
PHYSICAL REVIEW B VOLUME 30, NUMBER 4 15 AUGUST 1984

Electronic structure of small iron clusters
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We report calculations of energy levels and the charge and spin densities for small free (not em-

bedded) clusters of iron atoms. Our method uses spin-density-functional theory in the local approxi-
mation. Single-particle functions are expanded in a basis set of symmetrized linear combinations of
Gaussian orbitals. Matrix elements of the electrostatic potential are computed with the aid of a fit
to the electron density, again with the use of symmetrized combinations of Gaussian orbitals. The
matrix elements of the exchange-correlation potential are evaluated by direct numerical integration

using a grid developed for this purpose. The clusters considered are Fe7, Fe9, and Fe15. Our results

are compared with those obtained by other calculational procedures. The ionization potential of the

Fe9 cluster is determined by a transition-state calculation and is compared with experiment.

I. INTRODUCTION

The study of the electronic structure of small atomic
clusters has become of considerable interest. Such clusters
are interesting both for themselves and as models for
problems in solid-state physics involving the self-
consistent treatment of impurities, local excitations, and
even surfaces.

This paper reports that results of calculations of elec-

tron energy levels and charge and spin densities in small
iron clusters. The clusters are free, that is, the problem of
embedding a cluster in a solid so that the results will be
representative of the solid is not addressed here. We con-
sider specifically Fe7, Fe9, and Fe» clusters in cubic
geometries. The results are compared with those obtained

by other authors T.he ionization potential of Fe9 is com-

puted and compared with experiment.
Although a detailed review of methods for cluster cal-

culations has not (so for as we know) yet appeared, the
essential characteristics of the procedures in current use

are summarized by Delley and Ellis. ' Our calculations
are based on the local- (spin-) density approximation to
density-functional theory. The single-particle Kohn-
Sham equations (including spin polarization), are solved
variationally and self-consistently by expansion in a basis
set of Gaussian orbitals, similar to the procedure followed
in our methods of energy-band calculations. This is an
all-electron calculation. No frozen-core calculation is em-

ployed, and there is no approximation of the "muffin-tin"
type.

However, the large number of two-electron integrals
that are produced if the electrostatic interaction terms are
treated in the most straightforward way has led us to
adapt a procedure in which the charge density is fitted to
a secondary expansion in symmetrized combinations of
Gaussian orbitals. This approach was proposed by Sambe
and Felton and has been extended by other authors.
Some remarks on our fitting procedure are contained in
Sec. II; full details may be found in Ref. 6. The same pro-
cedure could be employed to compute matrix elements of
the exchange-correlation potential; however, because it is

II. METHOD

The effective one-electron Hamiltonian for electrons of
spin o has the form, according to local-spin-density-
functional theory,

@2+2+ P +2 I P(r )

]
r —R„/ /

r —r'J

+V„, (r) . (2.1)

Atomic units, with energies in rydbergs, are used

throughout this paper. In Eq. (2.1), R& designates the po-
sition of the pth atom, and Z„ is the nuclear charge (in
units of the proton charge). The quantity V„, is the

not easy to get an accurate fit to this quantity, we have
decided to compute these matrix elements by direct nu-

merical integration using a special three-dimensional grid,
which is described in the Appendix. Additional discus-
sion of our methods is given in Sec. II.

Previously, calculations for similar iron clusters (Fe4,
Fe9, and Fe,5) have been reported by Yang et a/. These
authors employed the Xa scattered-wave method. A clus-
ter density of states for Fe&5 was generated by replacing
the sharp cluster levels by a Gaussian of width parameter
0.2 eV. Yang et al. concluded that all of the major
features of the bulk density of states were already present
in the cluster density of states. Spin-density maps were
generated which resembled those for bulk iron. Values of
the contact hyperfine field agreed reasonably well with
those for bulk iron.

Our results will be compared in detail with those of
Yang et al. in Sec. III. It suffices for the moment to note
that we agree with their conclusion that the density of
states for the Pe~5 cluster is remarkably similar to that for
bulk metallic iron. However, we find (and describe briefly
below) significant differences between cluster and bulk re-
sults for the spatial distribution of the spin density.
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exchange-correlation potential for electrons of spin o.
Here, we take this to have the von Barth —Hedin form as
parametrized by Rajagopal et al. In a general form, we

have

distribution. The latter procedure was adopted in this
calculation.

In this approach, we define

=&(p)(p Ip)' '+&(p), (2.2) p(r)= ga; f (r), (2.5)

in which p is the spin density, and A(p) and 8(p) are
numerical functions of the density.

The eigenfunctions of H, denoted f„(f or convenience, ir

designates all quantum numbers, including the spin o.

which are required to designate a single-particle function)
are expanded in a set of basis functions XJ,

„—g CJ„XJ . (2.3)

The XJ are, in general, not orthonormal. The familiar
equation results,

(2.4)

where now H denotes the Hamiltonian and S the overlap
matrix on the basis chosen. As H depends on C, a self-
consistent solution has to be found by iteration.

The basis functions XJ used here are combinations of
Gaussian orbitals which transform according to the vari-
ous irreducible representations of the group of the cluster.
In the present case, this is the cubic group. The elementa-
ry Gaussian orbitals used in this calculation were chosen
to be those used by Wachters' in a calculation of energy
levels and wave functions for the isolated iron atom. The
basis includes 14s, 9p, and 5d functions. Although it is
certainly possible to contract this basis, we do not do so,
but instead consider all the basis functions to be indepen-
dent. This procedure improves the accuracy of wave
functions, particularly near a nucleus. When angular
dependences are included there are 66 basis functions per
atom, so that the use of independent Gaussians is practi-
cal only because of the high symmetry of the cluster.
This allows us to reduce the size of the matrix-
diagonalization problem since only functions of the same
symmetry need be considered in constructing the subma-
trices of H and S which are actually diagonalized. The
coefficients required to form the symmetrized combina-
tions were obtained by standard group-theoretic rules and
were provided to the program as data. The coefficients
are listed in Ref. 6, which contains additional discussion
of the use of symmetry to simplify our calculations.

The matrix elements of the Hamiltonian between primi-
tive Gaussian functions on the various sites are related by
symmetry in many cases. These transformation proper-
ties greatly simplify the construction of the Hamiltonian
and overlap matrices.

As mentioned earlier, the number of two-electron in-
tegrals, which increases as the fourth power of the num-
ber of primitive Gaussians, is so large in the present case
that we must make an auxiliary fitting of the charge den-

sity, as was originally introduced by Sambe and Felton.
This fitting may be done in either of two ways: by mak-
ing a least-squares fit to the charge density or by a varia-
tional approach which requires that the fit should produce
minimum errors in the electrostatic energy of the electron

where the f; are a set of functions to be used for the fit,
and require that

5(D —AN) =0,
where

(2.6)

and

e pr —pr pr' —pr' 3 3

/

r —r'/ (2.7)
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(2.8)

in which

f;(r)f, (r '

f, (r)p(r ')
d'r d'r',

(2.9)

(2.10)

and

nj ——f fj(r)d r . (2.11)

A summation convention (repeated indices imply summa-
tion) has been employed in Eq. (2.7).

The basis used for fitting the charge density contained
symmetrized combinations of s-type Gaussians (both ls
and 3s—by the latter, we refer to functions of the form

2 —expr e "
) centered on each atomic site. The exponents of

the ls Gaussians were taken to be twice those of the cor-
responding functions used in the wave-function expan-
sion, whereas those for the 3s Gaussians were taken to be
twice those for the p-type wave-function basis. Altogeth-
er, a total of 23 basis functions for each atom was em-
ployed in the charge-density fitting. We experimented
with the addition of symmetrized combinations of p-type
Gaussians to the fitting basis, but did not find significant
improvement. In our procedure, the essential quantities
required in the evaluation of the tj [Eq. (2.10)] and for the
computation of the Hamiltonian matrix are

(X'"')j.= f ' ' fk(r ')d'r d'r' .
X;(r)XJ(r)

(2.12)

These quantities (and also the S;J and nj ) need be comput-
ed only once. The integrals are evaluated analytically.

In spite of very considerable effort devoted to the
charge-density fitting procedure, this subject seems to us
to be the weakest part of our calculations. It appears that
a fully satisfactory solution will not be obtained short of

pr r.
N is the actual electron number in the system. The solu-
tion for the coefficients a can be written in the form
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computation of all relevant two-electron integrals.
Since the exchange-correlation potential is smaller than

the Coulomb potential over most of the cluster, it is plau-
sible that less (percentage) accuracy is required in the
computation of its matrix elements. We have computed
these quantities by direct numerical integration on a spe-
cial three-dimensional "approximate-doubling" grid.
Since this grid has not, to our knowledge, appeared in the
literature, we discuss its construction, and the accuracy
obtained for some test integrals, in the Appendix. It is
worth mentioning here that, because of the cubic symme-
try of V„, the numerical integral needs to be performed
in only —„th of the "volume" of the cluster, providing
symmetrized basis functions are used. We believe that a
grid of about 1300 points gives matrix elements accurate
to a few percent, and that this level of accuracy is accept-
able.

The iterative calculations leading to self-consistency
were slow to converge. This problem, and proposed
remedies, have been discussed by others. "' Let us define
a mixing factor A, such that the input density to the
(i+1)th iterative stage is A, times the appropriate output
from the ith stage plus 1 —A, times that from the (i —1)th
stage. Then the situation may be summarized by the
statement that A, must be small (-5%) in order to avoid
oscillatory divergence of the procedure. We found that
the procedure discussed by Dederichs and Zeller' of al-
ternating larger and smaller values of A, (in our case, one
iteration with A, =0.15 followed by three with A, =0.05) to
be helpful. When oscillations due to changes in level posi-

tions near the Fermi energy were encountered, it was use-
ful to replace the actual Fermi step-function occupancy
by a smooth function (thus introducing, in effect, an artif-
icial temperature). After a number of iterations, the
T =0 limit could then be taken.

III. RESULTS

Our first preliminary calculations were made for Fe7
clusters at two different atomic spacings, 5.4ao and
4.0ao. The atoms were arranged in an octahedral fashion.
These calculations employed a different method of
evaluating exchange matrix elements in which the differ-
ence between the exchange potential at each stage of itera-
tion and that initially assumed was fit to an expansion in
Kubic harmonics. Both clusters were found to be fer-
romagnetic with average moments of 3.7pz/atom for the
5.4ao spacing, and 3.0@~/atom at the 4.0ao spacing.
Both moments are higher than observed in bulk metallic
iron. This may be a consequence of the open structure as-
sumed. The Kubic harmonic expansion was abandoned in
further work (in favor of the grid mentioned previously)
because of difficulties in treating changes in the exchange
potential close to a nucleus.

We then considered an Fe9 cluster comprising a center
atom and eight neighbors in the position corresponding to
those of the bcc lattice at the distance of 4.68ao, corre-
sponding to the nearest-neighbor distance in bulk iron.
Our results for the energy levels in this system are sum-
marized in Table I and in Fig. 1. The average magnetic
moment was found to be 2.89pq/atom, in good agreement

TABLE I. Comparison of properties of iron clusters (energies in eV).

MS Xa
Fe9

Present
Fe)5

Present

Bulk

Ref. 15

(~ t —~ l)/N 2.89 2.89 2.67 2.93 2.16

Occupied s-band width

(t)
(~)

4.7
3.7

6.7'
6.3'

6.2
5.4

77'
7.2'

8.20b

8.03

Occupied d-band width

(t)
(~)

38
1.5'

3.8
2.8

4.5'

2.9'
4.4'

3 3'
4 75'

3.60'

Total d-band width

(t)
(~)

24f
2.8'

(2.8) 4 4"

4 0h

(2.9)' 4.5'

(4 3)m 4 5n

4.7'

5.3'
5.13"

6.12"

Range of exchange splitting (d) 1.8—3.2 0.7—3.1 1.2—3.2 1.0—2.7 1.1—2.2

Average exchange splitting (d) 2.3 2.5

Exchange splitting (sp)
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FIG. 1. Energy-level diagram for the Fe9 cluster. The sym-
metries of levels and the occupancies (X, ) are given. The
dashed line shows the position of the Fermi level at t&„„and the
crosses indicate that it is occupied by two electrons.

N(E) = g g;e(E E; )—, (3.l)

where g; is the degeneracy of the state whose energy is E;
This quantity. is shown in Fig. 3 for the Fe&5 cluster, for

6.0

MAJO

E

Because one of the central questions in this area is the
relation between cluster and bulk results, we have comput-
ed densities of states for both the Fe9 and Fe~5 clusters,
which can be compared with results for bulk iron. ' The
quantity which involves the least ambiguity is the in-
tegrated density of states, X(E), which is defined to be
the number of states per atom with energies less than or
equal to E. Specifically,

with Ref. 7. Some numerical results for this system are
compared with those of Ref. 7 and with bulk iron in
Table I.

Because some experimental information is becoming
available concerning the ionization potentials of small
free-iron clusters, ' we performed a transition-state calcu-
lation' to determine this quantity for the Fe9 cluster. In
this approach, the ionization potential is determined as
the energy of the highest occupied state in a cluster in
which this state has half an electron less than the normal
occupancy. The calculation, which was also spin-
polarized, gave 0.378 Ry (5.2 eV) for this quantity.
Rohlfing et al. ' state that the ionization potential for Fe9
clusters is in the range from 5.3 to 5.6 eV. The agreement
seems to be reasonable in view of the uncertain geometry
of the experimental cluster.

We then proceeded to repeat the calculation for the Fe~5
cluster (bcc geometry with a =5.40). Some of the numer-
ical results are also presented in Table I where they are
compared with those of Ref. 7. An energy-level diagram
is shown in Fig. 2.
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FIG. 2. Energy-level diagram for the Fe» cluster.
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FIG. 3. (a) Integrated density of states per atom for Fe» with
majority and minority spins separated. The ordinate shows the
number of states per atom. Results from the band calculation
of Ref. 15 are presented, with the energies shifted so that the
Fermi energies of the cluster and bulk coincide. (b) Integrated
density of states per atom for Fe» with spins combined.
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splittings tend to be somewhat closer to the band-
calculation results' as given in Table I than are the
multiple-scattering Xa (MS Xa) results (however, the
band-calculation values in the footnotes of Table I refer to
the von Barth —Hedin potential). In addition, note in Fig.
5(b) that the Fermi level for Fei5 is near a minimum of
the density of states as in bulk iron, and that the peak
structure on both sides of EF in Fei~ is similar to the band
result.

There is a major exception to this general agreement:
The magnetic moment per atom in the case of Fei5 is
much larger than the bulk value, and also larger than that
obtained in the MS Xa calculation. The spatial distribu-
tion of the spin density is also different. We have found a
different pattern of positioning of some levels close to the
Fermi energy which probably reflects differences in the
band-calculation procedures. To see the cause of the
difference, we can compare Fig. 2 with Fig. 6 of Ref. 7.
In the present case, we find that there are no degeneracies
at the Fermi energy; there are four occupied states with

a1, symmetry, six occupied doubly degenerate states
with eg, symxneiry, but only three occupied triply degen-
erate states with t&„, symmetry. Yang et ah. have three
electrons with a ig, symmetry and eleven (each) for the eg,
and t&„, symmetries; the incomplete occupancies of these
states results from a degeneracy at the Fermi energy. In
our case the sixth eg, state is below EF, as is the fourth
a,s„while our fourth t,„, is above EF. Thus we have
two more majority-spin electrons in the cluster than was
found by Yang et al. and we thus obtain a larger mo-
ment. It is difficult for us to understand the occurrence
of the accidental degeneracy of the eg, and t», states at
EF reported by Yang et al. , as it could be removed, in
principle, by a small change in the exchange potential.

Our calculations of the spin density show that in both
the Fe9 and the Fe» clusters, the central atom has more
minority- than majority-spin electrons, while the outer
atoms are dominated by majority spins. The spin densi-
ties at the nuclear sites for the Fe» case are, in atomic
units,

—0.089 (central atom),

—0.265 (first shell),

—0.395 (second shell) .

Moreover, we find considerable anisotropy in the spin-
density distribution around the central atom. The
minority-spin-dominated region is extended along the
(111) directions from the central atom toward the nearest
neighbors, and is contracted along the (100) directions.
The spin distributions and contact densities obtained here
are not in accord with results for bulk iron nor with the
results of Ref. 7. We believe that either additional atomic
shells must be included, or embedding boundary condi-
tions imposed, if results representative of the bulk in this
respect are to be obtained.

IV. CONCLUSIONS

We have completed calculations of energy levels in free
Fe7, Fe9, and Fe» clusters. An expansion in symmetrized

Gaussian orbitals was applied to the Kohn-Sham equa-
tions of local -spin -density -functional theory. We find for
the Fe» cluster, in agreement with previous MS Xo.' cal-
culations, that there is a very substantial degree of agree-
ment in the overall features of the energy-level distribu-
tions between cluster and bulk results. However, we do
not find similar agreement in respect to the spatial distri-
bution of the spin density, which implies to us that larger
clusters must be considered, or different boundary condi-
tions imposed, in order to obtain results consistent with
bulk calculation in this respect.
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APPENDIX: THE DOUBLING GRID

In our doubling grid, which is intended for cubic

geometries, we divide space within the 4, th irreducible
wedge in several divisions. Space within each division is
filled with elementary cubes of the same size. The size of
the elementary cubes is Inade small near atomic centers
where some orbital basis functions vary rapidly. The ele-
mentary cube size is increased as distances from atomic
centers are increased. We could double the elementary
cube length for most of the successive divisions except at
one stage where approximate doubling was used to avoid
an unnecessary explosion in the number of elementary
cubes due to the necessity of rapidly increasing number of
subdlv1slons.

The sampling points for integration are chosen to be at
the center of each elementary cube even in cases where
only part of the cube remains within the wedge. This
choice of sampling point is obviously natural for cubes
which are completely within the wedge and is also natural
for cubes having only portions of their volume within the
wedge although it can be seen with simple reasoning that
we are wasting sampling points by such a choice. Avoid-
ing high-symmetry planes may be desirable in placing
sampling points, but we could not find any other choice of
sampling points which could give a better result. For ex-
ample, we tried shifting our points to center-of-mass posi-
tions for fractional cubes (in the full cube it remains at the
same position) only to find worse results.

Another point of importance is the necessity of choos-
ing comparable cube sizes for comparable regions of
space. If one part of the space were given a finer grid due
to some interest in that particular region, the integration
result became worse for those cases where proper cancella-
tion could not be obtained due to failure to employ a finer
grid in other relevant regions.

The fact that we have a situation where we cannot fill
the region with cubes, unless we continue with strict dou-
bling, can be seen with simple reasoning. Consider a
two-dimensional grid: In the two-subdivision case, where
each doubled-length division is divided into two along the
abscissa within iis own division, we have found it accept-
able to have basic length increasing by



1730 KEEYUNG LEE, JOSEPH CALLAWAY, AND S. DHAR 30
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FIG. 6. Figures arising from the partition of cubes by wedge
boundaries.
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for divisions I, II, III, . . . , respectively. If this procedure
is not followed, awkwardly shaped fractionally filled re-
gions result.

The accuracy obtainable from a given grid was evaluat-
ed by using the grid to compute overlap integrals. Ana-
lytic results for these are easy to obtain for comparison
purposes. Since the exchange-correlation potential for
which the grid is intended is slowly varying, the overlap-
integral test should be representative.

In the iron-cluster system, we chose 11 basic doublings
for a two subdivision case with minimum cube length of
a =0.00044 a.u. , giving a total number of = l300 points
in the Fe9 system and =2100 points in the Fe&5 system.
The errors in the overlap test are about 3%%uo. Choosing a
four-subdivision case gave better accuracy with four dou-
blings and a minimum cube length of a =0.0015 a.u.
This generated =6300 points in the Fe9 system and yield-
ed about l% accuracy. Four additional doubling regions
were added to the above-mentioned number of basic dou-
bling regions to extend the integration region into the ex-
terior of the cluster. The errors in our overlap test were
almost always underestimates of the magnitude of the in-
tegrals. This implies that we may slightly underestimate
the magnitude of exchange-correlation effects in our cal-
culation.

In the actual implementation of grid generation we
filled the space within each division by several typical

FIG. 7. Two-dimensional cross section of the doubling grid
for a one-shell bcc system. The cross-hatched areas are regions
of smaller divisions than those explicitly illustrated.

blocks. Subprograms were made for each typical block in

which all grid points as well as weight factors are generat-

ed once the choice of subdivision numbers along the

abscissa and the data for block dimension lengths and ele-

mentary cube length are provided.
We have found that any elementary region within the

wedge takes one of the four shapes shown in Fig. 6.
There is no ambiguity in choosing the sampling points for

these shapes which obviously are at the center of the

cubes, though this will be on a high-symmetry plane in

some cases. This, in effect, reduces the number of in-

dependent sampling points as a result.

A two-dimensional cross section of a two-subdivision

case is sketched in Fig. 7 (this could be either the bcc or

fcc first-neighbor situation). Additional discussion and

programs for the construction of this grid are found in

Ref. 6.
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