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%e report on simulations for the molecular-crystal model without dispersion in the adiabatic re-

gime for all lattice dimensionalities. A discrete version of the Feynman path-integral formalism is

used to calculate the electron properties. %e compare these results with approximate theories and
conclude that continuum versions of the molecular-crystal model have little relationship to the
discrete lattice model. In addition, the influence of the phonon dispersion on the transition between

the "untrapped" and "self-trapped" state of an electron on a one-dimensional lattice is studied
within the context of Holstein's molecular-crystal model. We show that the electron-phonon in-

teraction has a critical value below which self-trapping does not occur. %e find that this critical
value goes to zero if the optical phonon becomes soft.

I. INTRODUCTION

In a previous study, ' hereafter referred to as I, we have
shown that the thermodynamics and ground-state proper-
ties of the molecular-crystal model (MCM) can be sam-
pled very accurately by path-integral Monto Carlo tech-
niques. Monte Carlo results are rigorous measurements of
finite-size systems and if the size effects are small [as is
the case for the MCM (Ref. 1)] they represent the
behavior of the infinite-size system. Monte Carlo results
can be used to test the validity of approximate variational
or adiabatic theories.

Holstein's molecular-crystal model consists of an elec-
troQ described by a tight-binding Hamlltonian 1ntcI'act1ng
with harmonic lattice vibrations through a short-range
potential. This lattice polaron is expected to exhibit fas-
cinating properties of which the most important for us is
the possible nonanalytic behavior of thermodynamic ob-
servables as a function of the coupling constant. In I
we discussed our results for the one-dimensional (1D), 2D,
and 3D MCM's in the case of dispersionless phonons. In
this paper we originally intended to report results on the
10 model with phonoQ dispersion. However, reactions to
the content of I have led us to discuss in addition and in
more detail the relation between our results, including
those of I, and various approximate theories. As a conse-
quence, we will also report on our recently obtained simu-
lation results for parameters which are much closer to the
adiabatic regime than those used in I.

II. X)ISPERSIONLESS MODEL

For simplicity of notation we will now formulate the
theory in one space dimension. The formulas for 2D and
3D systems can be derived by means of the same tech-
nique but we will not present them here. The model
Hamiltonian reads

M

Ho —— g p~,
2P?l 0

moQ
Hl —— g x;+A,

2 i=1

M

Xi&i &i ~

(2.1a)

(2.1b)

(2.1c)

~2= ~ ~ Ci &i+1+&i+1&i ~ (2.1d)

Q is the angular frequency of the Einstein oscillator, A, is
tllc fcHIllon-boson collpllllg stl'cllgtll alld t ls tllc klllctlc
energy associated with the nearest-neighbor hopping
motion of the fermion. The momentum and coordinate of
the ith boson are denoted by p; and x;, c; creates a fer-
mion at site i, and c; removes a fermion from site i.

Hamiltonian (2.1) describes an electron coupled linearly
to the phonon field of the site where the electron resides.
The phonons are dispersionless and consequently the only
intersite communication is through the electron. Physical
realizations of the d-dimensional model could be found in
molecular crystals. One needs a molecular unit compati-
ble with the lattice symmetry and having a nondegenerate
internal mode, for instance, the breathing mode.

In principle, four parameters enter Hamiltonian (2.2): t,
the force constant of the Einstein oscillator, tc, the mass of
thc Einstein osc111atoI', Pno, and thc electron-phonon cou-
pling A, . However, the theory can be presented using only
three independent (energy) parameters: t, A, /tt, and
(tc/mo)'~ or equivalently t, A, /moQ, and Q. Usually we
will set oux' energy scale by setting Q= 1, but in the adia-
batic 11IIllt (ma~ ao, Ic f1111'tc) this ls Ilot so clcgaIlt and wc
will retain Q. Several limits can be distinguished: (i) the
weak-coupling limit (A, /moQ « t, Q), (ii) the adiabatic
limit, (iii) the strong-coupling limit (A, /moQ » t, Q), and
(iv) the small-t limit (t «A. /moQ, Q). A rigorous ana-
lytic adiabatic solution for the MCM an a lattice does not
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seem to have been found yet. Several adiabatic solutions
for a continuum version of the model have been
given. ' Holstein has treated the small-t limit. The
weak-coupling limit can be treated with standard pertur-
bation theory. ' The strong-coupling regime is part of
the adiabatic regime.

Our simulations of the MCM as reported in I were done
for the extreme quantum limit, t =Q. This regime is out-
side the range of validity of any perturbation theory and
poses the most severe tests for the Monte Carlo algorithm.
To approach the adiabatic domain we have now per-
formed simulations with t =1 and Q down to 0.01. Be-
fore discussing these simulation results we will outline
some of the features of the small polaron as emerging
from previous approximate analytic theories and our own
Monte Carlo study.

Emin has introduced a variational wave function which
is a good starting point to establish the physics of the
small polaron. His wave function can be represented as

g„=X ' ge'"'gc g exp[f (k)e'~ gb'

it measures the extent of the polaron. In the self-trapped
state one expects C(l)=c(0)5~o. The best way to study
this correlation function is to follow it as a function of l
at each A, and to try to fit to it various simple functions
such as an exponential. It is instructive to evaluate C(l)
in the weak-coupling limit. In one dimension the result is

c(I)=x(2m, n)-'"M-' g
k Q+2t —2tcosk ' (2.3a)

I

[2 Q2(n 4 }]-1/2 n+2t (n— +4tn)
2t

(2.3b)

Equation (2.3a) is readily generalized to higher dimensions
in terms of the lattice Green function, the results for all

dimensions being an exponential decay of C( l ).' Equa-
tion (2.3b) implies a correlation length of

—1/lnI [n+2t —(Q +4tn)'~ /2t] I .

Furthermore,

b'] 0&,
q q

g c(i)=x(x ), (2.4)

(2.2)

in which b is the destruction operator of vibrational
q

mode q and N is the number of sites. In (2.2) the f (k)
q

are (complex) variational parameters. Several possible
choices for this set of variational parameters are of in-

terest. If all f (k)=0 the wave function refers to an

undistorted lattice. If f (k) is nonzero for
~ q ~

&qo the
q

polaron is characterized by a local distortion. The pola-
ron has an exponentially decaying amplitude in real space,
the characteristic size being proportional to qo '. If
f (k)=const&0 the local distortion is restricted to a sin-

q
gle site. It is this situation which is usually called the
small polaron's self-trapped state.

In this homogeneous model there is no possibility for
breaking the translational symmetry. Wave function (2.2)
is manifestly translational invariant. So if one talks about
a phase transition in the ground state of the MCM one
refers to the change in the local "building block" of the
Bloch wave function. Of course, time scales for tunneling
might become very long but this is not a critical effect.
Any small symmetry-breaking field will cause absolute lo-
calization to occur. In nature these fields may be due to
small crystal inhomogeneities which are always present in
a real crystal. In this respect the problem is quite analo-
gous to the dynamic Jahn-Teller effect. Without disorder
the Jahn-Teller effect is always dynamic and does not in-
volve any symmetry breaking.

In our work the small polaron is treated with path-
integral techniques and the problem is solved without us-
ing wave functions. This is certainly not a disadvantage
because only observables are of interest. In the path-
summation approach these observables are obtained
directly. An observable that we found very suitable to
characterize the polaron is C(l) =g,. (c;c;x;+I ), because

which in the weak-coupling limit is equal to
A,n ~ (2mo) '~ for any dimension. From (2.3) we see
that in the weak-coupling regime decreasing Q or increas-
ing t will increase the size of the polaron. There is also a
remarkable relationship between C( l ) and the variational

parameters f (k) that enter Emin's trial wave function
q A.

(2.2). If we use (2.2) to approximate C( I ) we find that it
is directly related to the spatial Fourier transform of
f (k).

It is very computer-time consuming to monitor C( l )

for many 1 values. Since we are investigating the self-

trapped states of the polaron it is sufficient to study C( I )

for a few, small
~

l
~

values. Self-trapping will show up—+
as a vanishing of all C( l ) except C(0). It was exactly
this correlation function which was sampled in I and gave
strong evidence for self-trapping in one, two, and three di-
mensions. In I we have also sampled the kinetic energy as
a function of the coupling and we observed that an in-
crease of the coupling resulted in a smooth gradual de-
crease of the kinetic energy. In the regime where self-
trapping occurs the kinetic energy does not vanish and we
have taken this smooth behavior as indication that no ef-
fects of translational-symmetry breaking are present.

If a model is expected to show nonanalytic behavior in
some of its thermodynamic functions or in its ground-
state properties one would like to know the character of
these nonanalyticities. One can think of first-order-type
behavior with coexistence of different phases or of
second-order-type behavior with critical fluctuations or of
even different (e.g., higher-order) transitions. In such a
case one investigates the susceptibilities of the driving
fields. Since the electron-phonon coupling is the driving
force in the occurence of self-trapping, it is obvious that
one should focus on the derivatives of the polaron free en-

ergy I' with respect to the coupling parameter. If there
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are no peculiarities in these quantities there is no transi-
tion. The first derivative of the polaron free energy
BF /BA, is equal to the coupling energy and 8 F /BA, is
related to the coupling-energy —coupling-energy static sus-

ceptibility. In I it was shown that 8 F /BA, exhibits a
sharp maximum as a function of A, . One contribution to
8 F /BA, is proportional to dF /M, and substracting this
background yields the susceptibility X. This thermo-
dynamic function could be sampled directly during the
simulations and, as reported in I, gave evidence for strong
fluctuations in the system when A, approaches its critical
value. Both the observation of enhanced fluctuations and

the sharp drop in C( I )/C(0) for
~

I
~

=1 were interpret-
ed by us as evidence for a continuous transition with a
possible divergence of a higher-order derivative of the free
energy. The observed critical value of the coupling con-
stant could be estimated rather accurately by equating
strong- and weak-coupling expressions for the ground-
state energy. All these results were obtained from simula-
tions at very low temperature and relate to ground-state
properties. Elevating the temperature immediately wipes
out all critical effects. Qualitatively, we found no depen-
dence on dimensionality: That is to say, for all lattice
dimensionalities we observed enhanced fluctuations and
self-trapping effects at finite values of the coupling con-
stant. We did find quantitative differences which we
could not yet exploit due to the lack of theories that
describe the self-trapping process qualitatively correctly.

An approach directly addressing the presence of a
phase transition in the lattice model without invoking the
adiabatic approximation is the variational calculation for
the 3D model of Emin. Emin finds that two types of po-
larons, the self-trapped carrier and the untrapped (band)
carrier, coexist for a range of values of the coupling con-
stant. His discontinuous transition becomes continuous
only at very small bandwidths (6t/Q= 1). It is well

known that the rigidity of a variational calculation can
easily induce artifacts in critical behavior. As noted by
Sumi and Toyozawa two coexisting solutions of a varia-
tional calculation which are not orthogonal should be
combined in two orthogonal linear combinations. In this
way discontinuous behavior disappears. Our results are in
conflict with Emin's variational calculation. More
elaborate approximations also rule out the occurrence of a
first-order phase transition. "

A rigorous adiabatic solution does not seem to have
been reported for the lattice model. Appel reviews some
work on the basis of which he concludes that in one di-
mension the character of the ground state will change
when 4t=h/moQ This , would n. ot be in conflict with
our work. Our empirical formula,

A,'=4tm, Q'[1 —Q(4tQ+Q') ' 'j ' (2 5)

reduces to Appels's estimate in the adiabatic region. One
must also be very mreful in using zeroth-order adiabatic
Born-Oppenheimer wave functions for the MCM because
they manifestly break translational invariance.

Much work has been done on continuum approxima-
tions to the MCM. Only the 10 version of these is well
behaved and cutoff free. Emin and Holstein interpret
their results as follows: in one dimension there is ex-

ponential localization (no zero-size self-trapping), in two
dimensions the polaron is either unbound (infinite size) or
self-trapped (zero size), and in three dimensions unbound
and self-trapped states are both stable and coexist. ' Our
previous work as reported in I referred to the t=Q
domain of the model parameter space and is certainly in

disagreement with the interpretation of adiabatic studies
of the continuum model. This discrepancy could be
caused by the nonadiabatic corrections or by the discrete-
ness of the model. Therefore we performed simulations
for t = 1 and decreasing Q, down to Q =0.01 for both 1D
and 30 systems. The technical details with respect to ex-

tensive convergence tests and comparisons, wherever pos-
sible, with results from perturbation theory and from
asymptotic analysis, will be given in a later section when

we discuss Monte Carlo results of the MCM with phonon
dispersion. We do not display the results because apart
from a trivial change in scale (in I, Q and mo were set
equal to 1) they are very similar to the results reported in
I. This means that the discrepancy between I and adiabat-
ic studies of the continuum version of the MCM is due to
the continuum approximation. As a matter of fact, Emin
and Holstein already pointed out an essential different be-

tween continuum and lattice descriptions: In the lattice
model the kinetic energy is bounded from above, whereas
in the continuum version it is not. Therefore localization
is always more difficult in the continuum model. This
would explain the absence of zero-size self-trapping in the
1D continuum model. When discussing self-trapping in

one dimension one should realize that no translational-
symmetry breaking is involved in self-trapping. For this
reason the common wisdom "in one dimension everything
is localized" is not relevant for the present homogeneous
polaron model. There is no discrepancy in two dimen-

sions because an unbound polaron in a continuum will

very likely become a band polaron in a discrete lattice. At
least this is true for the weak-coupling limit in any dimen-

sion [see Eq. (2.3a)]. In three dimensions the coexistence
of the self-trapped and unbound band states in the contin-
uum model is in disagreement with our simulation data of
the lattice MCM. It is obvious that quantum Auctuations
of lattice vibrations, neglected in the adiabatic approxima-
tion, might strongly influence the possible coexistence of
the two states. However, since we did not find any signi-
ficant dependence of the critical behavior on Q (down to
Q=0.01), we believe that the coexistence found in the
continuum adiabatic theory is mainly caused by the use of
the continuum approximation. It should be realized that
the region in parameter space where one expects the con-
tinuum approximation to work well, i.e., when the polaron
is much larger than the lattice spacing, is different from
the region where the phenomenon of self-trapping is
occurring.

The MCM is also expected to exhibit some interesting
transport properties at nonzero temperature. In principle,
our path-summation method gives information on static
properties only and no results on dynamical correlation
functions. However, transport anomalies often arise from
critiml or otherwise peculiar behavior of static quantities
such as static susceptibilities. On the basis of this we can
ad.d some comments on transport properties. Tempera-
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tUIc has dramatic cffccts on bound states~ a simple exam-
ple being the hydrogen atom which is a bound object at
zero temperature only. VA'th this in mind we are not
surprised to find that the main effect of nonzero tempera-
ture is to diminish and smear out critical effects. It is, of
course, still possible that the MCM displays temperature-
dependent transport anomalies, but it is very likely that
they are not related to interesting behavior of static quan-
tities. Emin uses his variational calculation to construct a
model with transport anomalies due to a "temperature-
dependent" energy spectrum. It would be very interest-
ing if new variational work in the spirit of Emin s calcula-
tion could be done such that there would be better agree-
ment with our computer experiments.

Zm =CZmZm

M mz:= rr n"-'"(q).
q=1 k=1

Z'= XI (Iyl I»

m 2II I y, yj+—I
j=1

&&exp g g F(i —jy —y )
i=1 j=l

P'~' ~, 2~klF(l,y)= g g ak '(q)cos
4m, m'm

q
m

(3.3a)

(3.3b)

(3.3c)

(3.3d)

A. Technicalities

The modified MCM is written as

(3.1a)

Xcos
M

2n.ln 2IrnI(z, l)= g cos exp zcos

(3.3C)

(3.3f)

M
Ho= gp,

2mo

mono
2

Hl —— gx +
2 i=1

(3.1b)

mom1
2 M

2
X;X(+1+A, g Xgcg C(

i=1 i=1

(3.1c)

H2 I g (c;——c;+I+—c;+lc;) . (3.1d)

is the frequency of a vibration with wave vector 2m.q/I
(the lattice spacing is 1).

We now proceed as in the case of dispersionless pho-
nons' where we used the Trotter formula' to derive a
path-integral representation of the partition function. We
have

Z—:T1 e = 11m Zm (3.2a)

The phonon dispersion. has been introduced by allowing
for nearest-neighbor coupling of the oscillators. Note that

1/2

Q(q)—:a)0+ colcos
2&@

ak(q) = 1 —cos
2Irk 1 PQ(q)+

m 2 m

2

(3.3g)

which reduces to

pA,F(l y) =
z 5» 0

2mo&om

if there is no phonon dispersion. Note that in the adiabat-
ic llllllt F(ljP) leads to 1Ilflmtc-lallgc lIltcl'ac'tlofls 111 tlM
Tx'otter direction.

For computational purposes it is convenient to express
the oscillation frequencies in terms of the gap g of the
phonon frequency at the Brillouin-zone boundary. There-
by we fix the energy scale such that Q(q =0)=1 and ob-
tain

(3.3i)

All unimportant numerical factors have been absorbed in
the constant C in Eq. (3.3a). Taking the adiabatic limit
has an effect on the function F(l,y) only. In the adiabatic
limit [i.e., neglecting the kinetic energy of the phonons in
(3.2)], F(l,y) becomes

g2 M
2mqyF(l,y) =

2 g Q (q)cos q, (3.3h)
2mom M ~

jI+g 2 1 —g
COO =

2 2
QP1 = (3.4)

Zm =TI' cxP

(3.2b)

To caiculat«he trace in (3.2b) we evaluate the matrix ele-
ments of each product in (3.2b) using the coordinate rep-
resentation of the phonon-field and occupation-numbex
representation of the fermion. Hamiltonian (3.1) is quad-
x'atic in the phonon coordinates and therefore we can car-
ry out the integrals over the phonon coordinates analyti-
cally. The final results x'ead

The approximation Z to the partition function of the
free-phonon system can be calculated to any desired pre-
c1sxon. Thc calculat1on of thc clcctI'on contrj[but1on Zm 18

not trivial because it describes a peculiar two-dimensional
system of m mutually interacting particles at the positions
yI. The first factor in (3.3d) represents the effective
nearest-neighbor interaction due to the hopping motion,
and the second accounts for the retarded long-range in-
teractions caused by the electron-phonon coupling. Note
that the m particles can only move such that each of the
m replicas of the one-dimensional quantum system con-
tains exactly one particle.

Formally, the results (3.3) are equivalent to Feynman's
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result for the Frohlich polaron, ' the index j playing the
role of the imaginary time that appears in the path in-
tegral. Gbviously, (3.3) reproduces the exac't zer'0- and
infinite-coupling results for any value of m. It can be
shown that Zm QZ~+~ ~Z and consequently we will
obtain lower bounds on the free energy instead of the
upper bounds obtained by conventional variational
methods.

Although in a strict sense the density function in (3.3)
is not a density function of a genuine 2D classical model,
we can still use the Metropolis Monte Carlo technique' to
calculate estimators of the thermal expectation values. By
doing so we avoid approximations such as perturbation
expansions or variational procedures. The analytic elim-
ination of the phonon degrees of freedom enables us to
study the polaron properties quantitatively because the
problem has been reformulated such that the polaron con-
tribution can be calculated separately. %'hen not only the
ferrnion but also the boson properties are calculated
simultaneously by a Monte Carlo technique, the polaron
contribution is hidden in the statistical noise of the pho-
nons because there are mM phonon variables, whereas
there are only m electron degrees of freedom. The most
important advantage of our approach is that it combines
analytic and numerical techniques in such a way that the
simulation itself is very efficient.

The thermodynamic functions of interest are the ap-
proximations to the energy and derivatives of the free en-

«gy +~ = —(1/P)ln(Z~ ) with respect to the coupling A, .
The first derivative of the free energy is related to the ex-
pectation value of the electron-phonon interaction

g,.x;c;c;. The fluctuation of this quantity is given by the
static (Kubo) susceptibility

Analytic evaluation of the derivatives gives

x&(&'—J',y' —y ))

(3.5b)

Here and in the following formulas, (A ) denotes the ex-
pectatron value with respect to the density function
p( Iyi I ) given by (3.3d). A discontinuity in de /BA, or g
as a function of A, implies that the free energy is not an
analytic function of the coupling A, . If there exists a criti
cal coupling A,, for the electron-lattice interaction for
which I'~ or one of its derivatives with resepct to X is
singular, the system undergoes a transition from one
{ground) state to another.

It is well known that it is difficult to estimate the free
energy by means of the Metropolis Monte Carlo tech-
nique. However, we can use the Monte Carlo technique to
sample the expectation values of the correlation functions
that appear in the expressions for the derivatives of I'~.
In this way we also avoid the ambiguities that arise when

the derivatives of the free energy are obtained by numeri-
cal differentiation.

In order to gain additional insight in the phenomenon
of self-trapping we also calculate the electron-phonon
correlation functions

C(l) = Tr8 ci cixi~i
TI' e

(3.6a)

Analytic elimination of the phonons yields

C(l)= lim C (1), (3.6b)

(3.6c)

The size of the polaron can be extracted from the I depen-
dence of correlation functions (3.7).

B. DlscUssj. oD

It should be clear that keeping m finite is the only ap-
proximation that has been made so far and therefore it is
necessary to study the convergence of the results as a
function of m. The very essence of our approach is to
compute the relevant physical properties as a function of
the number of imaginary-time slices m. According to the
Trotter formula' the results of such a calculation should
converge to the exact results if m ~ ao. The convergence
of the phonon contribution Z" can be studied numerical-
ly without much difficulty but since we are unable to
evaluate (3.3c) analytically, we have to employ a simula-
tion technique to calculate the polaron path integral. We
calculate the thermal expectation value of the observables
by simulating a system of m particles on a computer and
therefore it is important to know the minimum value of
P/m for which the difference between exact and approxi-
mate results is small.

As the present work is mainly concerned with deter-
mining the effect of the phonon dispersion on the ex-
istence of the untrapped —self-trapped transition, it is
necessary to perform simulations at sufficiently low tem-
perature. For the range of phonon frequencies chosen in
the preceding subsection [see {3.4)] and transfer energy
r =1, an inverse temperature p=5 already corresponds to
a low temperature for the system under consideration. In
the presence of phonon dispersion, the vibrational state of
the system depends not only on the temperature but also
on the gap g of the phonon frequency at the Brillouin-
zone boundary. If f3g &~ 1 there will be a large number of
phonons of wave vector close to m, but because the fre-
quency of these vibrations is small we might expect that a
description at a more classical level (m —&1) should be
sufficient. In other words, for fixed P and m the approxi-
mation (3.4) becomes more accurate if the phonon gap g
decreases. In I we showed that if the maximum phonon

As mentioned in the preceding section, to interpret the
simulation results of correlation functions (3.6c) we have
found it expedient to introduce the normalized correlation
functions

(3.7)



30

g2 M

E„„k= 2t QG (q—), —
2~o~, =i

(3.8a)

frequency Q(q =0)=1, it is sufficient to take m ~20 in
order to reproduce the exact results of the phonon energy
with an error of less then 1%.

To study the convergence of the results as a function of
m we have calculated the thermodynamic functions of the
polaron as a function of I for a limited number of g
values. The values of rn used in the final simulations are
taken such that the systematic errors resulting from the
Trotter formula are hidden in the statistical noise of the
simulation data. To determine the statistical errors due to
the Monte Carlo procedure we have made several statisti-
cally independent runs for each set of parameters. In con-
cert with our findings for the dispersionless model' we
concluded that I =32 is a reasonable compromise be-
tween accuracy of the approximation (3.3) and the CPU
times (CPU denotes central processing unit) required to
simulate the model. Thus we will now concentrate on the
data obtained from simulations for P=5, t =1, Q(q =0)
=1, and I =32. In our final simulations, we chose
M =32 (within the statistical errors the results for
M =64 are the same) and 2000m single-particle steps
were discarded before taking 20000 samples. The number
of single-particle steps between two successive samples is

An important check on the results is the comparison
with vari. ous analytic treatments in the appropriate limits.
In the weak-coupling regime the thermal energy and the
electron-phonon correlation functions [C(l)j were com-
pared with the results of second-order perturbation
theory. In the strong-coupling regime the results were
compared with Eqs. (3.9) and (3.11). In addition, some
analytic results are known for the two-site polaron. In all
these cases excellent agreement was obtained between the
Monte Carlo results and the various approximations in
the appropriate limits. The reader can get an impression
of the agreement which was obtained by inspecting Fig. 3
of this paper and by inspecting Figs. 2, 5, and 7 of I.

As we have demonstrated ln I the most direct Indica-
tion for a transition is found by calculating the coupling-
energy susceptibility X as a function of A,. In Fig. 1 we
show some typical results for X for two values of the
phonon gap g. These data strongly suggest that 7 is
discontinuous at the critical point A,, (g), but it is also ob-
vious that it is impossible to prove this by means of
Monte Carlo data. This problem of interpreting simula-
tion data of a system at its critical point is very similar to
the one encountered in Monte Carlo work on classical
many-body systems. ' From Fig. 1 we already note that
A,, (g) decreases with g. To investigate the g dependence
of A,,(g) in more detail we have performed simulations for
a large set of A, and g values. In Fig. 2 we depict the loca-
tion of the maximum of g~ as a function of g. In the
case of dispersionless vibrations we already observed that
a good empirical estimate of the critical coupling
A,,(g=1) can be obtained by equating the weak- and
strong-coupling expansion of the ground-st:ate energy.
For the model (3.1) the weak-coupling result for the
ground-state energy reads

P=5 m=32
~ g =1/~2
~ g=)/v 8

FIG. 1. Electron-phonon —coupling-energy susceptibility g
as a function of the electron-phonon coupling A, .

G (I)—=Q '(q) 2t —2tcos +Q(q)M

The strong-coupling limit is easily obtained from the path
integral (3.3c) by observing that lim, OI(z, l) =5~ o and it
is then trivial to obtain

Estrong =
2@iog

Note that the strong-coupling expression (3.9) can also be
found by taking the smail-r limit of (3.3). Solving the
empirical equation Egyegg =Egtgo„s for different g yields

3

5

Qr

g
FIG. 2. Critical value A, (g) of the electron-phonon coupling

as a function of the phonon gap g at the Brillouin-zone boun-

dary. Thc dashed 11nc 1s a thcoIctlcal Icsult obtalncd from coITl-

parison of weak- and strong-coupling expansions.
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A, (,g) = 2(gtmo)'i 1 — g G(q)
M

' —1/2

(3.10)

lim lim C(l)= g G(q)cos 2~/q
T~O A,—+0 =1/=1 M g G(q),

(3.11a)

(3.11b)

From Fig. 3 we conclude that the simulation data for
weak and strong coupling are in excellent agreement with
the weak- and strong-coupling expansions. Moreover, it
yields reliable results for the intermediate-coupling re-

gime, a regime which is not amenable to the conventional
expansion techniques. In this intermediate-coupling re-
girne the transition between weak- and strong-coupling
behavior is signaled by the rapid change of C(l). From
our discussion of the g dependence of the critical coupling

This gives a good estimate of the critical coupling A,,(g).
The dashed line in Fig. 2 is the result of a straightforward
numerical evaluation of (3.10). It is clear that the esti-
mates obtained from the simulation data are in good
agreement with the theoretical prediction. Assuming that
(3.10) will still hold if g~0 (the smallest phonon gap
used ln our simulations is g=0.03) lt ls not difficult to
show that limg OA,,(g)=0. Thus the electron will always
be in the self-trapped state if the phonons become soft.

In Fig. 3 we have plotted the normalized electron-
phonon correlation function (3.8). To interpret the data it
is expedient to consider the limits of weak and strong
electron-phonon interactions. We find

constant one could have expected that the region of validi-

ty of the weak-coupling theory vanishes as g approaches
zero and Pig. 3 shows that this is indeed the case. The
phonon frequency has its minimum at 2'/M =m and
this is reflected in the I dependence of the correlation
function: for I odd, C(l) is negative, whereas for I even,
C(l) is positive. The difference between the weak- and
strong-coupling values of C(l) decreases with increasing I.

Equation (3.4b) clearly demonstrates that the
phenomenon of self-trapping is less clear-cut in case the
phoIlons have a substant1al disper'sion. The phoIlorl
dispersion causes a strong correlation between displace-
ments at different sites and C(l) always shows exponen-
tial decay. Ho~ever, the similarity between dispersionless
and dispersive MCM's does not leave any doubt that the
same type of transition is taking place.

We have studied the MCM with phonon dispersion in
one dimension only. As we showed in I, simulating the
dispersionless 3D model is as easy to simulate as the 1D
model, but if we extend the 3D model to incorporate pho-
non dispersion we encounter the problem of evaluating the
4D lattice sum appearing in the expression of F(l,y) [see
(3.4e)]. This numerical complication makes the study of
the dispersive 3D model much more expensive (from the
point of view of computer time) unless we make addition-
al approximations for the phonon spectrum. For instance,
we could use a Debye model for the phonons and calcu-
late the integrals analytically. From our experience with
the dispersionless MCM and 1D dispersive MCM we do
not believe that there will be an essential difference be-
tween the 1D, 2D, and 3D models as long as the gap is
substantial. In other words, we expect all models to show
critical self-trapping effects at nonzero (finite) values of
the electron-phonon interaction.

IV. CONCLUSIONS
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FIG. 3. Normalized electron-phonon correlation functions
C(l) for two values of the phonon gap g as a function of the
distance l and the electron-phonon coupling A,. The dashed lines
are the results of a weak-coupling theory; the values obtained
from the strong-coupling theory are represented by three (small)
dots. Solid lines are guides for the eye only.

Vfe have studied the transition between the untrapped
and self-trapped states of an electron coupled to a lattice.
Starting from Holstein's molecular-crystal model we have
constructed a discrete version of the Feynman path in-
tegral and showed that it can be used to calculate the elec-
tron properties for all values of the electron-phonon in-
teraction. We have demonstrated that for all lattice
dimensionalities there exists a critical value of the
electron-lattice coupling below which self-trapping does
not occur.

For the one- and three-dimensional models our findings
disagree with adiabatic studies of the continuum versions
of the models. Simulations with model parameters that
correspond to the adiabatic regime do not give any evi-
dence that there appear essential differences when one is
approaching the adiabatic limit. %e conclude that contin-
uurIl approximations to the MCM 1Il which theI'e 1s no
inherent upperbound on the kinetic energy of the electron,
behave quite differently from Holstein's original discrete
lattice model. In. addition, we do not find any evidence
for coexistence of untrapped and self-trapped polarons in
the 3D model.

We have investigated in detail the effect of phonon
dispersion in the 1D case and we have presented evidence
that the critical value of electron-lattice couphng goes to
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zero if the optical phonon becomes soft. A soft optical
phonoIl tflggcrs a lattice-dpnam1cal phase trans1t1on and
in the context of the MCM it might be considered as
somewhat unphysical or, more positively, of academic in-

terest only.
In conclusion, we would like to say that our work has

shown that the ground state of the molecular-crystal
model, a well-defined "simple" many-body model, is poor-
ly understood. The system behaves quite differently from
what could be anticipated from previous, approximate
treatments.
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