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The renormalization-group decimation technique is exact for one-dimensional nearest-neighbor tight-

binding models with or without translational invariance. Spectra, wave functions, and the density of states

are calculated with little numerical work from the renormalized coefficients upon iteration. The method is

used on the Soukoulis and Economou model.

Crystals containing a modulating potential of a period dif-
ferent from that of the underlying lattice (either commensu-
rate or incommensurate with it), electrons in a two-
dimensional (2D) square lattice in a perpendicular magnetic
field, 2 the Schrodinger equation with an arbitrary potential
of atomic type (through the construction of the Poincare
map of the problem), ' superconductive networks (de
Gennes —Alexander theory) lead to equations of the type
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where P„ is an amplitude (wave function, amplitude of os-
cillation, etc.), t„„+~ is a ,nearest-neighbor coupling parame-
ter (off-site coefficient), and p„ includes the eigenvalue and
possibly an on-site energy term (on-site coefficient). Our
method to treat this problem is based on renormalization-
group decimation (RGD), which is exact for the 1D prob-
lem. In that context we present a systematic procedure for
the calculation of spectra, wave functions, and the density
of states. RGD proceeds by eliminating every second site in
this set of equations to obtain the equations for a chain of
double spacing. Repeating this procedure r times, we obtain
a chain of spacing 2, with the form-conserving equations

whereas for energies within the extended band it shows os-
cillations. The saturation value of the on-site coefficient as
a function of ~ is monotonic outside the extended band,
goes through zero for the localized co, and oscillates inside
the band of extended states. For energies inside the ex-
tended band, and if the order of iteration is low enough (for
a given increment of cu), the on-site coefficient is a set of
continuous branches, going through zero at different separa-
tions and diverging steeply. If the order of iteration is in-
creased, more branches are present; beyond a certain limit,
the function looks discontinuous because points from dif-
ferent branches are picked up. The zeros of this function
are related to the eigenvalues; the inverse of the separation
between them is proportional to the density of states. In
fact, for r = 6 this quantity already reproduces the square-
root divergent density of states of the 1D tight-binding
model. Increasing the order of iteration only varies the
number of points available to draw the curve.

To illustrate the method on a more sophisticated example
we choose the model of Soukoulis and Economou, '

described by the following equations:
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where k = 2' and the recursion relations are'

(2) with
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To illustrate the method we briefly discuss a simple, well-
known example. For a 1D, one-band, tight-binding model
with one impurity, the equation of motion reads
(rp —pn)Qn —r ($ ~+n@+n t }= 0 Where kn = e fOr hoSt SlteS
and e„=~; for the impurity site; m is the eigenvalue. For
this problem a localized state exists as co such that
1 —(p; —e) Gpp(rp) =0, Gpp being the local Green's function
at the impurity site. In agreement with previous results7 the
RGD applied to this problem shows that for energies out-
side the band the on-site coefficient, as a function of itera-
tion, saturates at a finite value. For an energy exactly equal
to that of the localized state the coefficient tends to zero,

RGD gives the following results.
In Fig. 1 we plot the on-site coefficient at n =0 and itera-

tion 12 (already saturated for gaps and for localized states)
as a function of E. This is "rough" run with AE = 0.1. Ac-
cording to the previous analysis, whenever this function
goes through zero or stops to be monotonic, either extend-
ed bands or localized states exist. The rectangles on the
upper part mark the regions ~here states are present and
show good rough agreement with Ref. 1 except that the lo-
calized peak around E =2 has not appeared. At saturation
the computer will not collect information from distances
beyond 2' around the chosen one. Thus localized states can
be "lost" if decimation is performed around some sites and
can "appear" if the chosen site is changed. We performed
the rough analysis positioning ourselves on sites 500, 1000,
1500, 2000, etc. , and noticed the extended peaks at all
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FIG. 1. On-site coefficient at n =0, iteration 12, as a function
of E for the model of Ref. 4 with DE =0.1.
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times, whereas the "thinner" localized peaks sometimes
were not noticed. Also for a peak around 3.6 decimating
around n = 0 the only zero is at E = 3.639 293 698 116315.
Changing to site 4000 the coefficient goes through zero at
3.629 756 647 46. We have to work with high precision be-
cause we do not pose boundary conditions and so we are
picking up both the increasing and the decreasing solutions.
In Fig. 2 we plot the inverse of the separation between
zeros of the on-site coefficient as function of energy for the
peak around —2.317. This should be compared with the
density of states in Ref. 1. The peaks are obtained at itera-
tion 12 where saturation occurs; the central region is drawn
at iteration 7 because at iteration 12 too many points appear
for our precision (no saturation even at iteration 12). The
graph (except the last 5 peaks on the right) is obtained de-
cimating around the site zero. In Fig. 3(a) we plot In!P„!
as a function of position for E = —2.317. Agreement with
the result of Ref. 1 is excellent and shows that the state is
extended. In Fig. 3 (b) we plot p„ for
E= —2.320377527580125 (peak on left of Fig. 2). Pre-
cision for the eigenvalue is crucial. This and the fact that
saturation is obtained suggests that the side regions are dif-
ferent from the center. The wave function looks like con-
nected localized packets. This is a new result and we think
that for the first time we were able to show what the wave
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FI&.G. 3. Spatial extension of the wave function for different
eigenvalues: (a) extended for E= —2.317; (b) connected localized
packets at E = —2.320 377 527 580 125; (c) localized at
E = 3.639 293 698 116315.
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FIG. 2. Spectral analysis with our procedure of the extended
peak around E = —2.317.

function, which is neither localized nor extended, looks like.
In Fig. 3(c) we show ili„ for E =3.639293698116315 (lo-
calized state). The behavior agrees with Ref. 1 (localization
in 100 sites) but outside, we get a diverging wave function.

Goncalves da Silva and Koiller and Oliveira, Continen-
tino, and Anda9 have worked along similar lines.
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