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Spin fluctuations in disordered interacting electrons

C. Castellani
Istituto di Fisica "G. Marconi, " Universita degli Studi di Roma, I-00185 Roma, Italy

and Istituto di Fisica, Universita degli Studi dell'Aquilla, 1-67100 l'Aquilla, Italy

C. Di Castro
Istituto dk Fisica "G. Marconi, " Universita degli Studi di Roma, I-00185 Roma, Italy

P. A. Lee and M. Ma
Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

S. Sorella
Istituto di Fisica, Uni versita dell'Aquila, Italy

E. Tabet
Laboratorio di Fisica, Istituto Superiore di Sanita,

Roma, Italy

(Received 11 May 1984)

The recent solution by Finkel shtein of a model of two-dimensional interacting disordered electrons is

reconsidered. The scaling equation requires a small modification, with the result that the conductivity
remains finite down to zero temperature instead of going to infinity as envisaged by Finkel'shtein. Strong
divergence in the spin susceptibility and a vanishing of the spin-diffusion constant are found at low tem-
peratures. We also discuss the possibility that the spin fluctuation may lead to crossover to the high mag-
netic field or singlet-only universality classes, restoring the metal-insulator transition.

Recently it has been understood that both localization and
interaction effects are extremely important in disordered
electronic systems. ' Although there now exist satisfactory
scaling theories for the noninteracting localization prob-
lem, 2 4 similar theories with interactions included are still
absent. Nevertheless, important progress has been made by
Finkel'shtein, ' who mapped the problem into the appropri-
ate nonlinear o- model, and constructed the scaling theory
for the interacting system, albeit with localization effects ig-
nored. The scaling analysis is carried out to all orders in the
interaction coupling constants and first order in the dimen-
sionless resistance t= (2neFr) . Upon scaling it is shown
that the resistivity decreases with temperature and vanishes
at T = 0 in two dimensions. Some aspects of Finkel'shtein's
results were recently clarified in terms of Fermi-liquid
theory.

In this paper we show that the perfect conductor cannot
be attained, even at T=0. Instead, there is a dynamically
generated finite length scale which serves as the infrared
cutoff for the theory. It will turn out that this mechanism is
closely related to a nearby ferromagnetic instability of the
Fermi liquid. The strong magnetic fluctuation is responsible
for the absence of a metal-insulator transition in this model.
The mechanism discussed here is distinct from the effect of
Zeeman splitting discussed elsewhere, which produces in-
sulating ground states.

Let us recall Finkel'shtein's scaling equation for the resis-
tance in two dimensions. First-order perturbative calcula-
tions in the interactions have shown that the Hartree and
Pock terms give competing logarithmic corrections to the
conductivity. 9 Because of the long-ranged Coulombic in-
teractions, the Fock term dominates to this order and the
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where g= —Ink. and h. is the energy scale. According to
Finkel'shtein, I', I z, and z scale as ( —Ink. ) with
F2=I gz 4. Thus, the second term in Eq. (2) overcomes
the first and t 0 as A. 0. As A. decreases, fluctuations
are being integrated out, until they are all removed when X

reaches zT. Hence, to convert the cut-off dependence to
temperature dependence one sets A, = zT. This means the
resistance t 0 as T 0.

It is important in the above that I, I 2, and z only diverge
as ( —Ink)'. In fact, we have found a slight error in
Finkel'shtein's equations for I and I 2 which invalidates this
conclusion. We believe the third and fourth term in Eq.
(3.39) of Ref. 5 coming from Figs. 9(c) and 9(d) are too
small by factors of 2. The new equations for I and I 2 now
read

dI &+
p2

d( z
(3)

system is driven towards the insulator. Finkel'shtein5 has
generalized the Hartree-Fock calculation to all orders in the
interactions by introducing the Fermi-liquid amplitudes I
and I 2 for small and large angle scattering, respectively.
The scaling equations for t and 1 's under a change of the
cutoff are then derived. In addition, a temperature renor-
malization constant z has to be introduced. There is a
Fermi-liquid constraint:

z —2I +1,=0 .

The resistance scales as
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There is an additional complication. Consider, for example,
the contribution to I'z coming from Fig. 10(a) of Ref. 5:

dl 2 212=&r+
dg z

Following Finkel'shtein we define w = I 2/I', it scales as

(4)
Sr, = —2tr,'Jl d J dx,~T 0 z2co+x

(13)

(5)

Thus, ~ increases as A. decreases. However, ~ ) 2 is im-
possible since that means z & 0 from Eq. (1), signifying an
instability in the Fermi liquid. Analyzing Eqs. (1)-(5) we
find that w 2 at a finite g, (or X,). At g„t is finite.
Close to g, we have 2 —w = g, —(. It is instructive to in-
troduce the coupling constant y2=12/z which obeys the
scaling equation

dy2

dg 2
= —(q, + I)' . (6)

We see that yq scales towards strong coupling as ( ap-
proaches g, and the solution to Eq. (6) has the typical single
pole structure: D, = D/z2 (14)

where z2=z+I 2, x =Dq . Initially zT, z2T « A. , and Eq.
(12) gives 2(Tz/zz) In(T/X). However, under renormaliza-
tion zzT becomes» X before X=zT [see Eqs. (7) and
(8)] and the logarithmic singularity is cut off. Thus, the
scaling equations break down already when
= zz(A. , ) T, before the instability is reached. Equations
(7)-(9) probably overestimate the divergence of I, I'2, and
z, but we are unable to calculate the correct behavior be-
cause of the scaling to strong coupling and the breakdown
of the scaling equations themselves.

We next discuss the magnetic susceptibility and the spin-
diffusion constant. The triplet response function contains
the pole ( —izztp+Dq ) ', which leads to the natural inter-
pretation that the spin-diffusion constant D, is given by

I", 1 2—
C

Thus, I 2 diverges more strongly than z, and we have

(7)

(8)

Here, D is the charge diffusion constant [apart from a
Fermi-liquid correction of (I+Fp)].' Thus, we see that
spin diffusion scales to zero, while charge diffusion remains
finite. The ratio of the magnetic susceptibility x to the Pauli
susceptibility ~0 can be shown to obey the following scaling
equation. '

and

z = I (2 —w)—
3

(9)

d (X/Xp)

d
= 2z, (I'2/z) t (15)

C

Since X, is finite, one might expect this instability to oc-
cur at a finite temperature. Actually this is not so; this is
because the temperature scale is renormalized by z, which is
now strongly divergent. Setting X=zT and using Eq. (9),
we obtain

(10)

and so T = 0 when X = X,. Nevertheless, the length scale
associated with X, is

L„=[D(X,)/X, ]"'

t

d lnt
4 31 1

dg A. —X,
(12)

and since t is finite at X„t In[I/(X —X,) ) is no longer small
near A., and we are in the strong-coupling regime. The per-
turbative renormalization procedure is no longer valid.

and is finite. Thus even at T =0 there is a dynamically gen-
erated infrared cutoff which prevents the system from
becoming a perfect conductor. The physical significance of
L, will be discussed later on.

So far we have assumed the perturbative scaling equations
to be valid till X=zT. A more careful analysis of Eq. (2),
for example, shows this cannot be so. In Finkel'shtein's
solution, although I 2, z diverge, their ratio remains finite
while t 0, thus making the weak-coupling assumption
more and more precise under scaling. In the present case,
close to A.

„
the equation becomes

and is consistent with known perturbative results. "' Com-
bining Eq. (15) with the revised scaling equations [Eq. (3)
and (4)], we obtain the simple result that

X/Xp= z + I z (16)

Equations (14) and (16) are reminiscent of the Fermi-liquid
theory of spin fluctuations. If we u'se Eqs. (8) and (10) we
obtain X/Xp —T t~ and D, —T4t~. However, we must
remember that Eqs. (8) and (10) are incorrect near the in-

stability and the exponent ~ should not be taken seriously.

The vanishing of D, suggests formation of pseudo local spin
moments (pseudo because charge diffusion is finite).
Furthermore, we recall that a finite length scale L, given by
Eq. (11) remains at the end of the scaling process, so that
X(q, tp) is indepedent of q for q & q, =27r/L, . This sug-
gests an interpretation of L, as a mean size of the pseudo
local spin moments.

1n this paper we have reconsidered the "pure" interacting
problem of Fin kel'shtein in two dimensions. We have
shown that in spite of the conductivity increase due to the
Hartree term dominating at low T, there is a dynamically
generated infrared cutoff which causes the resistivity to
remain finite. The low-temperature state seems to be
describable by local spin fluctuations. It is appropriate to re-
mark here the Finkel'shtein's model is physically valid only
if Zeeman splitting can be ignored and magnetic impurities,
which suppress triplet fluctuations, are absent. Otherwise, it
crosses over into the "high magnetic field" or "singlet-
only" universality classes considered in Refs. 7 and 8. In
these cases, the conductivity decreases with temperature in
two dimensions. The divergence of X at low temperature
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implies a crossover to the Zeeman region even for a small
magnetic field. At the same time, the onset of pseudo local
spin fluctuations may lead to a suppression of triplet fluc-
tuations and the crossover to the "singlet-only" regime.
Consequently, the temperature range in which

Finkel'shtein's prediction of conductivity rise with decreas-
ing temperature is expected to be extremely narrow, which
may explain why such an increase has not been observed
experimentally. Experimental measurements of the spin
susceptibility will obviously be of great interest.

For a review, see Anderson Localization, edited by Y. Nagaoka and
H. Fukuyama (Springer, New York, 1982).
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