 2y

(9')

Evaluation of F(y) and F,(y) indicates that the functions
differ at most by about 6% for 1 &y & 100, and by less
than 8% for 0.1 & y & 1. Thus, for our purposes, F(y)
would represent the reduction in electron-phonon interac-
tion of transverse as well as longitudinal phonons.

The semiclassical nature of Pippard's derivation has led
to questions pertaining to the validity of using the simple
Pippard functions to describe phonon ineffectiveness.
Schmid addressed these objections by considering the
electron-phonon interaction in finite —mean-free-path
metals on a more exact quantum-mechanical basis. He
succeeded in demonstrating that, for s-wave scattering
and other reasonable approximations, (i) the longitudinal-
phonon Green's function appears only in combination
with the longitudinal Pippard function, and (ii} the
transverse-phonon Green's function appears in combina-
tion with a form that agrees with the transverse Pippard
function at small qA. Thus, one may expect that for less
restrictive assumptions the Pippard functions approxi-
mate the mean-free-path —dependent reduction of the
electron-phonon interaction.

Furthermore, it has been demonstrated that ultrasonic-
attenuation ' and thermal-conductivity data are ex-
plained by Pippard's theory. In addition, we have shown
that the degradation of T, in imperfect strong-coupling
superconductors and the major resistivity anomalies (i.e.,
Mooij phenomena) in high-resistivity crystalline and
amorphous metals' are consistent with predictions of a
model incorporating phonon ineffectiveness in the manner
described here.

The constant —t-matrix model (model Al) yields results
which are essentially equivalent to those obtained from
the other models studied thus far. The monovalent-
pseudoatom results (model B2) can be made to conform
with the results of the other models if fairly large adjust-
ments in qDA are allowed. Thus, the model calculations
yield p(r) forms which are essentially determined by
structure alone. The effect of the different t-matrix forms
is merely to change the 2k~/kz and qDA parameters ap-
propriate to a given p(r), i.e., drastically different t-matrix
forms yield essentially equivalent p versus ~curves-. -

Some of the effects of employing the integral expres-
sion, Eq. (5), rather than the usual dominant backscatter-
ing expression include (i) the center of the range of
2k~/kz yielding negative c«, is shifted to higher values,
(ii) the range of values of 2kF/kz for negative c«, is in
creased, (iii) not only are the small maxima in p versus ~

predicted in Ref. 8 for dominant backscattering retained
in the averaging process, but in some regions of 2kF/k~
the maxima are actually enhanced by the mixing in of
some positive-c„, components of S~ (from smaller
K/kq ).

Phonon-ineffectiveness effects can be seen in the c„,
plots of Figs. 2 and 10. The shifts of the positive to nega-
tive c«, crossover points produced by going from
qDA=300 to 18 are comparable in magnitude to those
produced by going from dominant backscattering to the
integral form in the unsaturated theory.

Figs. 3 through 7 illustrate phonon-ineffectiveness ef-
fects for a variety of 2kF/kz. The curves for qDA=300
are indistinguishable (on the scales of the figures) from
the results of standard theory (qDA= oo ). Significant de-
viations from the qDA=300 case are apparent already at
qDA=18. Results (not shown) of other calculations at
specific 2kF /kz s indicate that the deviations from
Ziman-Faber theory could be observed for qDA & 30.
Thus, phonon ineffectiveness should be considered in
determining the p-versus-r behavior of virtually all known
amorphous metals.

If the partial (geometric) structure factors and t ma-
trices are known, the resistivity will be expressed as a
linear combination of integrals of the form appearing in
the substitutional model. One could parametrize this
more general case in terms of a value for qDA and a set of
weights and 2k+/kz values for each partial contribution
to p. In the simplest case one could keep the constant —t-
matrix approximation; however, generalizations are obvi-
ously possible. A treatment along these lines could lead to
observable differences with respect to the substitutional
model if the partial —structure-factor peaks are well
separated and qDA is not too small. (It is doubtful, for
example, that one could discern differences between an
appropriate substitutional model and a calculation based
upon partial —structure-factor peaks separated by 10% for
qDA & 15 unless the partial structure factors and/or t ma-
trices were of dramatically different form. )

If the low-energy part of the phonon spectrum is
Debye-like, then qualitatively different results would not
be obtained at low temperatures even if the true phonon
density of states and dispersion relations were incorporat-
ed into the models. However, it is possible that more real-
istic spectra might significantly alter results for r & 1. We
have not yet explored this question.

The results presented here were obtained on the as-
sumption that qD ——k~. In treating this problem in a gen™
eral way one might equally well have, for example, as-
sumed qD to be fixed. The value of qD influences the
magnitude of the temperature-dependent effects and one
could improve the theoretical procedure for a given alloy
series by using the best available values for qa and kF.
The ~-dependent parts of p [R (v) or c«, ] for a fixed qD
and a qD ——k~ calculation would differ by less than +20%
for 1&Z&4.

Faber-Ziman theory and hence our results yield p(T) at
constant volume. Thus, in experimental tests of the
theory, thermal expansions must be considered. One gen-
erally assumes that 2k~/kz is essentially T independent
because x-ray data ' indicate that k&QO is constant over
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extensive temperature ranges (which is consistent with the
intuitive notion that only the scale of the structure of an
amorphous metal should change during thermal expan-
sion), and because of the free-electron model, which im-
plies that kFQO is also T independent. However, volume-
dependent effects in the scattering matrix elements can be
significant. These effects can be incorporated in the dif-
fraction model in a straightforward manner. For exam-
ple, Hafner found that thermal-expansion effects were
appreciable in first-principles pseudopotential-based
diffraction-model studies of p( T) in liquid and amorphous
Mg7Zn3.

Our primary objective is to describe the implications of
the generalized Baym-Faber-Ziman theory (incorporating
Pippard-Ziman phonon ineffectiveness) which are deter-
mined primarily by the structure of metallic glasses. The
results for all the model t matrices studied do indeed ex-
hibit a strong family resemblance. Even the monovalent-
pseudoatom results, which are essentially pseudopotential
results, are viewed as part of this family, although large
adjustments in qDA and 2kF/k& are required to make
them conform. We consider an adjustment of less than
15% m qDA or less than 3% in 2k~/k~ as "small. "

To compare computed results with data, one would be-
gin with measured parameters or free-electron approxima-
tions, for example. The important parameter qDA is es-
timated (free-electron model) by

q&A=644(Z/2)'~ (kza~) '[p/( lpQ cm)] ', (24)

where aH is the Bohr radius. [Note that we relax the
qD ——kF condition to obtain Eq. (24).] The appropriate
qDA will, in general, not be one of those shown in the fig-
ures. Usually, one of the curves given will yield a good
approximation. However, one can do better. Linear inter-
polation for R or c„, on ln(qDA) will yield excellent re-
sults for 2 & qDA & 18 and good results for
18 & qD A & 300. For example, to obtain R(8), use

ln( —", )R (6)+ln( —,
' )R (12)

ln(12/6)

since curves are given for qDA= 12, and qDA=6. This
procedure could be employed to account for the T
dependent changes in qDA in a, self-consistent manner;
however, in practical cases this effect would be only bare-
ly perceptible even in extreme cases (e.g., an extreme case
might be a 10% reduction of p from 0 K to room tem-
perature. In such cases a slight upward curvature in p
versus T would be generated near room temperature. A
single iteration would yield the entire effect within 1% of
the change in p. )

References 12 and 24 demonstrated that Pippard-Ziman
phonon ineffectiveness produced significant effects in
low-resistivity (p=50 pQcm) amorphous alloys so we
cannot make a clear-cut separation into high- and low-
resistivity metals. %'e shall, somewhat arbitrarily, consid-
er an alloy to have high resistivity if qDA is small enough
to produce monotonic decreasing p(r). For example, for
the a-MgZn substitutional model or for the constant —t-
matrix model, qDA & 10 would correspond into high resis-
tivity. Equation (24) shows that kz and Z, as well as p,

play a role in determining "high resistivity" under this
definition.

Interesting phenomena (viz. , low-temperature maxima
and/or minima) occur in low-resistivity amorphous alloys.
Good agreement with the observed size and position of
the minima and maxima in p(r) and reasonable agreement
with the c„, can be obtained with either the constant —t-
matrix or the a-MgZn substitutional model with small ad-
justments of parameters. A single value of a, consistent
with kz and M, fits the entire range of p versus ~ with a
value of the Debye temperature (usually) consistent with
tabulated values of the resisti Ui ty Debye temperature
(denoted as Sii). This choice of 0 might be considered
an adjustment to the thermal Debye temperature; Oz usu-
ally differs from the thermal value by less than 30%.

The predicted c„,-versus-2k+/kz curve for these
models also appears to have the observed form (i.e., nega-
tive c„, persists to quite large 2kF/k~ and there is rela-
tively small variation in the magnitude of the c„, for a
range of 2kF!k~ near the maximum negative value).

Most glassy metals fall into the high-resistivity
category and there are many alloy series which exhibit a
transition to monotonic decreasing (i.e., high-p) behavior.
There are examples of high-resistivity amorphous metals
which yield results consistent with the model calcula-
tions. However, the typical case' differs from the
theory on critical analysis of the low-temperature form of
p(r) and/or the size of the positive deviations from linear-
ity in p(r) near r= l. This problem is only partially al-
leviated by accounting for variations of qDA as p de-
creases with increasing r for appropriate a values. Actu-
ally, the agreement is reasonably good in many of these
high-p alloys when based upon the standards usually ap-
plied to the fitting of resistivity data to diffraction-model
results.

The origin of the discrepancies in the high-resistivity
alloys is not known. Some possibilities would include (i)
realistic phonon spectra, (ii) appropriate t-matrix forms,
(iii) additional scattering mechanisms related, for exain-
ple, to two-level systems, ' (iv) saturation effects in the
elastic scattering contributions, and (v) incipient localiza-
tion.

VI. CONCLUSIONS

Diffraction-model calculations, incorporating the
Pippard-Ziman expression to represent phonon ineffec-
tiveness and employing a number of model t matrices,
have been performed. Although the results are not very
sensitive to the exact form of F(qA), the Green's-function
analysis of Schmid and a variety of experimental results
controlled by the electron-phonon interaction support the
use of this procedure.

The results for low-resistivity (qDA& 10 or p& 100
pQcm) amorphous metals agree well with the extensive
body of data obtained for such systems by Mizutani and
co-workers. The alloys studied by these workers are ex-
ceptionally well characterized so that direct comparisons
are possible. Such features as low-temperature minima
and maxima in p for negative-c„, cases and their varia-
tions with qDA and 2k+/kz are reproduced. In addition,
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the experimental trends of the c„, with 2k+/k» are ex-
plained; in particular, the shift relative to dominant-
backscattering results and the extended range of 2k~/kz
for negative c„,are explained. Good agreement with the
data is obtained with only small adjustments in 2kF/kz
and/or qDA for all the scattering matrix models treated,
except for the pseudopotential-based t-matrix models,
which require larger adjustments of the parameters. The
larger adjustments in 2kF/kz and qDA required to make
the pseudopotential-based calculations conform suggest
that systems which are well described by pseudopotentials
might yield p-versus-~ curves that appear to be incon-
sistent with those obtained in the low-resistivity alloys
studied thus far.

New features are predicted for high-resistivity
(q&A & 10 or p & 100 pQ cm) alloys. In particular, mono-
tonic . decreasing p versus ~ is predicted for qDA-
dependent ranges of 2k~/kz, and in the short mean-free-

path limit ( qn A & 1), the low- T limiting form
p-po(l A—T ) with A&0 is predicted. This type of'

behavior is well known in high-resistivity alloys. Howev-
er, except for a few cases, the agreement between theory
and experiment is only qualitative. In particular, the pro-
nounced sigmoidal character of the measured p-versus-r
curves is not adequately explained.

Note added. Hafner and others claim that we omit a
term in our diffraction-model exposition. This is in-
correct. The origin of this discrepancy rests in the defini-
tion of the geometrical structure factor. Hafner impli-
citly employs a geometrical structure factor equal to that
defined here in Eq. (2) minus N5tco Th. e contribution
arising from N5tc o, which is treated separately by Hafner,
is then claimed to be missing from our equations. We
have, in fact, discussed the magnitude of the contribution
arising from this term to p, for example, in Ref. 12.

T. E. Faber, Liquid Metals (Cambridge University Press, Lon-
don, 1972).

J. M. Ziman, Philos. Mag. 6, 1013 (1961).
3G. Baym, Phys. Rev. 135, A1691 (1964).
~P. J. Cote and L. V. Meisel, Phys. Rev. Lett. 39, 102 (1977).
L. V. Meisel and P. J. Cote, Phys. Rev. 8 16, 2978 (1977).
R. Evans, B. L. Gyorffy, N. Szabo, and J. M. Ziman, in The

Properties of Liquid Metals, edited by S. Takenchi (Wiley,
New York, 1973).

7R. Evans, D. A. Greenwood, and P. Lloyd, Phys. Lett. 35A, 57
(1971).

L. V. Meisel and P. J. Cote, Phys. Rev. B 17, 4652 (1978).
J. K. Percus, G. J. Yevick, Phys. Rev. 110, 1 (1958) see also J.

L. Lebowitz, ibid. 133, A1399 (1964).
See, for example, N. W. Ashcroft and J. Leckner, Phys. Rev.
$45, 83 (1966)

%. H. Young, Axel Meyer, and G. E. Kilby, Phys. Rev. 160,
160(1967).

'

L. V. Meisel and P. J. Cote, Phys. Rev. B 27, 4617 (1983).
U. Mizutani and T. Yoshida, J. Phys. F 12, 2331 (1982); T.
Matsuda and U. Mizutani, Solid State Commun. 44, 145
(1982); T. Matsuda and U. Mizutani, J. Phys. F 12, 1877
(1982); T. Matsuda, N. Shiotani, and U. Mizutani, ibid. (to be
published).
D. Korn, W. Murer, and G. Zibold, Phys. Lett. 47A, 117
(1972); E. Blasberg, D. Korn, and H. PfeiAe, J. Phys. F 9,
1821 (1979).

~5P. J. Cote and L. V. Meisel, Phys. Rev. Lett. 40, 1586 (1978).
J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
See, for example, G. Fritsch, J. Wilier, A. Wildermuth, and E.
Luscher, J. Phys. F 12, 2965 (1982); H. Schroder and %'.
Felsch, J. Non-Cryst. Solids 56, 219 (1983); U. Mizutani and
T. Matsuda, J. Phys. F 13, 2115 (1983); R. Clarke and S. R.
Nagle, Solid State Commun. 36, 751 (1980).

~8See, for example, Z. Fisk and G. W. %ebb, Phys. Rev. Lett.
36, 1084 (1976).

~9N. Morton, B. W. James, and G. H. Wostenhobn, Cryogenics
18, 131 (1978).

J. M. Ziman, Electrons and Phonons (Clarendon, Oxford,
1960), Chap. 5.

~~A. B. Pippard, Philos. Mag. 46, 1104 (1955); C. Kittel, Quan-

turn Theory of Soiids (Wiley, New York, 1964).
2~J. E. Zimmerman, J. Phys. Chem. Solids 11, 299 (1959).
3L. V. Meisel and P. J. Cote, Phys. Rev. 8 19, 4514 (1979).
"P. J. Cote and L. V. Meisel, Proceedings of the Fifth Interna-

tional Conference on Liquid and Amorphous Metals, UCLA,
1983 [J. Non-Cryst. Solids 62, 1162 (1984)]; L. V. Meisel and
P. J. Cote, ibid [62, 1301 .(1984)].
P. J. Cote and L. V. Meisel, in Glassy Metals I, edited by H.-J.
Guntherodt and H. Beck (Springer, Heidelberg, 1981).
U. Mizutani, Frog. Mater. Sci. (to be published).
D. G. Naugle, J. Phys. Chem. Solids (to be published).
See, for example, J. C. Slater and K. H. Johnson, Phys. Rev.
5, 844 (1972).
F. C. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Englewood Cliffs, N.J., 1963).

30T. L. Loucks, Augmented Plane 8'ave Method (Benjamin,
New York, 1967).
E. A. Kmetko, Phys. Rev. A 1, 37 (1970).

32I. Lindau and W. E. Spicer, in Charge Transfer/Electronic
Structure of Alloys, edited by L. H. Bennett and R. H. Willi-
ams (Metallurgical Society of the American Institute of Min-
ing, Metallurgical, and Petroleum Engineers, New York,
1974).

33W. A. Harrison, Pseudopotentials in the Theory of Metals
(Benjamin, New York, 1966).

A. Schmid, Z. Phys. 259, 421 (1973).
35%. A. Fate, Ph. I3. thesis, Rensselaer Polytechnic Institute,

1967.
6P. J. Cote, G. P. Capsimalis, and L. V. Meisel, Phys. Rev. 8

16, 4651 (1977).
Y. Waseda and T. Masumoto, Sci. Rep. Res. Inst. Tohoku
Univ. Ser. A 27 (1978).
J. Hafner, J. Non-Cryst. Solids (to be published).
G. T. Meaden, Electrical Resistance in Metals (Plenum, New
York, 1965).
L. V. Meisel and P. J. Cote, Phys. Rev. 8 15, 2970 (1977).

4~See, for example, R. Harris, J. Strom-Olsen, and M. Zucker-
man, Phys. Rev. Lett. 35, 676 (1975).
See, for example, M. Jonson and S. M. Girvin, Phys. Rev.
Lett. 43, 1447 (1979);Y. Imry, ibid. 44, 469 (1980).


