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Exact solution of the Hubbard model for a four-center tetrahedral cluster
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The eigenvalues of a Hubbard Hamiltonian for a four-center tetrahedral cluster are calculated ex-

actly. Full use is made of the symmetry of the problem, which is analyzed for an arbitrary number
of electrons, 0 (X(8. Comparison is made with the phenomenological Hund s-rule predictions for
the ground states. The diversity of the low-energy states is surprising: magnetic and nonmagnetic
solutions, single and degenerate representations, accidental degeneracies, and symmetry crossovers
are all found for the ground states. Implications for three-dimensional lattices are discussed.

I. INTRODUCTIGN

Hubbard s model has become, since its introduction in
1963, the most popular example of a system of interacting
electrons with short-range interactions. It has been used
in the literature to study a great variety of many-body ef-
fects in metals, of which ferromagnetism, antiferromagne-
tism, metal-insulator transitions, spin-density waves, and
charge-density waves are the most common examples. '

The model has been applied to a variety of lattices, one,
two, and three dimensional, ' ' and occasionally to small
clusters. Exact solutions are available in very few in-
stances ' and general theorems have been proved for
some cases. %'ith all this activity, however, exact solu-
tions are not possible for most systems, and some of the
approximations found in the literature remain, at best, ap-
pealing conjectures or blind tries. 'o "

The object of this paper is to solve exactly a very simple
system, simple enough to allow an exact solution, but with
enough complexity to shed light into the physics of real
systems. We have chosen the case of a four-atom cluster
of tetrahedral symmetry, given by the Hamiltonian

X clcT jo + Ug ct tct tct tick t

where c; (c; ) is the annihilation (creation) operator for
an electron of spin o, located at the site i of the
tetrahedral cluster (i,j =1,2, 3,4). For the sake of sim-
plicity we consider only the case of non-negative t, t &0,
which corresponds to attractive nuclear potentials (s orbi-
tals lower in energy than p orbitals). We, however, allow
the interaction constant U to take any value, positive or
negative. In this fashion we include in our calculation not
only the magnetic cases ( U~O), but also charge-density
waves and polar states ( U &0).

Several aspects of this model deserve discussion from
the start.

(a) It is identical to the Hamiltonian of the infinite
face-centered-cubic lattice if the Brillouin-zone sampling
Is rcs'trlctcd to f0111' Icclplocal-lattlcc poIIlts, thc zoIlc
center I', and the three square-face-center points X.

I
I2
r3
I 4

I 5

1

1
—1

0
0

Atomic
symmetries

(b) SIIlcc flic foul' oIlc-clcctro11 orbItals wlllcll diagonal-
ize the first term in (1.1) are one s-like orbital, of energy
c;= 3t, an—d three p-like orbitals, of energy c~ =t, there
is a marked electron-hole asymmetry in the one-electron
spectrum. This asymmetry is characteristic of odd-
numbered rings (triangular rings in this case), and typical
of the closed-packed faced-centered-cubic and hexagonal
lattices. The asymmetry brings new features into the
spectrum and carries with it a more interesting, less sym-
metric, half-filled band.

(c) It is also possible to think of this system as an atom
for which only the s "p configurations (0 & n & 2,
0 & m & 6) are possible and with c, & ez. Under these con-
ditions the usual techniques of atomic physics, Hund's
rule in particular, ' ' can be applied, and their results
compared with the exact solution. As we find out, agree-
ment and exceptions are both encountered.

(d) The presence or absence of magnetic solutions for
the ground states are both instructive and in some in-
stances surprising. The main conclusion to extract from
these calculations is that Hubbard s model exhibits a rich-
ness of structure in its solutions which defies easy global
generalizations. In its variety it permits the mimicking,
albeit poorly, of many electronic and magnetic phases
found in real transition metals.

Our problem is greatly simplified by systematic appli-
cation of group theory. As a result the most complicated
equation to solve for the eigenvalues is a cubic equation,
i.e., the complete problem can be solved analytically. Our
procedures and solutio~s are given in Sec. II.
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TABI.E II. Configurations, symmetries and eigenvalues in the noninteracting limit U =0.
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Since there are eight spin orbitals i.n the system, and
each one can be either empty or occupied by an electron,
we have altogether 2 =256 possible eigenstates of (1.1).
Since the number X of electrons is conserved, and
0&%&8, for a given X there are [8!/¹~(8—N)!] eigen-
states.

These eigenstates can be classified according to their
spin and their spatial symmetries. Since the spin degree
of freedom is conserved by (1.1), the states can be labeled
as spin singlets, doublets, triplets, quartets, and quintets.
The symmetry of the spatial part of the Hamiltonian is
defined by its point group, which in this case is the full

tetrahedral group Td, of 24 elements. The character table
of this group is given in Table I. Also included in Table I
are the atomiclike symmetries of the various representa-
tions of Td.

An analysis of the levels and energies in the two ex-
treme limits is presented in Tables II and III. Table II is
for the noninteracting limit (finite t, vanishing U), in
which the energy levels depend only on the configuration
s "p . The 256 states divide into 21 configurations which
encompass the 56 distinct levels of the full tetrahedral
symmetry. Table III is for the strongly interacting limit
(finite U, either positive or negative, vanishing t). There
the 256 states and 56 levels coalesce into 15 energy levels.
From either table it can be seen that N-number, spin, and

TABLE III. Symmetries and eigenvalues in the strongly interacting limit t =0.
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TABLE IV. Symmetry of the ground states. TABLE V. Energy equations for the 56 eigenvalues.
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symmetry
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space symmetries reduce the problem to a completely ana-
lytic one, with at most a {3X3)secular equation to solve
for a given energy level.

If our system for the case of repulsive interactions is
considered as a "structured" atom, it should be possible to
apply to it Hund's empirical rule, ' which states that
for a given N the ground-state level is determined by (1)
selecting the lowest-energy configuration, (2) selecting the
largest spin-multiplicity out of the levels in that configu-
ration, and (3) selecting from those the term of the largest
angular momentum L, if (2) leaves more than one level.

An examination of Table II yields the results shown in
the first three columns of Table IV. It can be seen that
X =4, 5, and 6 are predicted by Hund's rule to yield mag-
netic states, i.e., gmund states with spin multiplicities oth-
er than singlets or Kramers doublets.

The group-theory factorization and the calculation of
the matrix elements of (1.1) yield the 37 secular equations
given in Table V. These equations reduce, as expected, to
the results of Tables II and III in the respective limits.

The results for finite t and U are shown in Table IV
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FIG. 1. Energies, as measured from the ground state, for
X =2. The 1eft-hand-side diagram corresponds to repulsive in-
teractions U p 0; the right-hand-side diagram corresponds to at-
tractive interactions U~O. The abscissas correspond to the
quantity Ul(4t+

~

U
~

). The ordinates are the excitation ener-
gies from the ground state in units of 4t+

~

U ~. The sym-
metries of ground and excited states are indicated.

and Pigs. I—5. Table IV, columns 4 and 5, gives the sym-
metry of the exact ground state for U & 0 and U &0,
respectively. Column 4 is to be compared with the predic-
tions of Hund's rules, column 3. The figures show the ex-
citation energy of various states from the ground state for
repulsive interactions (left-hand-side diagrams) and for at-
tractive interactions {right-hand-side diagrams). The en-
ergies, in units of 4t +

~

U ~, are plotted as a function of
the parameter [ Ul(4t +

~

U
~
)]. At the center of the fig-

ures we find noninteracting limit U =0 (Table II), and at
either edge the extreme atomic limits t =0 (Table III).

The results are very rich in structure and information,
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FIG. 2. Energies, as measured from the ground state, for
%=3. See caption of Fig. 1.
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FIG. 4. Energies, as measured from the ground state, for
N =5. See caption of Fig. 1.

and exhibit several surprising features, in addition to
many expected results.

(A) The attractive-interaction cases all give ground
states of expected minimum spin multiplicity.

(B) For repulsive interactions, Hund's rule works for
X =0, 1, 2, 3, 5, 7, and 8. For N =4 the rule is violated
(the ground state is a singlet 'I'3 instead of a triplet I 5).
For X =6 the predicted I 5 is the ground state, but it is
degenerate with a singlet 'I 3.

(C) At least for a small system with four centers,
Hubbard's model allows, for some occupations, magnetic
ground states (the N =5 and 6 eases). This feature seems
to be a consequence of the degeneracy of the p-like one-
electron orbital.

(D) In one instance (N =6, U &0) the ground state is
"accidentally" degenerate, with a singlet and a triplet
"sticking together" for any value of the parameters.

(E) For N =4, 5, and 6 there are very-low-lying excited
states of other symmetries for any value of U. This effect
is very pronounced in the N =4, U&0 case (compare
with N=6, U&0) and especially in the N=5, U&0
case.

(F) As U changes sign there are ground-state symmetry
crossovers for X =4, 5, and 6, but not for the other occu-

pancies. These crossovers involve changes in the space or
in the space and spin symmetries.

(6) If the face-centered-cubic lattice is divided into
four interpenetrating simple-cubic sublattices, and restric-
tion is imposed that each atom in each sublattice is identi-
cal to each other atom in the same sublattice, a Hamil-
tonian identical to an infinite replica of (1.1) results. This
can also be expressed as saying that (1.1) is the Hamiltoni-
an of a face-centered-cubic lattice in which the wave func-
tions are restricted to have the symmetries of the one I
and the three X points of the Brillouin zone (i.e., a face-
centered-cubic-lattice Hubbard Harniltonian with
Brillouin-zone sampling restricted to I" and X). Under
these conditions —which are not as farfetched as they ini-
tially seem to be—a half-filled band with a repulsive U
would produce' a correlated ground state of full transla-
tional symmetry (I point of the Brillouin zone), doubly
degenerate and with no net spin. An occupation of
1.25e/atom with a repulsive U would produce a fer-
rornagnetic state.

In conclusion, we find that our simple four-center Hub-
bard model, with two spin states per site and an arbitrary
number of electrons, exhibits in the ground states a com-
plexity of structure which defies easy generalizations.

U&O
N= 4

0.75

U&O
0.75

0.5 0.5

0.25 0.25

3 0

FIG. 3. Energies, as measured from the ground state, for
N =4. See caption of Fig. 1.

FIG. 5. Energies, as measured from the ground state, for
X=6. See caption of Fig. 1.
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I~Under thc conditions of a face-centered-CUbic lattlcc with 1c-
strictcd I and X saIHpling, thclc 1S a cox'x'cspondcncc bet%'ecn
thc point-groUp syDlmctrlcs of T@ ln thc clQster and thc
space-groUp syIQIQctry of the CUblc lattlcc %'1th I Is I 2, and I 3
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