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Transition from quasiperiodicity to chaos in a Josephson-junction analog
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Experimental observations of the transition from quasiperiodicity to chaos are carried out with an
electronic Josephson-junction simulator driven by two independent ac sources. A Poincare section

shows an invariant ellipse when the frequency ratio of the two input currents is very close to the re-

ciprocal of the golden mean. The system enters a chaotic state at high input-current amplitudes

characterized by a breakdown of the smooth ellipse at the onset of transition. Two convergence ra-

tios are experimentally determined, showing good agreement with calculated values obtained by cir-

cle map studies.

I. INTRODUCTION

The transition to chaos in dynamical systems has been a
subject of many theoretical and experimental studies in re-
cent years. ' Results have shown that there may be several
distinct routes to chaos in a system, depending on the
manner and range in which some characteristic pararne-
ters are varied. Considerable progress has been made, in
particular, on routes to chaotic behavior via period-
doubling bifurcation and intermittency. Of special in-
terest in these cases are the predictions by
renorrnalization-group analyses and experimental observa-
tions of universality and scaling behavior at the onset of
chaos, independent of the details of the physical systems
under investigation. More recently, another route to
chaos, namely through quasiperiodic behavior with two
incommensurate frequencies, has been studied by several
theory groups, and some universal properties associated
with such a transition have also been suggested. Yet no
comparison has been made between experimental data
pertaining to this type of transition and the theoretically
predicted behavior.

In this paper we present results of direct experimental
observations of the transition from quasiperiodicity to
chaos by using a Josephson-junction (or damped pendu-
lum) simulator. The Poincare section observed in this
measurement lends support to the existence of an invari-
ant circle characterized by an approximated irrational
winding number, and the emergence of chaos is signified
by the destruction of a smooth invariant circle. Two con-
vergence ratios determined in our experiment are in good
agreement with the values obtained by circle-map studies.

II. QUASIPERIODICITY IN A
JOSEPHSON- JUNCTION SIMULATOR
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driven by an external ac source, universal scaling
behavior near the onset of transition has been observed,
from which several critical exponents are experimentally
determined. It is natural to anticipate that if the simula-
tor were driven by two ac sources with incommensurate
frequencies, a new type of transition from quasiperiodicity
to chaos should occur; this is borne out in our experi-
ments.

The simulator used in the present experiment is the
same as the one we used before, making use of a circuit
designed by Magerlein. The actual circuit including the
external sources is shown in Fig. l. In this figure, J is the
Josephson-junction simulator, C is a capacitor, and Rz is
a shunt resistor. The current in J is proportional to sing,
and the instantaneous voltage across its terminals u,b(t) is
proportional to the time derivative of P, thus P plays the
same role as the quantum phase difference between the
two superconductors in a Josephson tunnel junction. The
shunt resistance Rs represents the channel of quasiparti-
cle current flow in the junction, hence the system is in-
herently dissipative. The parallel combination of J, C,
and Rs thus simulates the essential dynamical behavior of
a Josephson tunnel junction. The ac voltmeter V mea-
sures the rms value of u,b, and either an oscilloscope or a
power-spectrum analyzer can be connected to the termi-
nals ab when needed, in order to measure the time varia-

The Josephson-junction system is well known for its
rich content of nonlinear dynamical behavior. The transi-
tion to chaos through period-doubling bifurcation and in-
terrnittency routes in this system has been studied by nu-
merical solutions of the equation of motion and by direct
physical measurements of an electronic junction simula-
tor. In our previous measurements of this simulator

FIG. 1. Circuit used in the present experiment for studying
quasiperiodicity and chaos. R& ——R2 ——40.7 kQ and R3 ——50 Q.
V is an ac voltmeter. J is the Josephson-junction simulator.
C=0.07 pF R = 1 kQ and cop=28. 7 kHz.
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tion of U,b or its power spectral density. The ac voltage
sources Vt and V2, together with the series resistors R~
and R2, form two current sources with separately tunable
frequencies. The time dependence of P(t) is governed by
the following differential equation due to current conser-
vation:

+, +sing =A t

singlet

t +A2sin(co2t +y),dt' (/3, )'~' «

where P, =2eI,R C/A' is the McCumber parameter, the
amplitudes At, A2 of the applied ac currents are normal-
ized to the junction's critical current I„the angular fre-
quencies co&, co2 are normalized to the plasma frequency
coo (2eIo—/—AC)'~, the time t is normalized to I/coo, and

y is a phase constant.
There are certain advantages in studying the junction

simulator, as opposed to the actual Josephson junctions.
First, the oscillation frequency of P can be set at a rather
low value so that the time variation of dg/«and its
power spectrum can be easily measured with conventional
instruments. Second, the supercurrent term sing can be
directly monitored, allowing detailed measurements of its
time dependence to be made. Third, the power output
across the junction terminals can be adjusted to a relative-
ly high level which is convenient to direct power-spectrum
observations. In the context that a real current-driven
Josephson junction is also described essentially by Eq. (I),
the simulator actually permits more physical studies to be
made with greater versatility than a real junction.

III. RESULTS AND DISCUSSION

As can be seen from the studies of chaos in the past,
theoretical predictions are usually based on analyses of
some special maps, while experim. ental observations are
often made with systems more conveniently described by
differential equations. Under most circumstances, al-
though the scaling behavior might be independent of the
mechanisms pursued, a direct unequivocal identification
of physical observables between theory and experiment is
rather difficult. This situation is more of a problem in
the present case because no quantitative guidelines are
available as to how a Josephson junction driven by two ac
sources at incommensurate frequencies will enter chaos.
We therefore take the standpoint that no attempt will be
made for the purpose of verifying any theoretical predic-
tions on the transition from quasiperiodicity to chaos.
Comparisons between our physical observations and the
theoretical results will only be tried, however, on a semi-
quantitative basis in cases where such a comparison might
serve an indicative purpose. We also hope this work will
stimulate more theoretical interest in studying the transi-
tion to chaos by means of differential equations.

A. Poincare sections and power spectra

In all the results shown below, the following parameter
values have been used: R~ -= 1.0 kQ, C =—0.07 pF,
I, = 1.04 mA, coo=-28. 7 kHz, and P, =4. In accordance

FIG. 2. Oscilloscope traces of P(t) vs t. (a) co&-—0.65,
~= s A&/A„=0.192, and A2/A2, ——0.096.

(b) ~(=0.68, u2 ——1.09, W= —,', Al/Al, ——0. 143, and A2/A2,
=0.101. (c) ~l-=0.67, co2 ——1.09, 8'= —,3, Al/Al, ——0.252, and

A2/A2, ——0. 101.
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FIG. 3. Sequence of Poincare sections from quasiperiodicity to chaos obtained by plotting sing against P; coi ——0.4059, co2 ——0.6568,
co&/co2-—8'. (a) The bright ellipse is obtained with a discrete time interval (z axis triggering the oscilloscope beam at a frequency equal
to that of V2, 3.0 kHz). A&

——0.5224 and A2 ——0. 1600. The torus is the same plot of sing vs P with the same parameters except that
free running time is used (internal triggering instead of z-axis triggering. ) (b) Onset of chaos characterized by the appearance of
kinks. A

&

——0.7651 and A2 ——0. 1608. (c) Chaotic regime. A ~

——0.7656 and A2 ——0. 1608.

with our previous work on chaos in this system, the re-
duced angular frequencies co& and co@ are usually chosen in
the range 0.4—0.7, where the simulated junction system
has a rich content of chaotic behavior. To examine the
time variation of this system, we have chosen
P (=dgldt) as the physical variable for observations of
transition to chaos. Some typical traces of (t versus t are
shown in Fig. 2. In these curves, the frequency ratio
to&/co2 has been specifically chosen to be —', , —', , —,', , respec-
tively, as can be seen from the well-defined periodicity in
each trace.

The variation of &P can also be observed at discrete time
intervals on an oscilloscope by triggering the beam at a
frequency equal to that of V2 and displaying P on the x
axis. This allows us to map out a Poincare section. To
aid the eyes in observing the changes in the system as a
two-dimensional pattern, we have somewhat arbitrarily
chosen sing as a generalized variable displayed on the y

axis. Thus, by triggering the oscillosope at the frequency
of V2, a set of Q points will be shown on the screen if the
ratio co ~/co2 is equal to a rational winding number
W=P/Q, with P and Q being relatively prime integers.
This set of discrete points represents a Poincare section (in
the sing —P plane), which can be used to characterize the
transition to chaos.

If the winding number 8' is chosen to approximate an
irrational number, for instance, the reciprocal of the golRR

den mean W= —,'(v 5 —1), this would correspond to a
"smearing" of the Q-cycle points described above, and a
continuous curve appears. For the parameters we used,
this continuous curve on the sing —P plane usually
takes the shape of an ellipse for low input-current ampli-
tudes 2 ~ and A2. Such a continuous curve obtained with
co&/co@ ——W is shown in Fig. 3(a). For the sake of compar-
ison, we also display a plot of sing versus P in the same
figure, but with a free-running-time variable, the resulting
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Flo. 4. Sequence of power spectra density curves from quasiperiodiclty to chaos. (a) Quasipcriodic regime, (b) onset of chaos, and
(c) c aotl«eg™e,with parameters same as those for Figs. 3(a), 3(b), 3(c), respectively. f~

= l. g54 kHz, f =3.QQQ kHz and the peak
at f=o ls an Instrument marker. The frequency scale is linear.

curve is a two-dimensional torus. Note that although our
choice of sing as the oldllla'tc ls arbitrary, lt ls llltcl'cs'tlllg
to see that by using the two time-dependent functions siniI)
and P as generalized variables, the stationary curve in the
sin(t) —P space has a smooth invariant closed form at low
values of AI and A2. This plot of sing versus p also

shows the relationship between the supercurrent and the
quasiparticle current in a Josephson junction. In a broad
sense, this ellipse may be considered as a representation of
Rn 1nvRr1ant circle associated with Rn lrrat1onal w1nd1ng
number.

If the amplitude of VI is increased to higher values
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FIG. 4. (Continued. )

while keeping the frequencies unchanged, with co&/co2 ap-
proximately equal to 8' the system may exhibit a transi-
tion from quasiperiodicity to chaos. We define the chaot-
ic region by the appearance of high broadband noise in the
power spectrum of P. It is significant to compare the
main features appearing in the changes of the power spec-
trum with those of the Poincare section described above.
A sequence of the corresponding curves obtained by two
different measurements but with the same parameters is
shown in Figs. 3 and 4.

In Fig. 3(a), A~ and A2 are at low values, its corre-
sponding power spectrum [Fig. 4(a)] has a simple form,
showing mainly the components of the two driving fre-
quencies and some beats. When A& is increased to a
higher value, as shown in Fig. 4(b), the power spectrum
shows a larger number of beats and an increased broad-
band noise; this condition is defined as the onset of chaos.
A slight increase in A~ beyond this point gives rise to a
much higher noise and chaotic spectrum, except for the
main peaks due to the driving frequencies [Fig. 4(c)]. The
Poincare section corresponding to the onset of chaos is
shown in Fig. 3(b). A most interesting feature is the des-
truction of the smooth stationary elliptic curve observed
before. There are conspicuous distortions in the otherwise
smooth ellipse, which can be generally called "kinks. " It
appears that the existence of a kink is always associated
with the onset of chaos, hence it can be viewed as a signa-
ture of the transition to chaotic behavior from quasi-
periodicity. Under most conditions we have found that
the kinks appear on a single ellipse, but occasionally the
ellipse "splits" at the onset of chaos, as shown in Fig. 3(b);
this may suggest the possibility of a bifurcation prior to
chaos. The Poincare section corresponding to chaos [Fig.

4(c)] is shown in Fig. 3(c), where the stationary curve is
almost completely distorted and turns into an open
quasirandom curve, nearly filling in the available phase
space. This sequence of curves clearly demonstrates the
transition from quasiperiodicity to chaos.

The parameters which control the nonlinearity in the
quasiperiodic region are the current amplitudes A] and
Aq, with m~/coq set at approximately W; We define A&,
as the critical amplitude of A

&
at the onset of chaos when

Aq is set equal to 0 while keeping the frequencies un-
changed. Likewise, A2, is defined when A& is set equal to
0. There can be different combinations of the A

&
and A2

values giving rise to an onset of transition from quasi-
periodicity to chaos. Hence, in the A&-A2 space the
chaotic and quasiperiodic domains are separated by a
curve. This situation is in contrast to that of the one-
dimensional map on a circle,

f( B)=B+Q — sin2m. B,E
277

where nonlinearity is characterized by a single parameter
X, and the two "domains" are separated by a point at
%=K, .

The curve separating the chaotic and quasiperiodic
domains in the A&-A2 space obtained with co&/co@=-8' is
shown in Fig. 5. The two different regions may be con-
sidered as two distinct phases of the system. In a broad
sense, when the system changes from one region to the
other, it may be viewed as a phase transition. In the
chaotic region above the phase-separation curve of this
figure, some "window" regions can exist (not shown in the
figure) where the system is quasiperiodic. These windows
often occur near the edges where A

&
)0 or Az )0. In our
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FIG. S. A curve separating the quasiperiodic and chaotic
domains obtained with co j /co2 ——O'. A &,

——0.9040 and

2c = 1.0313

observations, however, no window has been found experi-
mentally in the middle region above the phase-separation
curve.

(3a)

and

B. Scaling behavior and convergence ratios

It would be interesting to find a physical quantity
which is directly related to the winding number as well as
the nonlinearity parameters, and yet permits us to exam-
ine its scaling behavior. To this end, we have measured
the rms value of the ac voltage P(t) with an ac voltmeter
for various sets of the driving-current amplitudes and fre-
quencies. This rms value, denoted by V, may be regarded
as a quantity equivalent to the parameter 0 in the circle
map given in Eq. (2).

Theoretical studies" have shown that

where V„is the value of V corresponding to the winding
number W„=F„/F„+i.From the measured values of
V4. , V5, and V6 obtained with different sets of A~ and
A2, we have computed 56 and obtained an average,

56 ———2.75+0.2 .

It can be seen that although only up to n =6 in the V„se-
quence is obtainable in our experiment, the measured con-
vergence ratio 56 is in reasonably good agreement with the
calculated 5 value for

~

K
~

&1 in the circle map. "
Likewise, we have also determined the constant a from

our data. We let d„denote the value of the element on
the F„+icycle closest to 8=0 in the circle map (modulo
1) with winding number W„=F„/F„+,, it follows from
Eq. (3b) that a convergence ratio u„can be defined as
a„(K)=d„i/d„. In order to find d„in our measure-
ments, we have made use of the P versus t plots similar to
those shown in Fig. 2. For a given set of Ai, A2 and a
winding number, say 8'6 ———,', , we have 13 nonrepetitive
peaks in a P(t) plot; the instantaneous voltages at these
peaks are recorded and then arranged in the order of pro-
gressively increasing values. This sequence of monotoni-
cally increasing P peak values may be assumed as a one-
to-one correspondence with a sequence of points on a cir-
cle map. This is not inconsistent with the recent work by
Jensen, Bohr, Christiansen, and Bak, ' in which it was
shown that the return map of P in Eq. (1) is a circle map.

In view of the fact that P(t) is bounded and periodic in
this region (A i and A2 are below the onset of chaos and
with a rational winding number W„=E„/F„+iwhen n is
not large), we conjecture that P(t) plays the role of
9„+&—0„in the circle map. For simplicity, we assume
P=r cos(8 —8o). With this assignment, the sequence of P
points arranged in an order of increasing values, as
described before, would then correspond to a sequence of
8 values on the circle, where r is the maximum value of P,
and 00 is a constant. From this relation, we have calculat-
ed 8—8o using the measured values of P at the peaks for
two different winding numbers, each set is arranged in an
order of increasing P (or 8—8o), as shown in Fig. 6.

In order to find d„for the determination of a, one
needs to identify a point corresponding to 8=0 on the cir-

f "(0)—F„i=a (3b)

where 0„is the value of 0 such that there is a cycle with
winding number 8'„=F„/E„+ipassing through 8=0,
and F„ is the nth Fibonacci number
(Fo O,Fi ——1,E„+i F„——+F„i). For——~K

~
&1, a and 5

should take on the following values:

e-e, W=—8
l5

5= —W = —2.618033 9. . . ,

u = —8' ' = —1.618033 9. . . . (4b)

0.5-

Owing to inherent noise problems in the electronic cir-
cuit and limited instrument precision, we could only mea-
sure V values with the winding number 8'„up to n =6,
i.e., 8'6 ——». Using Eq. (3a), similar to the definitions

given in Ref. 4, we define a convergence ratio 5„as

5„=Vn-i —Vn-2

V„—V„

0
PEAK POS I 7 ION

Flax. 6. 8 plots derived from the measured peak values of P
and P~k=g, „cos(0—80); marks on abscissa correspond to
peak positions in the P t plots (in arbitrary units). —
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a6 ——1.63+0.2 . (7)

It is interesting to see that although rather crude approxi-
mations have been introduced in this procedure, the aver-
age value of a obtained with n =6 in the sequence of mea-
sured P peak values is in agreement with the circle-map
calculation. The sign of a, however, cannot be deter-
mined by this method.

IV. CONCLUSION

By using an electronic Josephson-junction simulator, we
have carried out physical observations of the quasiperiod-
ic behavior of this system. %hen driven by two indepen-
dent ac sources, the system exhibits certain scaling
behavior with a special set of rational winding numbers,
in reasonable agreement with circle-map calculations.
The Poincare section in the sing —P plane with a winding
number W=P/Q shows a se't of Q stationary points
residing on the trajectory of an ellipse when low driving-
current amplitudes are applied. These Q discrete points
turn into a continuous curve of invariant ellipse when the
winding number 8' is well approximated by an irrational

cle. This is difficult from an experimental point of view.
Nevertheless, we have applied an approximation that for

~

8
~

~&1 in the case of
~

K
~

& 1 and large n, the circle
~n

map f "(8) reduces to a linear map which can be associat-
ed with the region of linear 8 variation in Fig. 6. It can be
seen from the 8 plots in Fig. 6 that a linear region exists
in each plot where the change in 0 between successive
points is more or less constant. VA'ihout knowing which
of these points exactly corresponds to 8=0, we have taken
the average of 68 which is the increment of 8 between
two successive points near 8=0 (modulo 1 in the circle
map), by using several points in this linear region; this
procedure is equivalent to finding a best fit to the slope of
the straight-line portion of each 8 plot. This average
value of b,8 obtained with a winding number
8'„=F„/F„+~is called d„.For instance, from the 8
plots in Fig. 6, we have found d6 ——1.01+0.1,
dq ——1.69+0.1, and computed a6 ——d&/d6 ——1.67+0.2. By
using several sets of 8 plots, such as in Fig. 6, obtained
with different combinations of A

~ and Az, we have found
an average value,

number, namely the reciprocal of the golden mean. This
ellipse may be compared with an invariant circle. If the
current amplitudes are increased, the system shows a
change from quasiperiodicity to chaos similar to a phase
transition, characterized by the breakdown of a smooth
invariant ellipse (i.e., appearance of kinks at the onset
sometimes accompanied by a splitting of the nearly ellip-
tic traces) and a chaotic power spectrum.

These observations lend direct support to the predicted
behavior of quasiperiodicity and transition to chaos,
which are different from the routes through period-
doubling bifurcation and intermittency. Our results may
be interpreted either as experimental evidence for these ef-
fects associated with an electronic nonlinear circuit, or as
analog solutions to the differential equation shown in Eq.
(1). Taking the former interpretation, these experimental
results may be viewed as providing the first measurement
of the two predicted universal constants 5 and a pertain-
ing to quasiperiodicity. Although only terms up to n =6
in the sequence with W„=F„/F„+&have been measured,
the experimental values of 5= —2.75+0.2 and

~

a
~

=1.63+0.2 are in reasonable agreement with those
obtained with a circle map.

On the other hand, if these data are regarded as analog
solutions to Eq. (1), our results then indicate that if a
Josephson junction or a damped pendulum were driven by
two oscillatory sources, a route to chaos following the pre-
dictions of a circle map could exist. This route to chaos is
also of technical interest in the case of a Josephson junc-
tion driven by two ac's, because the situation is similar to
that for parametric amplifiers or microwave mixers where
the Josephson junction is used as the basic nonlinear ele-
ment. Our results suggest that if the ratio of two input
frequencies happens to lie very close to an irrational num-
ber, numerous sidebands could occur, and if the local os-
cillator amplitude is higher than a critical value, an in-
crease of the chaotic noise level as high as 60 dB or more
could appear at the device output.
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