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Localized states in disordered systems as bound states in potential wells
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The equivalence between localized states in disordered d-dimensional systems and bound states in
local potential wells (or local potential fluctuations) in d-dimensional space is tested against numeri-
cal data. The agreement is found to be satisfactory. A new criterion for the onset of localization is
deduced. It reduces to Mott’s criterion at the center of the band but it differs qualitatively from
Mott’s picture when the mobility edge is near the band edges.

I. INTRODUCTION

It has been suggested recently®? that there is a
mathematical connection between the problem of localiza-
tion in disordered systems and the elementary problem of
bound states in potential wells. The argument supporting
this suggestion can be summarized as follows. The T=0
configurationally averaged conductivity o, which is pro-
portional to { Tr( G, pG,)), is usually approximated by
Tr(p{ G, )p(G,)) to produce the well-known expression?

(1.1)
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62(E ) is the imaginary part of the Green’s function
G(E)=(E—H)~!, p is the momentum operator, d is the
dimensionality,  is the volume of the specimen, and
T(K)=03E(K) /%K is the velocity. Cubic symmetry was
assumed in obtaining (1.1). The next step is to identify a
series of terms which were neglected by the approxima-
tion (G,pG,)~(G,)p{(G,). These terms, known as
maximally crossed diagrams, produce a correction to oy
of the following form:?
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where Do=0 /2e?p is the diffusion coefficient, p is the
density of states (DOS) per unit cell per spin, and the limit
®—0 must be taken. Vollhardt and Wdlfle* made the
further step to replace Dy in the right-hand side (rhs) of
(1.2) by D=0/2e’p, producing thus a self-consistent
equation for o in terms of o; furthermore, they suggest-
ed* that in the localized regime —iw/D(w) approaches
A~% as o—0*, where A is the localization length. Mak-
ing this replacement in (1.2) and taking into account that
o(w)—0 as ®—0, one obtains an eguation for A in terms
of 0. Economou and Soukoulis' pointed out that this
equation has exactly the same structure as the equation
which determines the decay length of an eigenstate bound
to a potential well. The importance of this observation is
that it allows one to bypass the rather complicated for-
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malism on which localization theory is based and to
reduce the localization problem to the most basic and ele-
mentary problem in quantum mechanics: that of a bound
state in a potential well.

Based on the potential-well analogy one can derive im-
mediately some basic results of localization theory: Since
a weak potential well always binds a quantum particle in
d dimensions,? where d <2, it follows that all eigenstates
are localized in disordered d-dimensional systems for
d <2. The d =2 system is a borderline case producing an
exponentially long localization length.? For d >2 a criti-
cal strength must be exceeded (corresponding to a critical
disorder for each given energy) in order to produce a
bound (i.e., a localized) state. The critical exponent v
[where A~(e—e€.)™", € is the strength of the potential
well, and €, is its critical value] predicted by the
potential-well analogy® is also in agreement with the re-
sults of scaling and field theory® approaches to localiza-
tion. Similar conclusions have been reached in Ref. 4 and
in a recent paper by Kotov and Sadovskii.’

In the present paper we test the potential-well analogy
in a quantitative way against numerical data in one di-
mension (1D) and two dimensions (2D). We compare also
with some 3D data, although uncertainties there make the
test less conclusive. In this connection we mention that
Kotov and Sadovskii’ have checked Vollhardt and
Wolfle’s approach* (which is essentially equivalent to the
potential-well analogy) against data for the critical disor-
der needed to produce an Anderson transition in a simple
cubic tight-binding model. Their results are not incon-
sistent with the data.

II. POTENTIAL WELLS IN TIGHT-BINDING
SYSTEMS

In this section we remind the reader of the basic results
concerning bound states in potential wells. We consider
potential wells not in the continuum but in the less fa-
miliar but more convenient periodic tightbinding model
characterized by an unperturbed Hamiltonian H o given
by
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Hy=—t 3 " |8)®|, >0
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where the sites {H} form a regular lattice (square in 2D
and simple cubic in 3D), of lattice constant a. The sim-
plest potential well corresponds to adding a perturbation
part H; to the Hamiltonian H, where

H,=—¢€]0)(0], €>0. (2.2)

We consider also a slightly more complicated perturbation
corresponding to a local fluctuation (rather than a local
potential well) and given by

Hy,=—¢€10)(0| +€|1){1]|, €>0 (2.3)

where the sites 0 and 1 are nearest neighbors. Both A 1
and H » produce very similar although not identical re-
sults. Overall it seems that the £ , analogy can better fit
the numerical data. It is also more appealing on physical
grounds since it is more natural to connect a random po-]

Ma=— lim (——1—-—1n]G0(ﬁ,rn;E,,,.)|
| B -7 | > [—1 |
where  Go(H,M;Ey)=(1 | (Ey —Ho)~!|T)  and

()~ - , - -, denotes an average over all direc-
(Mm—-n)/|m-—1|

tions of the vector @ —m. In the 1D case Eq. (2.6) be-
comes

ar~'=—1n| | Ey | /2t —[(Ey /2t —11?| .

In all dimensionalities and for |Ej; | —Zt << Zt, Eq. (2.6)
reduces to the much simpler form

aA = (| Ey | /t—=2)"%,

where Z is the coordination number (Z=2d). For
d=2,3, Eq. (2.8) is adequate for all practical purposes,
while for d =1 one can use the exact Eq. (2.7). Thus the
determination of A requires two inputs: the ratio ¢/€ (or
t2/¢€'?), from which E,; /t can be obtained [Egs. (2.4) and
(2.5)], and the lattice spacing a, which enters in Egs. (2.7)
and (2.8).

(2.7)

(2.8)

III. RULES OF CORRESPONDENCE

In order to utilize the simple formalism for bound
states in potential wells, we must express the parameters
t/e (or t*/€'?) and a in terms of quantities associated
with the random system under consideration. It has al-
ready been pointed out! that

Zt  mhd
a??|¢| e?

where o is given by Eq. (1.1). In the weak scattering lim-
it the conductivity o is given by

2 e?
—= __° IE)S(E),
(2m)%d # (E)S(E)

where [/ is the mean free path averaged over the Fermi
surface S (Fermi line for d =2; S=2 for d=1). Substi-

Jo > (3.1)
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tential with a local fluctuation rather than a local poten-
tial well.

The energy E; of the bound level, if any, in the A 1
well is given by

1
Go(Ep))=——, (2.4)
€
while that in the fIz perturbation is determined by the
equation

G%(Ebz)—g%(Eb2)=-€]fz— . (2.5)
In the above equations G((E) is the diagonal matrix ele-
ment of the Green’s function Gy(E)={(n|(E
——I/{\o)_1 |[n) and go(E) is the nearest-neighbor off-
diagonal matrix element go(E)=(0 | (E—H/\o)_l |1). Ex-
plicit forms for the functions Gy(E) and g(E) are given
in Ref. 2. The localization length A of the bound level can
be obtained as follows:?

>(”xﬁ—7f)/|ﬁ—?f , (2.6)
[
tuting Eq. (3.2) into (3.1) we obtain
Zt 1
= IS . 33
a?"%e| (2m)@! G-

The correspondence for the ﬁz case and for d=1,2 is
again determined by the requirement that in the weak lim-
it the bound state in A » has the same localization length
as in the corresponding disordered case:

(Zt)? 2
ad—2€f2 = (z,n,)d—l IS’ d=1’2 :

(3.4)

The d =3 rule for €% is such as to produce the same criti-
cal value as the single potential well, i.e.,

(Zt)? _ 1.340537
ae? (27)?

IS, d=3. (3.5)

The parameter a, which corresponds to the inverse of
the upper cutoff in Eq. (1.2), has been assumed to be pro-
portional to the mean free path /.52 On the other hand, it
has been argued”® that the upper cutoff in Eq. (1.2), ko, is
equal to xyk, where k is the Fermi momentum and x, is
expected to be between 1 and 2. The data in 2D are in-
consistent with the choice ko=xpk (1<xg<2), while
they are consistent with the choice

1
ko :xO‘T

(3.6)
with x( roughly equal to 1. Thus for the purposes of the
present work we adopt Eq. (3.6) although we feel that fur-
ther numerical work in 2D and 3D disordered systems is
required in order to clarify the issue of the cutoff ky. By
considering the limit E,— —Zt one can connect the cut-
off k, with a as follows:
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1/2

a= |- (1D) (3.72)
1Tk0
8

-3 b (3.7b)
0

_ 49887 3y, (3.7¢)
ko

IV. CALCULATION OF MEAN FREE PATH
IN DISORDERED SYSTEMS

The disordered systems we consider here are
Anderson’s model, i.e., tight-binding models of the form
F=3 |Me |-V 3 'N|aNm|, 4.1)
o ™

—
s I

where each €., is an independent random variable with a

rectangular probability distribution of total width W cen-
tered at zero. The second summation in Eq. (4.1) is over
all nearest-neighbor ordered pairs. The sites 1 form a
regular lattice (simple cubic in 3D and square in 2D). The
lattice constant is taken equal to 1. The calculation of the
average Green’s function (¥ (E))={((E—&)~") pro-
ceeds by replacing » by an effective Hamiltonian where
each €, has been replaced by a complex self-energy 2(E).

According to the coherent-potential approximation
(CPA)!%2 the self-energy =(E) is given by
3(E) i 4
_<1—<eﬁ—2)go(E—2)>’ 4.2

where

G E)= (i [(E~Fo)~"| )
and

9?’0=—V25,;; |r‘r’1)(fi| :
Obviously

VINE/V)=tGy(E /1),

where ¢t and G were introduced in Sec. II. The nonlinear
Eq. (4.2) was solved numerically for various energies E
and disorders W.

In the 1D case there is a complication which deserves
special attention. Numerical'! as well as analytical'? work
has established? that the geometric and not the arithmetic
average is representative of the ensemble. This strongly
suggests that we should calculate the geometric average of
G =(E—%)"" instead of the arithmetic obtained
through Eq. (4.2).

To obtain the geometric average { Z(E )} of Z(E) we
introduce an effective medium defined by Z,(E) such that

(Z(E));=F\E—3,(E)) . 4.3)

To obtain =, we work in a way similar to ordinary CPA;
i.e., we replace at an arbitrary site [ the effective =, by-the
actual random site energy €;, we calculate the resulting

Green’s function & ', and we demand that the average of
the logarithm of this Green’s function equal the logarithm
of the average Green’s function. The m,n matrix element
of @ '(E) is given by?
G '(m,n;E)=9 o(m,n;E—3;)
+Gom,E—325)G (l,n;E—32,)
« € — Eg
1—(—32)I(LLE-2,) °

(4.4)

The second term in the rhs of Eq. (4.4) becomes signifi-
cant when [ is between m and n. In this case one can
show? that

Gom, G o(l,n)=Go(m,n)G(L,1) . 4.5)

Substituting Eq. (4.5) into Eq. (4.4) and taking the loga-
rithms of both sides of Eq. (4.4) we obtain

InG '(m,n;E)=InY o(m,n;E—Z=,)
—In[1—(—-325)F(,LE—Z2,)] .
(4.6)

The self-consistency condition that ( In¥’) = In% leads
to the following nonlinear equation for 2,

(In[1—(e,—3,)F (I, ,E—3,)]) =0, @.7)

which replaces the ordinary CPA equation (4.2). It must
be pointed out that Eq. (4.7) is valid only in the 1D case
because Eq. (4.5) is correct only in the 1D case. One can
prove that =, as determined from Eq. (4.7) reproduces
through (4.3) exact results for (&), in both limits of
small and large disorder. It is also worthwhile to mention
that 3, is different from =. In the weak disorder limit

S (E)=52(E)=1{€) G (E) 4.8)
and in the strong disorder limit
3, (E)——iW/2e , 4.9

while 2(E)— —iW /m in the same limit.
Having determined the average Green’s function one
can obtain the mean free path [ from the relation'?

(Y (m,T;E)) =9 (m,0;E)exp[ — |m—1 | /21(E)] ;
(4.10)

an average of I(E) over all directions of the vector h—1
is implied in Eq. (4.10). In the weak scattering limit the
mean free path /(E) equals /,(E), where

L(E)=v(E)T(E) . (4.11)

The relaxation time 7(E)=#/22,(E), where 2=3,—iZ2,,
and the velocity v(E) equals vo(E —2(E)), where vy(E)
is the magnitude of the velocity for the periodic system
described by 7, averaged over the surface of constant en-
ergy E. For 2D and 3D systems the equality between [/
and [, is obeyed rather well up to quite large values of the
disorder W.

The conductivity oy, as given by Eq. (1.1), can be ex-
pressed as follows:
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oo E)=—"— [ dE'So(E—3,~E')
(2m)dm . .
52 A. One-dimensional case
’ 2 . .
XvglE—21—E")—7— 55 For the one-dimensional case Go(E)=(E2—4t%)~172,
(E'"+23)

(4.12)

where So(E) is the Fermi surface at E for the periodic
system described by 2, We can introduce a length [,
defined so that

ool E)=—2

= (2m)4d

where S(E)=Sy(E —ZX;). In the weak scattering limit
one can easily show? that [,(E)=I(E). However, as the
disorder increases, /;(E) becomes progressively smaller
than /(E).

The non-negligible difference between ! and /, on the
one hand and /; on the other raises another question:
Should one use ! or /; in Egs. (3.3)—(3.5)? The basic Eq.
(3.1) suggests the use of /;. On the other hand, since Eq.
(3.1) was derived by extrapolating from the weak scatter-
ing limit one can equally well argue that [ is the appropri-
ate length in Eqgs. (3.3)—(3.5). The comparison with ex-
isting numerical data cannot settle definitely this issue, al-
though it seems to favor the use of /. In what follows we
have used in Egs. (3.3)—(3.6) the mean free path / as
determined by Eq. (4.10) or by Eq. (4.11). We feel that
more numerical work is needed especially near the band
edges in order to decide which of the various P’s fits the
data best.

e2 .
Z SEML(E) (4.13)

The nearest-neighbor off-diagonal matrix element gy(E)
of G can in all cases (d =1,2,3) be found from the rela-
tion

EGy(E)+Ztgo(E)=1 .

In Table I we present our CPA results for the various
I's for E =0 as the disorder increases from 1 to 20.

To obtain the localization length A we have used the
A, analogy, i.e., Eq. (3.4) with S=2, d=1, and I=1,.
Substituting into Eq. (2.5) we have obtained Ej, in terms
of ly, and then, from Eq. (2.7), we have calculated A. The
final result is very simple:

(5.1

A 2

LA__ £ 52

a In|l+4a/l,| 62
If a <<l; we can expand the logarithm to obtain

A=2lg . (5.3)

It must be pointed out that the above Eq. (5.3) connecting
A and I, is exact. The proof is very simple because A as
well as [, are defined from the decay rate of the geometric
average of & (n,m). The present formalism can produce
the exact result A=2l; only if a << lg, which implies that
xo>>1, or that the upper cutoff in the integral of Eq.

TABLE 1. Various mean free paths (for definition see text) vs disorder W for E=0 and d=1.
Columns 2,3,4 are based on the arithmetic average of g , while columns 5,6,7 are based on the

geometric average of %. The unit of length is the lattice spacing.

w/v I I ! I Lg 2

1 23.974 24.173 24.175 48.394 49.172 49.172

2 59161 5.9496 5.9556 12.161 12.229 12.232

3 25801 2.6299 2.6455 5.4845 55181 55256

4 1.4175 1.496 6 1.5236 3.1408 3.1839 3.1969

5 0.886 24 0.993 62 1.0329 2.0502 2.1099 21293

6 0.604 07 0.73188 0.782 68 1.4522 1.5299 1.5564

7 0.43739 0.57841 0.63922 1.086 8 1.1819 1.2155

8 0.33129 0.47908 0.548 30 0.84598 0.956 15 0.99676

9 0.25970 0.409 87 0.48607 0.678 34 0.800 66 0.847 88
10 0.20925 0.35900 0.44101 0.556 50 0.68822 0.74156
11 0.17220 0.31980 0.406 69 0.464 63 0.603 62 0.662 57
12 0.14421 0.288 66 0.379 65 0.39373 0.537388 0.60191
13 0.12255 0.26327 0.35775 0.337389 0.485 36 0.55400
14 0.10547 0.24128 0.339 64 0.29308 0.44249 0.51527
15 0.091729 0.22432 0.32434 0.25657 0.406 83 0.483 36
16 0.080531 0.20901 0.31125 0.22647 0.376 66 0.456 59
17 0.071260 0.19571 0.299 87 0.20134 0.35083 0.433 82
18 0.063519 0.18406 0.289 89 0.18017 0.32841 0.41419
19 0.056978 0.17375 0.28105 0.162 12 0.308 8 039711
20 0.051394 0.16455 0.273 14 0.146 66 0.291 46 0.38208
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(1.2) kg— 0.

In Table II we compare the results of the present ap-
proach (column labeled 2J,) with the numerical data based
upon the transmission coefflclent (column labeled A) as
well as the results of second-order perturbation theory.
The discrepancies between the A column and the 2l
column are due to errors associated with the CPA-like ap-
proach used for the evaluation of the geometric average of
the Green’s function. In particular the discrepancies for
small values of W are due to the breakdown of perturba-
tion theory'*!> for E=0 as W—0. As a result of this
property A—105/W? as W—»O and not to 96/W? as per-
turbation theory predicts.’

B. Two-dimensional case

The self energy ==3;—iZ2, is calculated by solving nu—
merically Eq. (4.2), where in the present 2D case?
G\E)=2X(A)/mE, A=4V/E, and %¥'(A) is the com-
plete elliptic function of the first kind. To proceed fur-
ther we need to calculate the product [(E)S(E)
=7EW(E)S(E)=7(E)o(E —X2)So(E —Z%). Since 7(E)
=#/23, is already known we mneed the product
vo(E)So(E) which is equal to

52
vo(E)So(E)=AIm— f dk—Y——, (5.4)
E—E(X)

where %’=V’¥E(E)/ﬁ. The integral in Eq. (5.4) can be

easily expressed in terms of the Green’s functions & (E)
and Y,(2;E), where the latter is the matrix element be-
tween the origin and the site (2,0). Thus we have (taking
the lattice spacing equal to 1)

2
voso_—”-‘-’—%’”—[l E)—Im%(2E)]. (5.5
For the 2D square lattice Eq. (5.5) takes the explicit form
32V E?
So= &(k')— (5.6
VoSo="4 %E )

TABLE II. Localization length (in units of lattice spacing) vs
disorder for E=0 and d=1. A is the localization length as
determined numerically by the transmission coefficient. The
column labeled 2l presents the results of the present approach
and the last column the results of second-order perturbation
theory.

w/v A 21, A'=96/W?*
1 104.3+0.17 - 98.34 96

2 25.54+0.14 24.46 24

3 11.35+0.02 11.05 10.67
4 6.335+0.01 6.39 6

5 4.088+0.006 4.26 3.84
6 2.935+0.005 3.11 2.67
7 2.285+0.004 2.43 1.96
8 1.883+0.003 1.99 1.5
9 1.612+0.003 1.69 1.19
10 1.415+0.002 1.48 0.96
20 0.76+0.19 0.764 0.24

TABLE III. Various mean free paths (in units of lattice spac-
ing) and the imaginary part of the self-energy vs disorder W for
a square lattice at the center of the band (E =0).

w/v I I, 1 =, /V
2 3.86 3.94 4.0 0.229
3 1.97 2.03 2.04 0.445
4 1.23 1.28 1.30 0.703
5 0.844 0.911 0.917 0.991
6 0.619 0.694 0.689 1.30
7 0.475 0.556 0.556 1.62
8 0.376 0.461 0.466 1.96
9 0.305 0.393 0.407 2.29

10 0.252 0.342 0.355 2.64
11 0.211 0.303 0.320 2.98
12 0.180 0272 0.295 3.32
13 0.154 0.247 0.267 3.66
14 0.135 0.226 0.249 4.00
15 0.118 0.210 0.234 4.35

where k?=1—E?/(4V)? and & is the complete elliptic
function of the second kind.

Having thus the product IS we can obtain from Eq.
(3.4) the relevant parameter (Zt /€')? of the equivalent po-
tential fluctuation. Note that for d =2 the spacing a of
the equivalent lattice disappears from Eq. (3.4). From
(Zt/€')* and by employing Eq. (2.5) (which was solved
numerically) we obtained E,,; finally, Eq. (2.8) gives the
localization length A. In order to obtain explicit results
for A we need to know a,which is given in terms of / and
the constant x, [Egs. (3.7b) and (3.6)]. The quantities
1,1, require for their determination the knowledge of vy,
which can be obtained from the product v,Sy [Eq. (5.6)]
and Sy. The latter is given by
. 172
4 sin“gp

1—(|E | /2V — cosg)? )

P,
So(E)=8 [ ‘do |1

TABLE IV. Comparison of our results [A (present)] for the
localization length A in a disordered square lattice at E =0 with
the numerical data of Refs. 16 and 17 [A (MK)] for various
values of the disorder W. The unit of length is the lattice spac-
ing.

w/v A (present) A (MK)? A (MK)®
2 6.34 108 7.994 % 10°
3 47234 5046
4 1123 481
5 147 110 97.58
6 41.26 37.6 37.46
7 18.79 18.24 18.53
8 10.91 10.64 11.07
9 7.54 6.81 7.296
10 5.34 5.12 5.451
12 3.50 3.20 3.443

15 2.17 2.03 2.200

aFrom MacKinnon and Kramer, Ref. 16.
bFrom MacKinnon and Kramer, Ref. 17.
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FIG. 1. Localization length A (in units of lattice spacing) vs
disorder W for a square lattice at the center of the band (E =0).
Solid line represents the results of the present work and the
points are the numerical data of Refs. 16 and 17.

where cospo=|E | /4V. For E=0, So=4V2m, v,
=4V2V /m#i, and
22 ¥V

L==2%

P (5.8)

in units of lattice spacing. In Table III we present results
for I, [Eq. (4.13)], I, [Eq. (5.8)], and [ [Eq. (4.10)].

Our results for A are in reasonable agreement with the
numerical data of MacKinnon and Kramer!®!? for the
center of the band if one chooses x, to be 1.14. This is
shown in Table IV and Fig. 1. Our results seem to be
larger than the estimates of Refs. 16 and 17 for weak dis-
order. However, in the weak disorder limit the method of
Refs. 16 and 17 becomes less accurate. Thus it is not
presently clear whether or not the potential-well analogy
presented here overestimates A for weak disorder. Any-
way, for weak disorder our result for A has the following
simple analytical form (choosing x,=1.14) for the center
of the band:

A=2.72le¥?" (5.9)

where all lengths are given in units of lattice spacing. It is
worthwhile to point out that Eq. (5.9) works reasonably
well for W/V up to 8 and that for weak disorder A grows
extremely fast, e.g., for W=2, A~10°~1 cm, i.e., it be-
comes of macroscopic scale.

C. Three-dimensional case

As in the 2D case the self-energy $=3,—i3, is calcu-
lated by solving numerically Eq. (4.2). In the present case

WiV=4

4
o

DOS Per Site
Conductivity

0.1

wiv=8

DOS Per Site
Conductivity

02 T T T T T T T T T T 0-10

0.05

Conductivity

FIG. 2. Density of states per site [solid line in units of
(2¥)~!'] and classical conductivity o (dashed line in units of
e’/#iay, where ay is the lattice spacing) vs E /2V for three dif-
ferent values of the disorder in a cubic lattice.

Y o(E) is given as an integral of elliptic functions (see,
e.g., Ref. 2).

To obtain the conductivity one needs the product vyS,
which is given by Eq. (5.5). The function & ((2;E) is tab-
ulated in Ref. 2. In Fig. 2 we plot the DOS per site and
the conductivity o versus E for various values of the dis-
order. It is worthwhile to point out that the rather strong
structure which appears in o for E/V~+2 and W=4V
is a remnant of the Van Hove singularities at E/V = +2.

To obtain So(E), and hence vy(E), we use the integral

1

%10 20
So(E)=8 [ “do, [ dpr—— > (5.10)
where
E .o | E
coqum:-——-ZV—-Z if ?1;_2 <1, (5.11)

and
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Pro=T if >1 N

E
=2
2V

cos@yp=(|E | /2V)—1— cosg,
if |[(|E|/2V)—1—cosg;| <1,

@po=m if |(|E|/2V)—1—cosp,| >1, (5.12)
p— =( sin?p; + sin’p,
+1— cos’p;3)!2/(1— cos’p3)/?, (5.13)

cosps=(|E | /2V)— cosp; — cosp,

if |(|E|/2V)— cosgp;— cosg,| <1,

@30="_1+sin’p; + sin’p,)!"?

if [(|E]|/2V)—cosp;—cosg,| >1. (5.14)

Near the ends of the band S(E) can be approximated by

So(E) i 6——'—%—‘-] . (5.15)

In Figs. 3 and 4 we plot S(E)=S,(E —Z,) and the mean
free paths /{(E) and [,(E)=I versus E for various values
of the disorder.

To find the mobility edge one can utilize either the H 1
[Eq. (3.3)] or the H, [Eq. (3.5)] analogy, since both
predict by design the same critical disorder. For simplici-
ty we utilize the A 1 analogy.

The critical value for the appearance of a bound state in
a single potential well is

2L 71Go(Zt)=1.516386 ,

lel
where the last equality follows from Table 5.2 of Ref. 2.
Combining Eq. (5.16) with Eq. (3.3) we obtain the follow-
ing equation for the position of the mobility edge:

I’S=12x, .

(5.16)

(5.17)

Equation (5.17) is very significant. At the center of the
band where S is proportional to square of the inverse of

FIG. 3. Fermi surface S(E)=So(E—Z2,) vs E /2V for three
different values of the disorder W for a cubic lattice. The unit
of length is the lattice constant.

T = T N T T T

3.0 . . 4
(a) WV =8 ¢

Mean Free Path
»
°

o

15 T y : r

(b) WV =16

Mean Free Path

E/2v

FIG. 4. Mean free paths [ (solid line), /, (dashed line), and [,
(dotted line) vs E /2V for two different values of the disorder W
for a cubic lattice. The unit of length is the lattice constant.

the lattice spacing, Eq. (5.17) implies immediately that
the states become localized when the mean free path be-
comes comparable to the interatomic distance. This is the
localization criterion championed by Mott.!® However,
near the band edge for weak disorder S is much smaller
than its value at the center of the band. Hence Eq. (5.17)
implies that the mean free path at the mobility edge near
the band edge could be much larger than the interatomic
separation. This implication is in clear disagreement with
the prevailing belief that in order to reach localization one
has first to reduce the mean free path (i.e., the phase
coherence length) to interatomic distances. According to
Eq. (5.17) for weak disorder near the band edge (which is
actually the most common case for a lot of materials) the
amplitude of the eigenfunctions becomes inhomogeneous
and eventually decays to zero for large distance before the
phase coherence length has a chance to become compar-
able to interatomic distances.

In order to check the predictions of Eq. (5.17) one needs
independent numerical data for the position of the mobili-
ty edge. Such data exist! for the center of the band
(E=0). In order to fit the critical value W, /V ~16.5 es-
timated in Ref. 17 one must choose x, in Eq. (5.17) as fol-
lows:

x9=0.745=0.75 . (5.18)

Of course the most interesting region to check is near
the band edge for weak disorder. This is not only the
most relevant case but it is there that the present approach
predicts a behavior qualitatively different from the gen-
erally accepted one. Unfortunately, to the best of our
knowledge, there are no independent numerical data in
this regime. Until such data (probably based on the tech-
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FIG. 5. Trajectory of the mobility edge for a simple cubic lat-
tice as predicted by the present work (solid line) and by the L(E)
method (dashed line). The CPA band edges are also indicated
(thin solid line).

nique of Refs. 19 or 20) appear it is not possible to decide
whether the behavior at the mobility edge near the band
edge is as implied by Eq. (5.17) or as described in Ref. 18.

In Fig. 5 we present our predictions [based on Eqgs.
(5.17) and (5.18)] for the trajectory of the mobility edge.
In the same figure the corresponding results based upon
the L(E) method?' are shown together with the CPA
band edges.

It is worthwhile to point out that at the center of the
band and at the critical disorder W, (W, /V =16.5) the
mean free path /, is considerably smaller than the intera-
tomic distance (/,=0.3079~+). The localization length
for W> W, can be found by combining Egs. (2.5), (2.8),
and (3.5) or Egs. (2.4), (2.8), and (3.3). For W close to W,
(actually up to W/V=30) 2tGy(E)=0.505462
—b(|E|/t—6)1/2=0.505462—ba /A with b=0.1666.
We then have

A=Ca/S(a.l,—al) . (5.19)

In view of Egs. (3.6) and (3.7c) (which imply that
a~1/xgy), the proportionality constant x, drops out of
Eq. (5.19) which becomes

A=Cl/S(I2—1%) . (5.20)

On first sight, one may be tempted to interpret the drop-
ping out of x, as meaning that A is independent of the
length scale of the effective medium. Actually this is not
the case, because the quantity C turns out to be model
dependent and to increase with the number of sites in-
volved in the potential well (C ~19.72 for the H 1 analogy
and C=29.44 for the A » analogy). This feature, on the
one hand, restores the expected increase of A with the size
of the potential well (or fluctuation); on the other hand, it
creates an uncertainty regarding the proper value of C.
One may argue on physical grounds that C must decrease
with increasing disorder approaching in the limit W— oo
the value corresponding to a single potential well,
C, =19.72; furthermore, the dimensionless quantity C
must be a function of the only relevant dimensionless
quantity in the problem: SIL? The simple choice
C=ASI*>+C,, leads to the following equation for A:

2
A= (0.2134+41°)1

21
g (5.21)
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FIG. 6. Localization length A (in units of lattice constant) vs
disorder W for a 3D simple cubic model at the center of the
band (E=0). Solid line represents the results of the present
work and the points are numerical data of Ref. 17. The critical
disorder below which all states are extended is taken as
W,=16.5V.

which for A4=12.5 produces results in fair agreement
with the numerical data of Ref. 17 as shown in Fig. 6.

VI. CONCLUSIONS

We have shown in the present work that the results pro-

“duced by the equivalent local potential fluctuation are

consistent with the existing independent numerical data
on the problem of the localization length. They are also
in fair agreement with the results based on the L(E)
method.?!

The dimensionless local potential well (or fluctuation)
of the equivalent problem is proportional to the dimen-
sionless product Sla?—2, where S is the Fermi surface, / is
the mean free path, and a is a length scale in the
equivalent problem (corresponding to an upper cutoff in
momentum integrals). In order to obtain explicit results
one must make certain choices: (a) about the appropriate
definition of S in a disordered system; (b) about whether
(or not) one must use /; in the place of /; and (c) about the
connection of a with [ (or /;), S, and the interatomic
spacing. In the present work, on the basis of a better
agreement with numerical data we have made the follow-
ing choices: (a) we took a ~1, (b) we used the mean free
path [ as defined by the decay of the off-diagonal matrix
elements of the average Green’s function, and (c) we took
S(E)=Sy(E —ZX,;). We have also examined as a definition
of S(E) the reasonable choice of averaging Sy(E—Z2,)
over a region of width 2,. Then (If one still employs the
choice a ~1) the main difference is that the trajectory of
the mobility edge has a shape like that of the L(E)
method with a more pronounced maximum at E=~5
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reaching W =~20. One has no reasons to expect such a
behavior of the mobility edge trajectory.

The numerical data are not numerous enough and/or so
accurate as to exclude choices other than the ones made in
the present study. We have obtained simple formulas ex-
pressing the localization length in terms of the mean free
path [see Egs. (5.3), (5.9), and (5.21)].

The most important new result of the present work is
Eq. (5.17) which says that the mobility edge is reached
when the product /%S = const. At the center of the band

this condition reduces to Mott’s criterion stating that lo-
calization is taking place when [ is comparable to (actual-
ly about % of) the interatomic distance. However, for the
important and very common case of weak disorder and
energy near the band edge our criterion (5.17) predicts
that localization can take place while the mean free path
is still much larger than the interatomic distance. Further
numerical work near the band edge for weak disorder is
needed in order to check the correctness of this important
prediction.
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