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Real-space renormalization-group analysis of quantum percolation
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Quantum percolation problems are studied with the use of a real-space renormalization-group method.
A quantum effect is taken into account by calculating the quantum-mechanical efficiency of the Kadanoff
cell in opening a channel for an electron in the cell. The quantum percolation threshold and the critical in-
dex for the correlation length are obtained for both the site and bond problems in the square and simple-
cubic lattices.

In recent years, there has been a considerable interest in
quantum percolation problems, ' ~ where a crossover
between quantum and classical localization will be observed.
Quantum percolation problems are usually formulated in
terms of a tight-binding one-electron Hamiltonian on a reg-
ular lattice2
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where the transfer energy v„ is assumed, for simplicity, to
be zero for pairs other than nearest neighbors. As in the
classical case, we can define the site and bond processes in
quantum percolation: the site process is characterized by
constant transfer energy ~„=1 and random site energies
obeying the probability distribution

P(a„)=x5(a„)+ (1—x)5(a„—~)
and the bond process is characterized by constant site ener-
gy ~„=0 and random transfer energy obeying the probabili-
ty distribution

&(u„)=p&(u„—1) + (1—p)8(u„)
The main concern in quantum percolation problems is to lo-
cate the quantum percolation threshold xq and pq below
which the electron is localized, in the sense described by
Anderson, 7 with probability one. The quantum threshold xq
and pq must not be less than their classical counterparts x,
and p, .

There have been many estimations of the quantum per-
colation threshold xq and pq for the square and simple-cubic
lattices. %hile some of the earlier works' based on com-
puter simulation concluded that the difference between the
classical and quantum thresholds would be small, recent
works showed a significant difference between both thresh-
olds. Raghavan and Mattis, 3 and Raghavan5 mapped a two-
or higher-dimensional system into a one-dimensional chain
and studied the fluctuation of the matrix element of the tri-
diagonal Hamiltonian matrix corresponding to the chain.
They obtained the quantum bond percolation threshold
pq

= 1.0, 0.37, 0.23 for the "cubic" lattice in two, three, and
four dimensions, 3 respectively, and the quantum site per-
colation threshold x~ = 0.95 for the square lattice (with some
ambiguity), and 0.48 for the simple-cubic lattice. Shapir,
Aharony, and Harris4 used an averaged susceptibility, a gen-
eralization of the inverse participation ratio, as a criterion
for percolation and located the critical point by using the
Pade approximation. They obtained pq=1.0 and 0.323 for
the square and simple-cubic lattices, though these values

x'= R,(x),
p'= Rs(p)

(4a)

(4b)

so that the iteration functions Rs(x) and Rs(p) contain a]l
the essential information of the percolation process. Noting
the symmetry of the underlying lattice, we determine x'
(p') in such a way that the cell is considered to be occupied
if and only if an electron can. get across the cell in one direc-
tion. Thus, we use the Kadanoff cell shown in Fig. 1(b) in
order to choose the form Rs(x) and Rs(p).""

Now, the transformation Rs(x) and Rs(p) can be written
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FIG. 1. (a) A homomorphic cell renormallzation in the square
and simple-cubic lattices. (b) A cell used in the determination of
the iteration functions Rs(x) and Rn(p).

depend on the order of the Pade approximant. The partici-
pation ratio has also been used to locate the threshold by
computer simulation, ' but the large fluctuation of the
participation ratio makes the estimation less reliable. The
quantum percolation in the Bethe lattice has also been stud-
ied 9, 11,12

The purpose of the present paper is to study the quantum
percolation process on the basis of the real-space re-
normalization-group technique and to estimate the percola-
tion threshold for both site and bond processes in the
square and simple-cubic lattices from a different point of
view. To this end we employ a homomorphic cell renormal-
ization depicted in Fig. 1(a) which has been used in classical
percolation problems. ' ' These cells constitute the sites
and bonds in the renormalized lattice which retains the sym-
metry of the original lattice. We define a site (or bond) oc-
cupation probability x' (p') of the renormalized lattice in
terms of the original occupation probability x (p)
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where H is the Hamiltonian of the Kadanoff cell of the par-
ticular configuration and the summation g& is taken over all

sites in the opposite edge [P = 5, 6 for the square lattice and

P =9, 10, 11,12 for the simple-cubic lattice in Fig. 1(b)].
We can easily show that

P.p= g I &Pli & &i l~& I'

+ g &i I & &~l~& &Pli & &~li3)
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Here, Ip, ) and E„are the eigenstate and eigenvalue of H

Hip&=E„Ii &

(8)

(9)

For the quantum site percolation in the simple-cubic lattice,
we generated 2 = 256 configurations of occupied sites and
diagonalized the corresponding cell Hamiltonian to obtain.

in general as

N N nC

Rs(x) = g g S„(i)x ' (1-x)",
n 0 i 1

N~ N~ yg
C

R.(p)= X g B.(j)p' (1-p). , (5b)
m 0 j 1

where Nq and N~ are the number of sites and bonds,
respectively, in the Kadanoff cell. The summations g, in

Eq. (5a) and $i in Eq. (5b) go up to z C„and ~ C,
respectively, to count all possible configurations of "unoc-
cupied site (e„=~)"or "broken bond (u„=0)" in the
Kadanoff cell. The coefficients S„(i) and B (j) of a partic-
ular configuration (denoted by i and j) can be called the
wetting probability of the configuration and represent the
ability of the cell configuration in opening a channel for the
percolating object from one edge of the cell to the opposite
edge. For the classical percolation, the wetting probabilities
S„(i) and B (j) are set to unity whenever a channel of oc-
cupied site or unbroken bonds connects both edges and zero
otherwise. '3 '5 When the cell transformation Fig. 1(b) for
the simple-cubic lattice is used, for example, Rs(x) for the
classical site problem in the simple-cubic lattice [three
dimensional (3D)] reads as"

RC3n(x) = x +8x (1—x)+28x6(1 —x) +56x (1—x)

+ 54x'(1 —x)'+ 24x'(1 —x)'+ 4x'(1 —x)' .

(6)

For the quantum percolation, we define the wetting proba-
bility as follows: for a given configuration, we first calculate
the probability P of a particular site o. on one edge of the
cell [n=1, 2 for the square lattice and n=1, 2, 3, 4 for the
simple-cubic lattice in Fig. 1(b)] that an electron left site n
at time t = 0 reaches any sites on the opposite edge after in-
finite time. The wetting probability of the particular confi-
guration is identified as the averaged probability P over all

sites in the initial edge, normalized by that of the configura-
tion where all sites are occupied (or all bonds are unbro-
ken). The probability P is given by

the wetting probability through Eq. (8). The renormaliza-
tion transformation becomes

dR, (x)
x-x

(12)

We found the index to be v, =1.23 for the classical case'
and v~ = 2.28 for the quantum case.

We also studied the site percolation in the square lattice
and the bond percolation in the square and simple-cubic lat-
tices. For each of these three cases, we examined 24=16
configurations, 2 =64 configurations, and 2' =65536 con-
figurations to obtain the iteration function. The iteration
function for the quantum processes was found to be

(x) = x + 3.2818x (1 —x) +1.3127x2(l —x)

for the site problem in the square lattice, and

Rg' (p) = p6+ 5.7845p5(1 —p) + 9.6274p4(1 —p)2

+ 6.0088p3 (1 —p) 3+ 1.3127p (1 —p)

for the bond problem in the square lattice and

14

Rg' n(p) = X a„p' ~(1 —p)"
n 0

with a0= 1, a~ = 16.4955, a2 = 119.6777, a3 = 529.1672,
a4= 1590.563, as= 3482.256, a6= 5612.857, a7= 6712.185,
as = 5956.260, a9 = 3928.327, a]0= 1907.513, a~~

=662.1523, a»=155.8492, a&3=22.2817, a&4=1.4702 for
the bond problem in the simple-cubic lattice. Table I sum-
marizes the percolation threshold and the critical index of
the correlation length for both the classical and quantum
percolation determined by the present method together with

values for the classical problem known in the literature.
As has been shown by Reynolds, Klein, and Stanley' and

Stanley, ' the cell renormalization employed here works
quite well for both the site and bond processes in classical
percolation. Therefore, we expect that the quantum per-
colation threshold obtained here will not differ much from
the exact threshold, though we may have to take the large
cell limit to obtain more accurate estimation for the percola-
tion threshold and the critical index which is being pur-
sued. It is interesting to note that in the present theory the
ratio between the classical and quantum percolation thresh-
old is almost a dimensional invariant; in two dimensions,
x~/x, =1.40 for the site problem and p~/p, =1.53 for the
bond problem, and in three dimensions, x~/x, = 2.49 for the
site problem and p~/p, = 2.61 for the bond problem.

Our results do not agree with any of the previous estima-
tions. In particular, it is believed that electrons in two-

RP ( ) = +7 5349x'(1 —x)+21.8365 (1—x)

+ 35.8578x'(1 —x)'+ 27.2397x4(1 —x)4

+ 10.2914x3(1 —x)'+ 1.4702x'(1 —x) . (10)

As usual, the unstable fixed point x' of the recurrence
equation x'=Rs(x) determines the critical percolation pro-
bability. We found x'—= x, =0.282 for the classical process'
and x'=—x~=0.701 for the quantum process. We can also
determine the critical index I for the correlation length by
calculating'

v = ln2/tnt.

where
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TABLE I. Percolation threshold and critical index for correlation length obtained by the homomorphic cell renormalization method. The
numbers in ( ) are values for the classical percolation known in the literature (Refs. 16-19).

Percolation threshold
Classical Quantum Classical

Critical index
Quantum

Square

Site

Bond

0.618 (Ref. 14) (0.593)

0.500 (Ref. 13) (0.500)

0.867

0.765

1.64 (3 )

1.43 (3)

3.35

1.89

Simple
cubic

Site

Bond

0.282 (Ref. 15) (0.311)

0.209 {Ref. 13) {0.249)

0.701

0.545

1.23 (0.88)

1.03 (0.88)

2.28

1.31

dimensional systems are localized except when disorder is
absent. ' Thus, the percolation threshold in two dimen-
sions is supposed to be unity, and our results x~ =0.765 for
the bond problem and pq =0.867 for the site problem seem
to contradict with the foregoing conclusion drawn for
Anderson's localization problem in two dimensions on the
basis of the scaling property of conductance. On the other
hand, it has been conjectured for hopping conduction that a
percolation may occur even when the diffusion constant is
zero. 23 We need further studies to clarify the contradiction.

Finally, we expect to observe three regimes of the elec-
tronic properties in the quantum percolation model: when
x & x, for the site process (or p & p, for the bond process),
all electrons are confined in small clusters where each clus-
ter is a set of occupied sites mutually connected by unbro-
ken bonds. Since Hamiltonian (1) does not allow tunneling
of electrons between two isolated clusters, electrons are con-
sidered to be localized in the classical sense as well as in the

quantum sense. When x, & x & x~ (p, & p & p~), there is
an infinitely extended channel, but electrons cannot spread
infinitely from their initial position. We may call this the
quantum localization regime. When x & x~ (p & p~) an
electron has a finite probability that it can travel infinitely
far from its initial location. When we change the occupation
probability x (p) continuously from zero to one, we will ob-
serve a crossover from classical to quantum localization and
to the extended regime. By multiplying the filling factor of
the simple-cubic lattice to the percolation threshold, 24 we
can estimate the crossover volume fraction which is found
to be 16% for the classical transition and 36% for the quan-
tum transition. Some experiments in metal-insulator corn-
posite systems ' sho~ed that crossovers between different
conduction regimes occur at about 20%-24% and 30%—38%
of volume fraction of the metallic component. The quan-
tum percolation picture will give an account for the cross-
overs, and a detailed comparison is under investigation.
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