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Monte Carlo solution of antiferromagnetic quantum Heisenberg spin systems
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A Monte Carlo method is introduced that overcomes the problem of alternating signs in Handscomb's
method of simulating antiferromagnetic quantum Heisenberg systems. The scheme is applied to both bi-

partite and frustrated lattices. Results of internal energy, specific heat, and uniform and staggered suscepti-
bilities are presented suggesting that quantum antiferromagnets may now be studied as extensively as clas-

sical spin systems using conventional Monte Carlo techniques.
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where m, = 1, . . . , Nb and C„—= (P, . . . , P ) is a particu-

lar string of n permutation operators. One can transform
(2) into a Monte Carlo problem by first defining an abstract
sample space S = IC„;n =1, . . . , ~}. Equation (2) is then
viewed as an ensemble average of ( —1)"with the statistical
weight of C„given by
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The Monte Carlo technique has been proven to be effec-
tive in obtaining nonperturbative solutions to many-body
problems. For example, the application of Monte Carlo to
classical spin systems is well established. This is not true,
however, for quantum spin problems. Recent work in this
area can be classified into two categories. In the first
category, one maps a d-dimensional quantum problem onto
a (d+1)-dimensional classical problem using Trotter's for-
mula. ' A slight disadvantage in this approach is that one
must extrapolate to the limit of an infinite number of lattice
sites in the time coordinate as well as in the physical spatial
coordinates. In the second category 3 one uses
Handscomb's scheme' to transform the original quantum
problem into a classical averaging problem exactly. A diffi-
culty arises with both methods, however, when one at-
tempts to study antiferromagnetic Heisenberg models. In
particular, with Handscomb's scheme, one is immediately
faced with a severe obstacle: the problem of alternating
signs.

In this paper we introduce a technique which overcomes
the problems of alternating signs arid generalizes
Handscomb's approach to include antiferromagnets. We are
thus left with a Monte Carlo method for calculating thermo-
dynamic properties of quantum spin systems which is tract-
able and convenient for both ferromagnets and antifer-
romagnets.

For simplicity, let us concentrate on the isotropic Heisen-
berg model H = 2J X&,,&

S; S,. In terms of the spin permu-
tation operators

H=J gP„ Nb

(tJ)

Where J ) 0, Nb is the total number of bonds and P~ per-
mutes the spin states at sites i and j. To calculate the parti-
tion function, one expands exp( —pH) as a power series in
(PH). The partition function is given by

so that

z= XX(-I)"g(c„) .
n C„

(3)

The problem of alternating signs is evident in Eq. (3).
Whereas the partition function is manifestly positive, it is
expressed in terms of the difference of quantities which in-
crease in magnitude as the temperature decreases and must,
therefore, cancel to an increasing extent. Although in prin-
ciple one could get the right answer from (3) if one would
perform an arbitrarily large number of Monte Carlo steps,
in practice stochastic sampling errors yield unacceptably
large variances for any practical number of Monte Carlo
steps. This has been pointed out by Lyklema who had dif-
ficulty in getting good statistics at low temperatures even for
a ten spin system. The aim of our work is to reexpress (2)
such that all, or at least dominantly many, terms in the
partition-function sum are positive.

Since the negative contributions in (3) come from those
terms with an odd number of operators, the problem of al-
ternating signs can be completely solved if we can reexpress
S; S& in terms of new operators such that only terms with
even number of operators give nonzero trace. This can be
achieved by first shifting the zero of the energy by (Nb/2) J.
The new Hamiltonian is H'= J X&,&l (Pt —I). Now if we

define h,&=—S;+S& +S; S,+ it is possible to show
(Pe —1) = hj —ho~, so that

—pH'= pJ X(ht~ —hj) (4)

The partition function is now given by

Z'= X, X(—1)" Tr(0, , . . . , 0 )
(PJ)"

0 n!
n

where 0 =h,J or h&, and n' is the number of unpaired h's
in a particular string C„. We note that when h„" acts on sites
i and j which are in opposite spin states, it interchanges
their spins, and yields zero if the spins on site i and j are
the same. Thus, the only nonzero terms in (5) are those
for which the unpaired h's form closed loops. For any lat-
tice in which nonintersecting closed loops have an even
number of bonds, such as a bipartite lattice, all terms in (5)
are positive. In other lattices, such as a triangular lattice in
which odd loops arise, there are negative terms, but, in each
order of (J/kT) the dominant contribution comes from
those positive terms in which the h's are paired.

n
The trace of a particular string of h's is either zero or 2 '
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where n, is the number of clusters formed by connected lat-
tice sites. The trace is nonzero if and only if among all
possible terms generated by multiplying out the h's there
exists a term such that the following is satisfied. For each
lattice site the number of S+ and the number of S appear-
ing in the string are equal and for each lattice site, S+ and
S appear alternately. In the presence of an external mag-
netic field H, the same quantity is replaced by

C VPs
Tr(O, , . . . , 0 )= g2cosh a H

a I
(6)

CH k& (~ ) (~) (n)

where ( ) represents the Monte Carlo average. In carrying
out the random walk, we allow the addition or removal of
Nb operators at each Monte Carlo step in order to guarantee
that the random walk path covers the entire sample space.
This generalization is essential when we do calculations on a
triangular lattice. Each Monte Carlo step in our calculation,
therefore, consists of N ~ Nb consecutive "nearest-

where ~q p, ~ is the magnetic moment of each spin and a is

the "effective moment" of the ath cluster. Equation (6)
can be interpreted as the partition function of n, indepen-
dent renormalized spins of magnetic moment (q p, s/2)a .
The Monte Carlo calculation sums over all nonzero traces
of the strings formed by h's which correspond to different
ways of grouping the "bare spins. " The average energy,
magnetization, zero field susceptibility, and specific heat are
given by

E(H) = —HM(H) ——(n) + JNb

2

neighbor hops. " (In each nearest-neighbor hop only one
operator is added or removed) and the transition probability
is given by

~ = 1I (I, I ], . . . , I„],J) =
N

P(( p ~ ~ ~ p P( J p

b
n —1

where P;; is the nearest-neighbor transition probability.'m 'n

For convenience P;; is constructed so that the detailed bal-
'm 'n

ance principle is satisfied for each nearest-neighbor hop and
the expression can be found in Refs. 3 and 4.

We have tested our method by comparison to exact calcu-
lations on linear spin chains. The results obtained by run-
ning maximally 10' Monte Carlo steps are listed in Table I.
The numbers in parentheses are obtained by direct diagonal-
izations. The statistical error in our calculations is estimated
by dividing the entire run into = 20 bins and calculating the
standard deviation of the bin averages with respect to the
total average. It is significant that good statistics are ob-
tained for all observables including even the specific heat at
very low temperatures with modest Monte Carlo runs.

Having this positive confirmation of the method we now

apply it to study the square lattice. %e calculate the evarage
energy, specific heat, and the staggered susceptibility for
4 & 4, 8 x 8, 16 x 16, and 32 & 32 lattices under periodic
boundary conditions. The results are obtained by averaging
over maximally 6&&10 Monte Carlo steps and are shown in
Fig. 1. To make the figures legible we have only included
the largest lattice results available at each temperature. The
solid curves represent the results of high-temperature series
(HTMP) expansion and the dashed curves are drawn merely
to guide the eye. In Fig. 1(a) we show the average energy
and the inverse staggered susceptibility for temperature
from kT/J = 0.5 to kT/J = 5.0. In the same units the extra-
polated ground-state energy obtained by Oimaa and Betts is
1.31 + 0.01. The staggered susceptibility diverges as the
temperature is lowered. From the present calculation we
cannot tell whether a nonzero temperature transition exists,
but from the size dependence studied so far this seems un-

TABLE I. Comparison of stochastic and direct diagonalization results (enclosed in parenthesis) for internal
energy, specific heat, and magnetic suspectibilities for N = 10 and N = 32 spin linear chains.

Kg T/J —U/XJ CH/NK 4JX/g p, g

N =10
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.4

0.159 + 0.008
0.193+0.009
0.272 + 0.010
0.412 + 0.009
0.688 + 0.008
0.751 + 0.088
0.826 + 0.008
0.864 + 0.008

(0,162)
}0.204)
(0.275)
(0.409)
(0.683)
(0.754)
(0.819)
(0.870)

0.034+ 0.004 (0.034)
0.052 + 0.007 {0.053}
0.093 + 0.008 (0.094)
0.188 + 0.014 (0.189)
0.341 + 0.028 (0.353)
0.337+ 0.058 (0.346)
0.317 + 0,060 (0.296)
0.239+ 0.060 (0.206}

0.161 + 0.001 (0.161)
0.190 + 0.001 {0.189)
0.228 + 0.001 (0.227)
0.273 + 0.001 (0.273)
0.288 + 0.002 (0,288)
0.269 + 0.005 (0.274)
0.248 + 0.005 (0.250)
0.199 + 0.013 (0.198)

N =32
04
0.6
0.8
1.0
2.0

—0.845 + 0.020 ( —0.855)
—0.825 + 0.020 ( —0.810)
—0.745 + 0.015 ( —0.755)
—0.675 + 0.015 ( —0.690)
—0.405 + 0.010 ( —0.410)

0.195 + 0.040 (0.178)
0.250 + 0.040 (0.275)
0.325 + 0.030 (0.345)
0.340 + 0.030 (0.350)
0.215 + 0.020 (0.193)

0.246 + 0.005 (0.240)
0.260 + 0.002 (0.260)
0.279 + 0.002 (0.277)
0.292 + 0.002 (0.290)
0.270 + 0.001 (0.272)
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FIG. 1. Thermodynamic properties an a square lattice. The points represent different size lattices, the dashed lines are meant to guide
the eye, and the solid lines represent high-temperature series expansion results. (a) Average energy and the staggered susceptibility as a

function of temperature; (b) specific heat as a function of temperature.

likely. In Fig. 1(b) we show the specific heat. Clearly, fluc-
tuations are much more severe and longer Monte Carlo
runs are required to improve the statistics. The specific
heat peaks around kT/J =1.5 and the peak value saturates
at about 0.3k~ per spin. In Fig. 2 we show the size depen-

dence of the various quantities indicated as A, B, C, and D
in Figs. 1(a) and 1(b).

Analogous calculations on the triangular lattice produced
the interesting results shown in Fig. 3. Here, we plotted the
inverse uniform susceptibility as a function of temperature
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FIG. 2. Size dependence of various quantities for the square lat-
tice. The labels A, 8, C, and D correspond to the points marked
the same way in Figs. 1(a) and 1(b). The solid lines indicate the
values represented by the dashed curves in 1(a) and 1(b).

FIG. 3. In this figure we show the inverse uniform susceptibility
for square and triangular lattices. The solid curves represent series-
expansion results and the dashed curve is drawn to guide the eye.
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for both square (nonfrustrated) and triangular (frustrated)
lattices showing that the low- T behavior of these two

models differs qualitatively. For the square lattice, the sus-
ceptibility decreases rapidly as kT/J is lowered below 2.0 in-

dicating an "activated behavior. " However, the gap is
found to scale as 1/JN where N is the total number of
spins. For the triangular lattice the uniform susceptibility is
less sensitive to temperature at low T and the crossover to
"activated behavior" is not seen down to kT/J=0. 75. This
could mean that there is a much smaller gap or much larger
entropy (greater degeneracy) associated with the excited
states. Although the explanation of this unusual behavior is
not exactly clear to us, we speculate that it may be a conse-
quence of the large entropy associated with the existence of
additional elementary excitations in frustrated lattices. '

Much further work is needed before this can be understood
completely.

In conclusion, we have developed a Monte Carlo scheme
which now makes the study of both quantum antiferromag-
nets and ferromagnets as tractable as classical spin systems
using conventional Monte Carlo methods. Although we
have concentrated on the isotropic antiferromagnet for sim-
plicity, the generalization to the anisotropic case is straight-

forward. For example, given

H=2 g(J S Sf +'JySfS&~+ JS*SJ'')
&~i &

with J„W J~ A J, & 0 the zero of energy can be chosen to be
(J,/2)Nb and the new Hamiltonian becomes

(J„+J,)H'= $ —J,h02+ . hj (9)
(Ii&,

Thus, the algorithm for evaluating the partition function

Z'= X, X(-1)"(PJ,)"-".-0 &l c
Jf

(lo)
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