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Ground-state energy of many-electron systems from x-ray-scattering cross sections
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In the nonrelativistic limit and for a purely electrostatic Hamiltonian, an exact relation between
the ground-state energy of a crystal and the x-ray-scattering cross section has been derived which al-

lows us to distinguish static from dynamical (exchange and correlation) contributions. %ith the use
of this relation and the corresponding one valid in the case of an isolated atom, it is possible to cal-
culate the cohesive energy of a crystalline substance. Available x-ray cross-section data have been
used to calculate the cohesive energy of Be, Si, Al, and Cu. In the case of Be, agreement of calculat-
ed cohesive energy with the thermochemical value is obtained if exchange and correlation contribu-
tions are included. For the other solids, a substantial disagreement increasing with atomic number
has been evidenced. Poor agreement of calculated cohesive energies with thermochemical values is

presumably to be attributed to a lack of sufficiently comprehensive sets of measured cross sections.

INTRODUCTION

The well-known Hohenberg and Kohn theorem' states
that in the nonrelativistic limit any ground-state property
of a nondegenerate many-electron system is a universal
functional of the electron number density.

Although the universal functionals referred to above are
in general unknown, resulting in the impossibility of actu-
ally using the Hohenberg and Kohn theorem, it is possible
to write an explicit relation between the x-ray cross sec-
tion and the total ground-state energy of a crystal, which
is the equivalent of the sum rules which in a free atom re-

late the x-ray cross section to the average inverse
electron-nucleus and electron-electron distances.

In contrast to already published approximate relations,
the present treatment is exact if nuclei are considered hav-

ing infinite mass and if the magnetic contribution to total
energy (smaller than purely electrostatic terms by several
orders of magnitude ) is neglected. This feature allows us
to put into a sharper focus the differences, when they ex-

ist, between available cross sections and known cohesive
energies and to assess with better confidence the accuracy
and completeness of measured and calculated cross sec-
tions.

ENERGY EQUATIONS

Consider a system composed by a very large number of nuclei and electrons and such that it is accurately described by
a nonrelativistic Hamiltonian. In this case its ground-state potential energy is given by:
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where V„, V,~, and V~~ are the electron-electron, electron-nucleus, and nucleus-nucleus interactions, respectively, p( r )

and p~(r) are the electronic and nuclear number density operators,
~
0) is the exact total-system ground state, and X„

and X~~ are the electronic and nuclear self-energy terms. Specializing Eq. (1) to the case of an elemental system, we can
write:
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where Z is the atomic number, n( r) is the electronic ground-state number density, and the Rt s are the positions of the
N nuclei of the system. In Eq. (2) we have divided the electron-electron contribution into a dynamical (exchange-
correlation) part and into a static part. In order to further simplify Eq. (2), henceforth we shall only consider crystalline
systems. In this case, since n( r ) has the lattice periodicity it can be Fourier analyzed:

n(r)= gF e' (3)
Qp
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where the 6's are reciprocal-lattice vectors, the F- 's are the unit-cell structure factors (calculated without the dispersion

contribution to the atomic scattering factor), and Qo is the unit-cell volume. In a similar way also the dynamical part of
the electron-electron terin can be Fourier analyzed using the incoherent scattering cross section which, for an atom hav-
ing

~

0) as its ground state, can be written as

S(Q)= 2 &0
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where both sums run over all electrons in the atom, r is the radius vector from the nucleus to the mth electron, and

f(Q) is the atomic scattering factor. In our case, using the number-density formalism, Eq. (4) is written as

NS(Q)= f drdr'Ie'O'' ''[&0~p (r)p(r') ~0) —n(r)n(r')]I, (4b)

where S(Q) is now the incoherent scattering cross section per atom of the solid. Then, upon substitution of Eqs. (3) and
(4b) into Eq. (2) and treating the nucleus-nucleus term by means of the well-known Ewald method, one has
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where g' ineans that the (000) reciprocal-lattice vector
has to be omitted, a is the Madelung constant of the lat-
tice, ro is the cell radius, and F is the geometrical struc-6
ture factor of the cell

Fg = ge' (6)

with the index s running over the nuclear positions r, in
the unit cell. Within the limits mentioned so far, Eq. (5)
is exact and applicable to an elemental system of whatever
crystal symmetry. Using the virial theorem whose simple
form at zero external pressure is

Vo
Eo=To+ Vo=

2

we can therefore calculate the ground-state energy per
atom in a solid. Comparing this energy with the ground-
state energy of an isolated atom which can be computed
with the aid of well-known sum rules:

«o).~. = — f, f(Q)dQ

f (I„,—Z)dQ,

where f(Q) is the spherically averaged atomic x-ray-
scattering factor and I„, is the total intensity in e.u. , we
can, at least in principle, calculate the difference in
ground-state energies between one isolated atom and one
atom in a solid; that is, the cohesive energy. However,
looking at Eq. (5) it is clear that the calculation of total
energy implies the inclusion of a very large number of
reciprocal-lattice vectors. Indeed, even in the case of a
light element such as Be, over 12000 reciprocal-lattice
vectors had to be included in order to have the total ener-

gy converged up to the third decimal place. Moreover, in-
terpolations problems appear to have some relevance.
Having this in mind it is clear that it is more convenient
to treat free atom and solid in the same way. In order to
do this we observe that Eq. (8) is composed of two contri-
butions. The first is the classical electrostatic energy of

I

the electronic charge density in the nuclear field, while the
second contains the electron-electron repulsive energy and
the electronic self-energy. We also have that the contribu-
tion due to S(Q) is in the same form of the corresponding
term in Eq. (5). To put the electronic energy of the free
atom in the same form of the solid we consider N free
atoms forming the same lattice of the solid, but with in-
finitely large lattice parameters. Because of the charge
neutrality of each atom we can reduce the volume of this
lattice to that of the solid with no change in energy if the
atomic charge density is kept constant. It is then clear
that we regain Eq. (5) with the structure factors substitut-
ed by

F"' =f(G)F~- . (9)

The energy difference obtained from the measurement of
the scattering factor at n reflections can be easily calculat-
ed from the above equations. Supposing for simplicity
that all atoms in the unit cell are equivalent, so that Eq.
(9) obtains also for the solid, one has
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RESULTS AND DISCUSSION

A comparison of known values of cohesive energy with
energy differences calculated from the formulas of the

where the sum runs over the n measured reflections, f; is
the solid atomic scattering factor at the ith reflection, and
bf; is the corresponding difference between solid and
atom. An obvious consequence of Eq. (10) is that if all
Af s are nonpositive, then AEo is non-negative. In the
same way total energy differences due to dynamical ef-
fects (exchange and correlations) can be calculated from
the incoherent scattering cross section.
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preceding section allows an assessment of the accuracy
and completeness of available experimental and theoreti-
cal data. Representative results on Be, Si, Al, and Cu, for
all of which extensive calculations and measurements
have been carried out, will be presented below.

For atomic calculations the coherent and incoherent
scattering cross sections of Be have been obtained by
Benesch and Smith from configuration-interaction wave
functions, which account for 93% of correlation energy.
In the present context, therefore, these cross sections are
practically exact. For all other atoms relativistic
Hartree-Fock scattering factors and nonrelativistic
Hartree-Fock incoherent scattering cross sections have
been tabulated. In order to estimate the accuracy of these
calculations the total energy of atomic Al and Si
(-—7000 and —8000 eV/atom, respectively) have been
computed and compared with spectroscopic values (spec-
troscopic data for Cu are incomplete). Measured and cal-
culated values have been found to differ by 9 eV/atom for
Al and 16 eV/atom for Si, with calculated energies lower
(more stable) than spectroscopic values. We believe that
this result, apparently contradictory with the variational
principle, is due to the high (sin8)/A, region where tabu-
lated values are very approximate and too coarsely spaced.
In any case it might seem that since these differences are
much larger than cohesive energies (3—4 eV/atom) no
conclusion on the accuracy of experimental cross sections
can be reached on the basis of energy-difference calcula-
tions. However, since for each solid only a few values of
the scattering factor and the incoherent cross section have
been measured (all of which in the low-[(sin8)/Aj region)
the error on energy differences resulting from correspond-
ing free-atom data is only a small part of the error on to-
tal energy. This consideration shows that at least on a
semiquantitative basis, correct information can be extract-
ed from this type of energy calculations.

Extensive measurements of the scattering factor' and
the incoherent scattering cross section of crystalline Be
have been reported. The energy difference due to the
scattering factor is —0.7 eV/atom (solid lower) while the
difference due to the incoherent scattering cross section is
—3.8 eV/atom. The resulting cohesive energy of 4.5
eV/atom (taken positive according to current usage) com-
pares well with the thermochemical value of 3.34
eV/atom. We note that the contribution to cohesive ener-

gy of exchange and correlations is far from negligible and
that its value is consistent with the estimate of 1.4
eV/atom due to correlations alone, recently reported by
Dovesi et al. "

In the case of Si the scattering factor of 15 reflections
has been measured by Aldred and Hart' from a perfect
crystal while the incoherent scattering cross section has
been measured by steinberg' and by Paakkari and Suort-
ti' up to (sin8)/A, -0.5 A '. The energy difference due
to the scattering factor is 5 eV/atom (solid higher) includ-
ing the contribution to the electron-electron repulsive en-
ergy given by the forbidden (222) reflection, for which a
recent measurement by Alkire et al. ' has been used. The
energy difference due to the incoherent scattering is —3.9
eV/atom, so that the calculated cohesive energy is —1.1
eV/atom instead of the thermochemical value of 4.66

eV/atom. Considering that measured cross sections con-
tribute ——,

' of total energy one has that the error on free-
atom values could account for a sizable part of the differ-
ence between measured and calculated cohesive energy.
Qualitatively one can conclude that measured cross sec-
tions are compatible with known cohesive energy. How-
ever, in order to really check the claimed 0.1% accuracy
on crystal scattering factors, better atomic calculations
and a larger set of experimental coherent and incoherent
cross sections would be necessary.

The incoherent scattering cross section for Al has been
reported by Laval' and Walker' up to (sin8)/A, -0.6
A ', while the scattering factor has been measured,
among others, by Raccah and Henrich' and Inkinen
et al. '

up to (sin8)/A, -0.6 A ', with nearly coinciding
results. The energy difference due to the incoherent
scattering cross section is 0 within the errors, while the
difference due to the scattering factor is 11 eV/atom
(solid higher), as one could anticipate from the fact that
all crystal scattering factors are lower than free atom. A
comparison between atomic and solid-state calculations
can be made using the band-calculated values reported by
Tawil. The band scattering factors are systematically
lower than free atom up to (sin8)/A, -0.6 A ' with a re-
sulting energy difference of 19 eV/atom. This difference
decreases to 12 eV/atom if one uses all published band
values [(sin8)/A, (0.8 A ']. Considering that thermo-
chemical cohesive energy is 3.34 eV/atom, one has that
the difference (-15 eV/atom) between thermochemical
and x-ray-calculated cohesive energies is several times
larger than the error introduced in the calculations by the
free-atom scattering factor. In order to understand the
origin of this difference we have calculated the incoherent
scattering cross section of crystalline Al in the slowly-
varying-density approximation ' ' starting from the
charge density reported for the solid by Moruzzi et al.
Comparing crystal and free-atom incoherent scattering
cross sections, one has that the contribution to total ener-

gy from S(Q) is the same within 1 eV/atom in both cases,
in agreement with experiment. Moreover this contribu-
tion is only -250 eV/atom so that an error of 15
eV/atom in its evaluation is highly unlikely, while a con-
tribution of a few eV as in Be and Si is possible. A clue as
the origin of the 15-eV difference is offered by the obser-
vation that the difference between band-calculated and
free-atom scattering factors reverses its sign at about
(sin8)/A, -0.6 A ', with the band-calculated scattering
factors being still significantly higher than free atom at
(sin8)/A, -0.8 A '. Admitting that the difference be-
tween crystal and free-atom scattering factors has an os-
cillating trend one would have that the observed differ-
ence arises essentially from lack of sufficient experimental
values. Of course such a difference might become smaller
and smaller for successive oscillations with increasing dif-
ficulty or even impossibility of its experimental detection.

The necessity of having accurate values of the scatter-
ing factor up to high values of (sin8)/A, is indicated also
by Cu. The most complete set of scattering factors has
been recently obtained by means of y-ray diffractometry
by Schneider et aI. The measured crystal values are sys-
tematically lower than free-atom values up to
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(sin8)/A, -0.8 A ', while in the range 0.8
A '((sin8)/A, & 1.5A ', for the reflections which have
been measured, they are equal to free-atom values within
the errors. For the incoherent scattering cross section no
measurement of this quantity is available. The energy
difference arising from the scattering factors is -97
eV/atom (solid higher) while the cohesive energy of Cu is
3.5 eV/atom. Band-calculated values obtained by
Bagayoko are also reported in Ref. 23. These values are
systematically lower than free-atom values only up to
(sin8)/A, -0.5 A ' and, being intermediate between mea-
sured crystal values and free-atom calculations, result in
an energy difference of 38 eV/atom (solid higher). The
contribution to cohesive energy of the incoherent scatter-
ing cross section can be calculated following the pro-
cedure mentioned for Al. While the contribution to total
energy is -2% (900 out of 45000 eV/atom) the differ-
ence between solid and free-atom values is less than 1

eV/atom. Although this result is probably in error by ap-
proximately 1% or 2%%uo of 900 eV/atom, it shows
nonetheless that the incoherent scattering cross section
cannot account for the 100 eV/atom due to the scattering
factors. Of course this remark and the corresponding one
made for Al are not in contrast with the previous observa-
tion that the energy difference due to the incoherent
scattering cross section may be crucial for determining
cohesion, as this phenomenon is due to energy differences
of the order of a few eV/atom. It is also clear that errors
in the calculation of the free-atom scattering factor can-
not be responsible for the observed discrepancy since this
would amount to lowering free-atom values by an amount
ranging from 2.5%%uo at (sin8)/A, -0.25 A ' to zero at
(sin8)/A, -0.8 A . This is inconsistent with the fact that
different atomic calculations ' yield the same scattering
factor to better than 0.5%%uo up to (sin8)/A, —1 A '. All
these facts suggest that the 100-eV/atom discrepancy is
likely to arise from a combination of the following: (1)

the crystal scattering factor becomes larger than free atom
at high values of (sin8)/A, . For instance, the correct value
of cohesive energy would be obtained if crystal values
were higher than free atom by O. le for (sin8)/t(, between
0.8 and 1.6 A '. Such a difference is at the limit of ex-
perimental accuracy and, of course, is just an example of
the order of magnitude of required differences; (2) the
measured scattering factors are too low because of some
systematic error, as suggested by the fact that the scatter-
ing factor for the (111) and (200) reflections obtained
from critical voltage measurements ' are in agreement
with band-theoretical values and differ significantly from
y-ray results.

From all above data it appears that in order to derive
cohesive energies from scattering cross sections it is neces-
sary to perform very accurate measurements up to rather
high values of (sin8)/A, . Such measurements are probably
at the limit of present possibilities. Also, a significant
check on band-calculated scattering cross sections could
be performed if theorists would calculate these quantities
up to the point where differences from free-atom values
become negligible.

A final remark concerns the suggestion by Weiss and
Mazzone that scattering factors should be measured at
small values of (sin@)/A, by examining the thermal diffuse
scattering. This suggestion originated from the recogni-
tion that since measured scattering factors tend to be
lower than those of the free atom, a possible contribution
to cohesion would arise if the crystal scattering factor was
higher than that of the free atom in the low-[(sin@)/i(, ] re-
gion. This suggestion, consistent with the approximate
treatment of the relation between scattering and cohesion
reported in Ref. 3, turns out to be incorrect in the light of
present work which shows that the total energy of a crys-
tal depends only on the value of the scattering factor at
reciprocal-lattice nodes.
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