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Localized states in disordered systems as bound states in potential wells
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The equivalence between localized states in disordered d-dimensional systems and bound states in
local potential wells (or local potential fluctuations) in d-dimensional space is tested against numeri-
cal data. The agreement is found to be satisfactory. A new criterion for the onset of localization is
deduced. It reduces to Mott's criterion at the center of the band but it differs qualitatively from
Mott s picture when thc mobility cdgc is near thc band cdgcs.

I. INTRODUCTION

It has been suggested r'ecently ' that there is a
mathematical connection between the problem of localiza-
tion in disordered systems and the elementary problem of
bound states in potential wells. The argument supporting
this suggestion can be summarized as follows. The T=0
configurationally averaged conductivity a, which is pro-
portional to ( Tr(p62PG2) ), is usually approximated by
Tr(P(G2)p (G2 ) ) to produce the well-known expression

o =tro g——u (k)(G2(E, k ) )2 . (1.1)
m.Qd

Gz(E) is the imaginary part of the Green's function
G(E)=(E H) ', P is the —momentum operator, d is the
dimensionality, 0 is the volume of the specimen, and
u(k)=BE(k)/III'Bk is the velocity. Cubic symmetry was
assumed in obtaining (1.1). The next step is to identify a
series of terms which were neglected by the approxima-
tloI1 (GzpG2 ) —(G2 )p ( G2 ). Tllese ferTIls, kIlowI1 as
maximally crossed diagrams, produce a correction to o.o
of the following form:

e 2 1
5tr =o oo — — ——

d dk, (1.2)~ (2Ir) k i co/Do—
where Do oo/2e p is the——diffusion coefficient, p is the
density of states (DOS) per unit cell per spin, and the limit
co~0 must be taken. Vollhardt and Wolfle made the
further step to replace Do in the right-hand side (rhs) of
(1.2) by D =o/2e p, producing thus a self-consistent
equation for o in terms of oo', furthermore, they suggest-
ed that in the localized regime iso/D(co) app—roaches

as co—+0+, where A, is the localization length. Mak-
ing this replacement in (1.2) and taking into account that
cr(co)~0 as co~0, one obtains an equation for A, in terms
of oo. Economou and Soukoulis' pointed out that this
equation has exactly the same structure as the equation
which determines the decay length of an eigenstate bound
to a potential well. The importance of this observation is
that it allows one to bypass the rather complicated for-

malism on which localization theory is based and to
reduce the localization problem to the most basic and ele-
mentary problem in quantum mechanics: that of a bound
state in a potential well.

Based on the potential-well analogy one can derive im-
mediately some basic results of localization theory: Since
a weak potential well altuays binds a quantum particle in
d dimensions, where d &2, it follows that all eigenstates
are localized in disordered d-dimensional systems for
d (2. The d =2 system is a borderline case producing an
exponentially long localization length. For d ~ 2 a criti-
cal strength must be exceeded (corresponding to a critical
disorder for each given energy) in order to produce a
bound (i.e., a localized) state. The critical exponent v
[where A, -(e—e,), e is the strength of the potential
well, and e, is its critical valuej predicted by the
potential-well analogy is also in agreement with the re-
sults of scaling and field theory approaches to localiza-
tton. Similar conclusions have been reached in Ref. 4 and
in a recent paper by Kotov and Sadovskii.

In the present paper we test the potential-well a~alogy
in a quantitative way against numerical data in one di-
mension (1D) and two dimensions (2D). We compare also
with some 3D data, although uncertainties there make the
test less conclusive. In this connection we mention that
Kotov and Sadovskii have checked Vollhardt and
Wolfle's approach (which is essentially equivalent to the
potential-well analogy) against data for the critical disor-
der needed to produce an Anderson transition in a simple
cubic tight-b1Qdlng model. Thej.r Iesults ar e not 1ncon-
sistent with the data.

» this section we remind the reader of the basic results
concerning bound states in potential wells. We consider
potential wells not in the continuum but in the less fa-
miHar but more convenient periodic tightbinding model
characterized by an unperturbed Hamiltonian Ho given
by
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Ho —t—g '
~
n) (rn ~, t )0 (2.1)

where the sites [ nJ form a regular lattice (square in 2D
and simple cubic in 3D), of lattice constant a. The sim-
plest potential well corresponds to adding a perturbation
part H~ to the Hamiltonian Ho, where

tential with a local fluctuation rather than a local poten-
tial well.

The energy Ebl of the bound level, if any, in the Hl
well ls glvcQ by

(2.4)

HI ———e
~
0) (0 ~, e)0 . (2.2) while that in the H2 perturbation is determined by the

cquatlon
We consider also a slightly more complicated perturbation
corresponding to a local fluctuation (rather than a local
potential well) and given by

Go«b2) —gO«b2) = (2.5)

In the above equations Go(E) is the diagonal matrix ele-
ment of the Green's function Go(E) = (n

~

(E
—Ho) '

~

n ) and go(E) is the nearest-neighbor off-
diagonal matrix element go(E) = (0

~
(E Hp) —'

~

I ). Ex-
plicit forms for the functions Go(E) and go(E) are given
in Ref. 2. The localization length A, of the bound level can
be obtained as follows:

H, = —~'~0)(0~+~')1)(1(, ~')0 (2.3)

1
lim

~
m —n ~-+ce m —n

(2.6)A, /a =—

where the sites 0 and 1 are nearest neighbors. Both H]
and H2 produce very similar although not identical re-

sults. Overall it seems that the H2 analogy can better fit
the numerical data. It is also more appealing on physical
grounds since it is more natural to connect a random po-

I

' —1

ln
~

Go(n, m;E&;)
~ )i- —,)/~i-

tuting Eq. (3.2) into (3.1) we obtain
( - ) denotes an average over all direc-

( m —II j/~ m —II
~

tions of the vector n —m. In the 1D case Eq (26) be-

COQ1CS

Zt
ud —2

/

lS .(2~)"-I (3.3)

aX-I =(
~
E„~ /t —Z)'", (2.8)

where Z is the coordination number (Z =2d ). For
9=2,3, Eq. (2.8) is adequate for all practical purposes,
while for d =1 one can use the exact Eq. (2.7). Thus the
determination of A, requires two inputs: the ratio t/e (or
t /e' ), from which Eh /t can be obtained [Eqs. (2A) and

(2.5)], and the lattice spacing a, which enters in Eqs. (2.7)
and (2.8).

'= —ln( ~Eb; ~/2t —[(E&;/2t)2 —1]1'2) . (27)

n all dimenslonahties and for
I
&s

l

—Z«&Zt Eq (26)
reduces to the much simpler form

2
, lS, d=1,2.(2~)"-I (3.4)

T"e d =3 rule f« ~ Is such as «produce the same criti-
cal value as the single potential well, i.e.,

(Zt)' 1.340537
ae' (2Ir)

(3.5)

The correspondence for the H2 case and for d =1,2 is
again dctcrmlncd by thc requirement that ln thc weak lim-
it the bound state in H2 has the same localization length
as in the corresponding disordered case:

III. RULES OP CORRESPONDENCE

Zt 'J7Ad
(3.1)d —2

f f

2

where cro is given by Eq. (1.1). In the weak scattering lim-
it. the conductivity oo is given by

2 eo'0(E) = „&(E)S(E),
(2Ir)"d &

(3.2)

whcI'c / ls thc n1can fIce path RvcI'aged ovcl thc Fcrlrii
surface S (Fermi line for d =2; S=2 for d =1). Substi-

In order to utilize the simple formalism for bound
states in potential wells, we must express the parameters
t /6 (ol' t /6 ) Rnd II 111 terms of qllRlltltles associated
with the random system under consideration. It has al-
Icady been polntcd out that

The parameter a, which corresponds to the inverse of
the upper cutoff in Eq. (1.2), has been assumed to be pro-
portional to the mean free path /. ' On the other hand, it,

has been argued ' that the upper cutoff in Eq. (1.2), ko, is
equal to xok, where k is the Fermi momentum and xo is
expected to be between 1 and 2. The data in 20 are in-
consistent with the choice ko =xok (1 & xo & 2), while
they are consistent with the choice

with xo roughly equal to 1. Thus for the purposes of the
present work we adopt Eq. (3.6) although we feel that fur-
ther numerical work in 20 and 30 disordered systems is
required in order to clarify the issue of the cutoff ko. By
considering the limit Eb —+ —Zt one can connect the cut-
off ko with a as follows:
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81
]./2

mko

(2D)
ko

(1D) (3.7a)

(3.7b)

Green's function 9' ', and we demand that the average of
the logarithm of this Green's function equal the logarithm
of the average Green's function. The m, n matrix element
of 9 '(E) is given by

8 '(m, n;E) =Ã0(m, n;E Xs—)

4 9887 (3D)
ko

(3.7c) +$0(m, l;E—Xs)9'o(l, n;E —Xs)

EI —X
X

1 —(cl —Xs ) 9'0(1,l;E Xs )— (4.4)

IV. CAI.CULATIGN OF MEAN FREE PATH
IN DISORDERED SYSTEMS

where each e is an independent random variable with a
rectangular probability distribution of total width W cen-
tered at zero. The second summation in Eq. (4.1) is over
all nearest-neighbor ordered pairs. The sites n form a
regular lattice (simple cubic in 3D and square in 2D). The
lattice constant is taken equal to 1. The calculation of the
average Green's function (9(E))=((E 4) ') —pro-
ceeds by replacing A by an effective Hamiltonian where
each e has been replaced by a complex self-energy X(E).
According to the coherent-potential approximation
(CPA)' the self-energy X(E) is given by

X(E)=
1 —(C —X)90(E—X)

(4.2)

and

0(E)=(n
~

(E—A 0)
'

~
n)

The disordered systems we consider here are
Anderson's model, i.e., tight-binding models of the form

m=g ~n)~ (n~ —V g '~n)(m~, (4.1)

80(m, l )$0( l, n )=9o( rn, n )8o( l, l ) . (4.5)

Substituting Eq. (4.5) into Eq. (4.4) and taking the loga-
rithms of both sides of Eq. (4.4) we obtain

in% '(m, n;E) = ln/o(m, n;E Xs)—
—in[1 —(ct —Xs ) 9'0(l, l;E Xs )] . —

(4.6)

The self-consistency condition that ( 1n9') = lnÃo leads
to the following nonlinear equation for Xs,

( in[1 —(~, —X, )$,(l, l;E—X, )])=0, (4.7)

which replaces the ordinary CPA equation (4.2). It must
be pointed out that Eq. (4.7) is valid only in the 1D case
because Eq. (4.5) is correct only in the 1D case. One can
prove that Xs as determined from Eq. (4.7) reproduces
through (4.3) exact results for (Ã)s in both limits of
small and large disorder. It is also worthwhile to mention
that 2& 1s diffclcnt from X. In thc weak disorder 11mit

X,{E)=-,' X(E)=-,' (.,'».(E) (4.8)

and 1n thc strong d1sordcl limit

The second term in the rhs of Eq. (4.4) becomes signifi-
cant when I' is between I and n. In this case one can
show that

~,= —Vg ~m)(n
~

. Xs(E) + i 8'/2e—, — (4.9)

((E)) =@ (E—X,(E)) . (4.3)

To obtain X~ we work in a way similar to ordinary CPA;
i.e., we replace at an arbitrary site l the effective Xs by the
actual random site energy eI, we calculate the resulting

V90(E/V ) = tGO(E/t ),
where I; and Go were introduced in Sec. II. The nonlinear
Eq. (4.2) was solved numerically for various energies E
and disorders 8'.

In the 10 case there is a complication which deserves
special attention. Numerical as well as analytical' work
has established that the geometric and not the arithmetic
average is representative of the ensemble. This strongly
suggests that we should calculate the geometric average of

(E A) ' inste—ad —of the arithmetic obtained
through Eq. (4.2).

To obtain the geometric average (9'(E) )s of 9(E) we
introduce an effective medium defined by Xs(E) such that

while X{E)~—, i&/rr ill tllc salllc llrlllt.
Having determined the average Green's function one

can obtain the mean free path l from the relation'

(S(m, n;E)) =9'0(m, n;E) exp[ —
~

m —n
~
/2l(E)];

(4.10)

an average of 1(E) over all directions of the vector m —n
ls llllpllcd 111 Eq. (4.10). Ill thc weak scattcrlllg 111111't thc
mean free path l(E) equals l2(E), where

12(E)=u(E)r(E) .

The relaxation time r(E) =lrt/2X2(E), where X =X~—iX2,
and the velocity u(E) equals uo(E —Xl(E)), where uo{E)
1s thc magnitude of thc vcloc1ty foI' thc periodic system
described by A 0 averaged over the surface of constant en-

ergy E. For 20 and 30 systems the equa11ty between I
and I2 is obeyed rather well up to quite large values of the
disorder 8'.

The conductivity cro, as given by Eq. (1.1), can be ex-
plcsscd as follows:
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2eo.o(E)= ~ J dE'So(E X—1
E—')

(2m. )~d n.

X2
X Uo(E —XI —E'}(E'+&')'

where So(E) is the Fermi surface at E for the periodic

system described. by A o. %'e can introduce a length /)
defined so that

2 e
{ro(E)= „S(E)l1(E),

(2~)"d &
(4.13)

where S(E)=So(E—XI). In the weak scattering limit
one can easily show that l1(E)=l(E). However, as the
disorder increases, lI(E) becomes progressively smaller
than l(E).

The non-negligible difference between l and lz on the
one hand and l~ on the other raises another question:
Should one use l or l1 in Eqs. (3.3)—(3.5)'? The basic Eq.
(3.1) suggests the use of lI. On the other hand, stnce Eq.
(3.1) was derived by extrapolating from the weak scatter-
ing limit one can equally well argue that I is the appropri-
ate lcllgtll 111 Eqs. (3.3)—(3.5). Tllc conlpRrlson wltll ex-
isting numerical data cannot settle definitely this issue, al-
though it seems to favor the use of l. In what follows we
have used in Eqs. (3.3)—(3.6) the mean free path l as
determined by Eq. (4.10) or by Eq. (4.11). We feel that
more numerical work is needed especially near the band
edges in order to decide which of the various l's fits the
data best.

EGo(E)+Ztgo(E) =1 . (5.1)

In Table I we present our CPA results for the various
l's for E=0 as the disorder increases from 1 to 20.

To obtain the localization length A, we have used the

III analogy, i.e., Eq. (3.4) with S=2, 9=1, and i =la.
Substituting into Eq. (2.5) we have obtained Eb2 in terms
of ls, and then, from Eq. (2.7), we have calculated A, . The
final result is very simple:

2
{I ln(1+a /is

~

(5.2)

If «« lg we can expand the logarithm to obtain

It must be pointed out that the above Eq. (5.3) connecting
A, RIld l& 1s exact. Tllc proof 1s v{:ry simple b{:cause g Rs
well as ls Rre deftned f10111 the decay rate of the geometric
average of +(II I ) Thc prcscIlt forIIlallsIn CRI1 pI'o{jllcc
the exact result A, =2ls only if {I««I, which implies that
xo)&1 o«hat the upper cutoff in the integral of Eq.

A. One-dimensionaI case

For the one-dimensional case Gc(E)=(E 4t—)
The nearest-neighbor off-diagonal matrix element gc(E)
of Go can in all cases (d =1,2, 3) be found from the rela-
tion

TABLE I. Various mean free paths (for definition see text) vs disorder 8' for E=O and d=1.
Columns 2,3,4 are based on the arithmetic average of 9', while columns 5,6,7 are based on the

geometric average of 9'. The unit of length is the. lattice spacing.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

23.974
5.9161
2.5801
1.417 5

0.886 24
0.60407
0.437 39
0.33129
0.259 70
0.209 25
0.172 20
0.144 21
0.122 55
0.105 47
0.091 729
0.080 531
0.071260
0.063 519
0.056978
0.051 394

24.173
5.949 6
2.6299
1.4966
0.99362
0.731 88
0.578 41
0.47908
0.409 87
0.35900
0.31980
0.288 66
0.263 27
0.241 28
0.224 32
0.20901
0.195 71
0.18406
0.173 75
0.164 55

24.175
5.955 6
2.645 5

1.523 6
1.032 9
0.782 68
0.639 22
0.548 30
0.48607
0.441 01
0.406 69
0.37965
0.357 75
0.33964
0.32434
0.31125
0.299 87
0.289 89
0.281 05
0.273 14

48.394
12.161
5.4845
3.1408
2.0502
1.452 2
1.086 8
0.845 98
0.678 34
0.556 50
0.46463
0.39373
0.337 89
0.293 08
0.25657
0.22647
0.201 34
0.18017
0.162 12
0.146 66

49.172
12.229
5.518 1

3.183 9
2.1099
1.529 9
1.1819
0.956 15
0.800 66
0.688 22
0.603 62
0.537 88
0.485 36
0.442 49
0.40683
0.37666
0.350 83
0.32841
0.308 8
0.291 46

49.172
12.232
5.525 6
3.1969
2.129 3
1.5564
1.215 5
0.99676
0.84788
0.74156
0.662 57
0.601 91
0.55400
0.515 27
0.483 36
0.456 59
0.433 82
0.41419
0.397 11
0.38208
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(1.2) ko~ co.
In Table II wc compare thc Icsults of thc prcscnt ap-

proach (column labeled 2ls ) with the numerical data based

upon the transmission coefficient (column labeled A, ) as
well as the results of second-order perturbation theory.
The discrepancies between the A, column and the 2ls
column are due to errors associated with the CPA-like ap-
proach used for the evaluation of the geometric average of
the Green's function. In particular the discrepancies for
small values of W are due to the breakdown of perturba-

tion theory' " for E=O as 8'~0. As a result of this

property A, ~105/W as W~O and not to 96/JV as per-
turbation theory predicts. '

where u = V-E(k')/fi. The integral in Eq. (5.4) can be

easily expressed in terms of the Green's functions 9o(E)
and So(2;E), where the latter is the matrix element be-

tween the origin and the site (2,0). Thus we have (taking
the lattice spacing equal to 1)

4V'd(2~)'-'
uoSo —— [ Im 9'o(E) —Im do(2;E )j . (5.5)

For the 2D square lattice Eq. (5.5) takes the explicit form

uoSo —— Ã(k') — M(k')
(4v)'

(5.6)

B. T%f0-dlmenslon$1 case

The self energy X=X&—iX2 is calculated by solving nu-

merically Eq. (4.2), where in the present 2D case2

So(E)=2% (A, )/mE, A, =4V/E, and Xc"(A,) is the com-

plete elliptic function of the first kind. To proceed fur-
ther we need to calculate the product 1(E)S(E)
=r(E)u(E)S(E) =r(E)uo(E —X&)So(E—X&). Since r(E)
=fi/2Xq is already known we need the product
uo(E)So(E) which is equal to

uo(E)So(E) =A'Im —I d k

TABLE III. Various mean free paths (in units of lattice spac-
ing) and thc imaginarY part of the self-cncIgp vs d1soldcr 8 foI
a square lattice at the center of the band (E=0).

3.86
1.97
1.23
0.844
0.619
0.475
0.376
0.305
0.252
0.211
0.180
0.154
0.135
0.118

3.94
2,03
1.28
0.911
0.694
0.556
0.461
0.393
0.342
0.303
0.272
0.247
0.226
0.210

4.0
2.04
1.30
0.917
0.689
0.556
0.466
0.407
0.355
0.320
0.295
0.267
0.249
0.234

0.229
0.445
0.703
0.991
1.30
1.62
1.96
2.29
2.64
2.98
3.32
3.66
4.00
4.35

0

So(E)=8 I dq) 1+
1 —(

i
E

i
/2V —cosy) (5.7)

wh«e k' =1—E /(4V) and 8' is the complete elliptic
function of the second kind.

Having thus the product IS we can obtain from Eq.
(3.4) the relevant parameter (Ztle') of the equivalent po-
tential fluctuation. Note that for d=2 the spacing a of
the equivalent lattice disappears from Eq. (3.4). From
(Zt/e') and by employing Eq. (2.5) (which was solved
numerically) we obtained EI,2', finally, Eq. (2.8) gives the
localization length X. In order to obtain explicit results
for A, we need to know a,which is given in terms of / and
the constant xo [Eqs. (3.7b) and (3.6)]. The quantities

l&, l2 require for their determination the knowledge of uo,
which can be obtained from the product uoSo [Eq. (5.6))
and So. Thc latter 1s given by

1/2

TABI.E II. Localization length (in units of lattice spacing) vs

disorder for E=Q and d=1. A, is the localization length as

dctcrm1ncd numerically bp thc transmission cocff1c1cnt. Thc

column labeled 21~ presents the results of the present approach

and the last column the results of second-order perturbation

theory.

TABLE IV. Comparison of our results [A, (present)] for the
localization length A, in a disordered square latti. ce at E=0 with
the numerical data of Refs. 16 and 17 [A, (MK)] for various
values of the disorder fK The unit of length is the lattice spac-
ing.

8'/V A, (present) A, (MK)' A. (MK)

1

2
3
4
5
6
7
8
9
10
20

104.3+Q. 17
25.54+0. 14
11.35+0.02
6.335+0.01
4.088+0.006
2.935+0.005
2.285+0.004
1.883+0.003
1.612+0.003
1.415+0.002
0.76+0.19

98.34
24.46
11.05
6.39
4.26
3.11
2.43
1.99
1.69
1.48
0.764

96
24
10.67
6
3.84
2.67
1.96
1.5
1.19
0.96
0.24

6.34' 10'
47 234

1123
147
41.26
18.79
10.91
7.54
5.34
3.50
2.17

110
37.6
18.24
10.64
6.81
5.12
3.20
2.03

'Prom MacKinnon and Kramer, Ref. 16.
From MacKinnon and Kramer, Ref. 17.

7.994~ 10'
5046
481
97.58
37.46
18.53
11.07
7.296
5.451
3.443
2.200
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FIG. 1. I ocallzatloQ length A (IQ Units of lattlcc spa«:lng) vs
disorder 8 foI' a squGI'c lattice Rt thc ccntcr of thc band (E=0).
Solid line represents the results of thc present work Rnd the
points are the numerical data of Refs. 16 and 17.

I, 0.$0

0
0

0
5

where cospo ——
i
E

i
/4V. For E=0, So ——4V 2m. , UII

=4M 2V/Irlrl, and

2~/2 V

X2
(5.8)

in units of lattice spacing. In Table III we present results
for LI [Eq. (4.13)], LI [Eq. (5.8)], and L [Eq. (4.10)].

Our results for A, are in reasonable agreement with the
numerical data of MacKinnon and Kramer' '7 for the
center of the band if one chooses xo to be 1.14. This is
shown in Table IV and Fig. 1. Our results seem to be
larger than the estimates of Refs. 16 and 17 for weak dis-
order. However, in the weak disorder limit the method of
Refs. 16 and 17 becomes less accurate. Thus it is not
presently clear whether or not the potential-well analogy
presented here overestimates A, for weak disorder. Any-
way, for weak disorder our result for A, has the following
simple analytical form (choosing xII ——1.14) for the center
of the band:

A, =2.72Le I ', (5.9)~a&I

where a11 lengths are given in units of 1attice spacing. It is
worthwhile to point out that Eq. (5.9) works reasonably
well for W/V up to 8 and that for weak disorder A, grows
extremely fast, e.g., for W=2, A, -10s- 1 cm, i.e., it be-
coIIlcs of Inac1'oscoplc scale.

C. Three-dlmcnslon81 OMc

As in the 2D case the self-energy X=XI—iXI is calcu-
1Rtcd by solvlllg llulllcrlcally Eq. (4.2). II1 tllc plcscllt case

FIG. 2. DCIlsity of states Per site [solid him BI uIIIts
(2V) '] RIId classical collductivity oo (dashed Hne in ututs of
e /AQo, %'here ao ls thc lattlcc spaclQg) vs E/2V for thl"cc dlf"
fcrcnt values of thc dlsoIdcf ln a cubic lattlcc.

9z(E) is given as an integral of elliptic functions (see,
e.g., Ref. 2).

To obtain the condUctlvltp one needs the product UOSo
which is given by Eq. (5.5). The function /II(2;E) is tab-
ulated in Ref. 2. In Fig. 2 we plot the DOS per site and
the conductivity oII versus E for various values of the dis-
order. It is worthwhile to point out that the rather strong
structure which appears in ITII for E/V=+2 and W=4V
is a remnant of the Van Hove singularities at E/V=+2.

To obtain So(E), and hence Uz(E), we use the integral

So(E)=8 J d@I J dpi

E . E
cosplo = —2 If —2 & 1

2V 2V
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Ipfo —8 tf 2 ) 1
2V

cosy20 ——(
~

E
~

/2V) —1 —cosy&

if
( (

~

E
~

/2 V) —1 —cosy~ ( & 1,
gzo =~ if

( ( [
E

)
/2 V) —1 —cosy' ) ~ 1,

2=( s111 g)+ s111 p2
cosO

+1—cos y3)'» /(1 —coszq&3)'»

(5.12)

(5.13)

0, i I

0
I I

2 3

I

4

So{E)=4m. 6—
V

(5.15)

In Figs. 3 and 4 we plot S(E)=So(E—X~) and the mean
free paths li(E) and l2(E)=/ versus E for vanous values
of the disorder.

To find the mobility edge one can utilize either the H,
[Eq. (3.3)] or the H2 [Eq. (3.5)] analogy, since both
prcd1ct by dcslgn thc same crit1cRl dlsoIdcr. Fol' s1IIlpllc1-

ty wc ut111zc thc H1 analogy.
The critical value for the appearance of a bound state in

a single potential well is

Zg
=ZtGO(Zt ) = l.516 386, (5.16)

where the last equality follows from Table 5.2 of Ref. 2.
Combining Eq. {5.16) with Eq. (3.3) we obtain the follow-
ing equation for the position of the mobility edge:

(5.17)

Equation (5.17) is very significant. At the center of the
band where S is proportional to square of the inverse of

I
'

I

cosy3 ——(
~
E

~
/2V) —cosy&~ —cosp2

if
( (

~

E
~

/2V) —cosy] —cosy, [ (I,
+30=( I+stn tp)+ sin p2)

if [ (
~

E
~

/2V) —cosy~ —cospz ) & 1 . (5.14)

Near the ends of the band S(E) can be approximated by

1.5 I
I

(b) W/V=16

I I

2 3
E/2V

FIG. 4. Mean free paths I (sohd line), I2 (dashed line), and I»

(dotted line) vs E/2V for two different values of the disorder 8'
for a cubic lattice. The unit of length is the lattice constant.

the lattice spacing, Eq. (5.17) implies immediately that
the states become localized when the mean free path be-
comes comparable to the interatomic distance. This is the
locRllzat1OIl criterion championed by Mott. HowcvcI',
near the band edge for weak disorder 5 is much smaller
than its value at the center of the band. Hence Eq. (5.17)
implies that the mean free path at the mobility edge near
thc bRnd cdgc could bc IIluch larger thRn thc 1ntcratoIDlc
separation. Th1s 1mplication is 1n clear d1sagreement with
the prevailing belief that in order to reach localization one
has first to reduce the mean free path (i.e., the phase
coherence length) to interatomic distances. According to
Eq. (5.17) for weak disorder near the band edge (which is
actually the most common case for a lot of materials) the
amplitude of the eigenfunctions becomes inhomogeneous
and eventually decays to zero for large distance before the
phase coherence length has a chance to become compar-
able to interatomic distances.

In order to check the predictions of Eq. (5.17) one needs
independent numerical data for the position of the mobili-
ty edge. Such data exist for the center of the band
(E=0). In order to fit the critical value 8; /V= 16.5 es-
timated in Ref. 17 one must choose xo in Eq. (5.17) as fol-
lows:

0 '

0

»G. 3. Fe~» s«a« ~(E)=~0(E—~»)» En V for three
d»fferent values of the dIsorder 8 for a cubic lattjce. The unit
of length is the lattice constant.

xo ——0.745 =0.75 .

Of course the most interesting region to check is near
the band edge for weak disorder. This is not only the
most relevant case but it is there that the present approach
predicts a behavior qualitatively different from the gen-
erally accepted one. Unfortunately, to the best of our
knowledge» there RIc no 1ndcpcndcnt numcr1cal dRta 1n
this regime. Until such data (probably based on the tech-
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FIG. 5. TTR)cctory of thc mobility cctgc &r R simple- CQbic 1$t-
tice Rs predicted by the present work (solid hnc) Rnd by the I.(E)
method (dRsbcd 11nc). Thc CPA bRnd edges Rrc Rlso IndlcRtcd
(thin soHd line). &0—

nique of Refs. 19 or 20) appear it is not possible to decide
whether the behavior at the mobility edge near the band
edge is as implied by Eq. (5.17) or as described in Ref. 18.

In Fig. 5 we present our predictions )based on Eqs.
(5.17) and (5.18)] for the trajectory of the mobility edge.
In the same figure the corresponding results based upon
the L(E) method ' are shown together with the CPA
tMIld CdgCS.

It is worthwhile to point out that at the center of the
band and at the critical disorder 8; (S",/V=16. 5) the
mean free path I, is considerably smaller than the intera-
tomic distance (l, =0.3079= —,

' ). The localization length
for W& 8; can be found by coinbjnjng Eqs. (2.5), (2.8),
and (3.5) or Eqs. (2.4), (2.8), and (3.3). For W close to 8;
(actually up to W/V= 30) 2too(E) =0.505 462

b(
~
E

~
/f ——6)'~ =0.505462 —ba/A, with b =0 1666. .

We then have

A, =Ca/S(a, l, al) . —
In view of Eqs. (3.6) and (3.7c) (which imply that
a I/xo), thc pl'oportlollallty collstanf. xo dl'ops oil't of
Fq. (5.19) which becomes

A, =Cl/S(l, —I ) . (5.20)

On first sight, one may be tempted to jnteq ret the drop
plug o««xo Rs mea»ng that & is i~dependent of the
length scale of thc effectjve medium. Actually this is not

because the quanttty C turns out to be model
dependent and to Increase with the number of sites in-
volved ill 'tlm Potclltlal well (C 1,9.72 for fhe ~I analogy
Rnd C=29 44 ««hc ~z Rn»ogy). This feature, on the
onc hand, lcstorcs tllc expected jncrease of g wjth the sjze
of thc po«ntj» well (or flue««jon); on the other hand, it
creates Rn llnccrtalllty regardjng fhe proper value of C.
0)Ile HIRQ SI'gUC GIl Ph/SICRI grGUIldS thRf. C IUSt dCCICMC
eath iIlcI'casiIlg disGrdeI' appI'Gaching iIl the limit 8'—+ 00
thc valllc corresponding to R slllglc potclltlal well,
C =19.72; furthermore, the dimensionless quantity C
must be a function of the only relevant dimcnsionless
quantity in the problem: Sl.I The simple choice
C =ASl +C„ leads to the following equation for A,:

(0.213+Al')I
(5.21)

Vf/V

FIG. 6. Localization length A, (in units of lattice constant) vs
disorder 8 foI' R 30 simple CUbIC model Rt t1lc ccntcr Qf thc
bRnd (E=O). Solid 11' represents tIl.c rcsQlts of thc prcseIlt
%'ork Rnd thc points Rlc HomcricR1 dRtR of Rcf. 17. Thc critICR1
disorder below which Rll stRtcs Rrc extended 1s tRkcn Rs
8' = I6.5II/.

which for 2=12.5 produces results in fair agreement
with the numerical data of Ref. 17 as shown in Fig. 6.

We have shown in the present work that the results pro-
duced by the equivalent local potential fluctuation are
CGIlSISfcrit VAfh AC CX18tlIlg IIldCPCIldCIlf. IlUICIlCI I de 8
on the problem of the localization length. They are also
in fair agreement with the results based on the L(E)
meth Gd.

The dimensionless local potential well (or fluctuation)
of the equivalent problem is proportional to the dimen-
sionless product Sla, where S is the Fermi surface, I is
the mean free path, and a is a length scale in the
equivalent problem (corresponding to an upper cutoff in
momentum integrals). In order to obtain explicit results
one must make certain choices: (a) about the appropriate
definition of S in a disordered system; (b) about whether
(or not) one must use ll in the place of I; and (c) about the
connection of a with 1 (or ll), S, and the interatomic
spacing. In the present work, on the basis of a better
agreement with numerical data we have made the follow-
ing choices: (a) we took a -1, (b) we used the mean free
path / as defined by the decay of the off-diagonal matrix
elements of the average Green's function, and (c) we took
S(E)=So(E—Xl). We have also examined as a definition
of S(E) the reasonable choice of averaging So(E—Xl)
ovcl a 1'cglon of wldfll Xz, Then (If ollc still cnlploys thc
choice a -I) the main differ'ence is that the trajectory of
the mobility edge has a shape like that of the L(E)
BlCthQd With 3, HlGIC PrGIlG~CCd D18XKQlUI Rt Z =5
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reaching 8'=20. One has no reasons to expect such a
behavior of the mobility edge trajectory.

The numerical data are not numerous enough and/or so
accurate as to exclude choices other than the ones made in
the present study. We have obtained simple formulas ex-
pressing the localization length in terms of the mean free
path [see Eqs. (5.3), (5.9), and (5.21)].

The most important new result of the present work is
Eq. (5.17) which says that the mobility edge is reached
when the product l S= const. At the center of the band

this condition reduces to Mott s criterion stating that lo-
calization is taking place when l is comparable to (actual-
ly about —,

' of) the interatomic distance. However, for the
important and very common case of weak disorder and
energy near the band edge our criterion (5.17) predicts
that localization can take place while the mean free path
is still much larger than the interatomic distance. Further
numerical work near the band edge for weak disorder is
needed in order to check the correctness of this important
prediction.
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