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Renormalizability of the density of states of interacting disordered electron system
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A perturbative analysis of the single-particle density of states for an interacting disordered Fermion sys-

tem is carried out up to second order both in the inverse conductance and in the interaction when the

singu1arity in the particle-particle channel is suppressed. By imposing the renormalizability condition in two

dimensions on our perturbative expression of the single-particle density of states, we obtain the group

equation for a particular combination of the effective couplings due to the interaction at first order in the

inverse conductance. This result agrees with the one obtained from the one-loop analysis of the effective-

field theoretic Lagrangian obtained by Finkel'stein for the same system. The present ca1culation is the only

available check of that theory at second order in the inverse conductance.

Despite many attempts a general scaling theory of the in-

teracting disordered electron systems does not yet exist.
Two mechanisms are at the origin of this problem: the
well-established localization of a single electron in a random
potential and the interaction among electrons in the pres-
ence of disorder. They are already hard when treated
separately and become extremely difficult when combined
together.

For the single-electron localization' the two-dimensional.
case turned out to be of special importance because of loga-
rithmic singularities in the conductivity. This singularity is

due to the well-known summation of the impurity ladder in

the particle-particle channel. ' This summed up ladder is

called the Cooper propagator. The corresponding summa-
tion in the particle-hole channel leads to the impurity
scattering amplitude which is called diffuson. Both the
Cooper propagator and the diffusion propagator have dif-
fusive poles (if no magnetic field is present) and these ap-

pear also in the density-density response function, 4 5

When interactions between the electrons are present, to-
gether with a weak impurity scattering, the diffusive form of
the density-density response function implies drastic correc-
tions to the normal Fermi liquid theory. In two dimensions
the interaction V(q) leads to additional logarithmic singular-

ities in the conductivity. The single-particle density of
states, which is finite in the one electron problem, also be-
comes logarithmically singular. In the case of short-range
forces between the electrons, to lowest order in the effec-
tive coupling to for the system with pure disorder
(tp= 1/(2m. ) o.p, o.

p is the Drude conductivity) and in the
interaction, the conductivity a and the single-particle densi-
ty of states X, as a function of frequency 0 at zero tem-
perature are given by

o =o'p 1+tp[1+ Vi+ V3 —s(V2+ V4)]in 0
A

where A' is a suitable cutoff of the order of the inverse of
the elastic scattering time v and s is the spin multiplicity.
The different VI's in Eqs. (1) and (2) are the effective in-

teractions generated by V(q). Vi=NpV(0) and V3=FVi
(F being defined in Ref. 6) are associated with the Fock
terms with diffusion propagators and Cooper propagators
dressing at the vertices, respectively. V2 and V4 are the cor-
responding interactions for the Hartree diagrams. They
coincide with V3 when its frequency dependence is not con-
sidered. For their detailed definition see Refs. 7 or 8. In
the case of long-range forces a 1n2 term6 appears in Eq. (2)
instead of the simple ln term. This makes it questionable if
N is going to be a scaling quantity even in the short-range
case.

For the interpretation of the experiments a complete scal-

ing theory is essential which sums up all the logarithmic
singularities. This could be achieved either by matching the
perturbative expressions of some physical quantities to a
scaling behavior (thus assuming that they are scaling quanti-
ties) or by discovering the underlying field theoretical
model.

A first attempt to produce a scaling theory~ turned out to
be based on oversimplified assumptions. ' On the hy-

pothesis that the V3 and V4 contributions could be summed
to zero, a scaling theory was subsequently proposed" by
matching to a scaling behavior a second-order (both in tp

and in the interaction) expression of the three physical
quantities o-, N, and the spin susceptibility. The effective
coupling associated to V2 was shown to scale to zero. How-

ever, certain diagrams in their perturbative expressioris of
the physical quantities were omitted. In fact, a gauge invari-
ant calculation of the single particles density of state
showed that at first order in V and at second order in to
there are two contributions associated with Vl and V2.

&N = —Npt [(Vi —s V2) + ( V2 —s V, ) ] in

N = Np 1 + tp [ Vi + V3 —s ( V~ + V4) ] 1n
0
A

(2)
and similarly for V3= V4. The first term in the square
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bracket of (3) is in line with the first-order result given by
Eq. (2). In the second term instead the role of Vi and V2 is
interchanged. As we shall see due to this last term, which
was missing in the analysis of Ref. 11, even if V2 would
have been zero to start with, it would be generated by Vi
and vice versa. It was also observed that infinite resumma-
tions in the V's could be carried out without changing the
order in ip.

At the same time substantial progress was achieved by
Finkel'stein' who constructed, at least under some re-
strictions, an effective Hamiltonian and its one loop renor-
malization group analysis for the interacting disordered elec-
tron system with long-range forces. In order to simplify the
problem he introduces a magnetic field to suppress the
singular behavior associated with the Cooper propagators.
One has then to deal with Vi and V2 only. This magnetic
field is small enough, however, not to produce any Zeeman
splitting in the spin channels of the diffusion propagators.
Because of these assumptions, in reality this model could be
valid only in a narro~ region of temperature. Even so it is
a very feasible model, which, not dealing with Cooper pro-
pagators, can be considered as the ideal case for the "pure"
interaction problem. The interpretation of the Finkel'stein
analysis in terms of perturbative results starting from the
weak disorder limit was carried out by Castellani, DiCastro,
Lee, and Ma, ' together with its extension to the short-

range forces case and to the physically relevant situations
which arise when either the full effect of the magnetic field
or the spin flip due to magnetic impurities are con-
sid{ red

The renormalization-group analysis of Finkel'stein is car-
ried out at first order in tp and at any order in V. Under the
same assumptions of neglecting Cooper propagators, we
present here a perturbative calculation of the single-particle
density of states up to second order both in tp and V for the
short-range case at zero temperature. We show that the re-
normalizability of the perturbative expression of % is im-
plied by the renormalization group equations for the cou-
plings given by Finkel'stein. Vice versa we can follow the
idea of obtaining the group equations for the couplings by a
matching procedure of the perturbative expressions of phys-
ical quantities. We therefore impose the renormalizability
condition on our second-order perturbative expression for %
and obtain, at first order in tp and second order in V, the
group equation for a suitable linear combination of the cou-
plings, which is in agreement with the Finkel'stein result.

Let us recall that the infinite resummation in V has been
carried out' by summing the static part first, with no dif-
fusion propagator present. Vi and V2 are then simply sub-
stituted by the corresponding static amplitude Uip and U2p.

Instead, by performing the summations associated with the
diffusion propagators one obtains the dynamic amplitudes

Uio( —i IIzo+Dpk ) —I' Qzo+ Dok
U~o= U2o= U2o

[ —i 0 (zo —2Uio+ U2o) + Dok ] [ —i II (zp+ U2p) + Dok ] —i 0 (zo+ U2o) + Dok

where Do is the diffusion constant and zo, ~hose bare value
is unity, is the coupling associated with the term of the
Finkel'stein's effective Hamiltonian where the frequency
acts as a source. In perturbation theory zo starts deviating
from unity signaling the existence of a renormalization
parameter of the frequency in the diffusion propagators.
The amplitude associated with the long-range part of the po-
tential is not considered in the present analysis.

U io and U2o contain the relevant "hydrodynamical
modes" of the theory. The perturbative analysis in to of the
physical quantities like N and a- can now be carried out at
any order in Vi and V2 by substituting Vi and V2 with U~p
and U2p in the corresponding diagrams. ' ' '

For N at first order in to, instead of the Vi and V2 terms
of Eq. (2), one obtains

t

1 1+y20 0I ~= =1+to —ln —2 ln(1+ y2o) ln
No 2 1 2yio+ y2o A

where yio= Uto/zo and y2o= U2o/zo

For our future purpose we need to expand I ~ up to
second order in yio and y2p.

I~=1+aln 0
A

(6)

to( Y 10 2y20+ ylo+ y20 yloy20)

The linear terms in a correspond to the original perturbative
results given by Eq. (2) when Cooper propagators are
suppressed. The quadratic terms in a come from the
dynamical resummation in the amplitudes.

%'e now calculate the perturbative terms of the single-

I

particle density of states N at second order in to, as well as
in yio and y2p. In Ref. 8 part of this calculation has already
been presented. In that work, as already pointed out, N has
been evaluated up to second order in to and first order in V
when both Cooper propagators and diffusion propagators are
present. In the present approximation we ignore Cooper
propagators and the first term in the square bracket of Eq.
(3) vanishes, whereas the second term is reduced by a fac-
tor of T. The second-order term both in tp and V was

shown in (8) to add up to zero, provided no crossing of any
impurity line is allowed (i.e. , no Cooper propagators and no
crossing of diffusion propagators). Within the present ap-
proximation we allow crossing of diffusion propagators and,
in addition to the relevant diagrams of Appendix B of
Ref. 8, many more diagrams contribute to the term
tjy2 In20/A2. Again their sum is zero. Finally in the
present model the perturbative analysis of N up to second
order in tp, yio, and y2p leads to

I & = 1 + a ln + b ln 2A
A A

where a is given by Eq. (7) and b is equal to

b = —
~ to (y2o —syio)1

We are now in the position to impose a multiplicative re-
normalization' on I ~ in two dimensions. If we define in
general

0I /~/
= z~I

A

and introduce a normalization point A. such that

I ~(II = X ) = 1
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then from Eq. (8) at the order we are considering, we have

z~ =1+a ln +b ln
—1

A A

we assume the Finkel'stein expressions for C~ and C2, ' or
we try to obtain information on C& and C2 from Eq. (16).

In the first case, recalling that from Finkel'stein C~ and
C2 are given by' '

Substituting Eqs. (8) and (11) in Eq. (10), leads to CI Y2+ (yl 72) C2 Y1+ Y1Y2 (18)

I~= 1+aln 2+bin 2
—a ln

2
ln

n 2n 2 n
A2 A2 A2 A2

—a ln + (a —b ) ln
A A

(12)

In building up the renormalized I ~, the couplings tp, y&p,

and y2p appearing in a and b have to be rewritten in terms
of their renormalized expressions t, y~, and y2, which at the
leading ln term are given by

It is easy to verify that the expression (15) for ao and at sa-
tisfies the renormalizability condition (16) with b given by
our perturbative expression of Eq. (9).

Vice versa without using Eq. (18) we can assume that
within our perturbative analysis only the linear terms y2 for
C~ and y ~ for C2 are known via the terms in N which invert
the role of y ~ and y2 and write

C1 2C2 y2 —27'i+f (yf, yz, yt7 2) (19)

tp=t 1+tCtln 2, y;p=y;+tC;ln (13)

where f is unknown.
Substituting Eqs. (17) and (19) in Eq. (15) for a~, up to

second order in y ~ and y2 we have

where i stands for 1 and 2, respectively, and C, and C;
depend on y~ and y2.

Since we are working up to second order in the couplings,
their renormalization has to be considered only in the a
terms of Eq. (12). In the b terms tp, p&0, and yqo are simply
replaced by t, y~, y2. Let us then make the dependence on

in a explicit by substituting Eq. (13) in Eq. (7). At lead-

ing orders we obtain

a =ap+a~ln
A

(14)

where ap and a ~ are now expressed in terms of the renor-
malized couplings:

ttp ——t (y) —27 2),

at=t'[Ct —2C2+2(7 t
—yz)(C) —C2)

+Cty2+ytC2+ Ct(pl 272))

(15)

a] —ap = —2b (16)

It is clear from Eq. (15) that we need to know C, only up to
linear terms in 7 r and y2. According to Eq. (1) C, reads

Cf = y) —2y2 (17)

As far as the C s are concerned, we need their expressions
up to the second order in the y's.

We can now use Eq. (16) in two different ways. Either

Renormalizability of N means that when Eq. (14) is used
in Eq. (12), I z(Q, A, A. ) should depend only on II/h. 2.

We obtain the condition

f(7 t, V2 'Yl'Y2) Yl+r~ —4ViV2 (21)

The result given by Eq. (21) when inserted in Eq. (19) leads
to C~ —2C2=y2 —2y~+y~+y2 —4y~y2 in agreement with
Finkel'stein expressions (18).

In the short-range case by imposing that our perturbative
expression for N up to a second order in t and in the in-

teraction is multiplicative renormalizable, it is therefore pos-
sible to obtain a linear combination of the Finkel'stein
group equations for the couplings at first order in t.

In conclusion, the renormalizability of N up to second or-
der in t is compatible with the Finkel'stein group equations
for the couplings at first order in t. This result can also be
considered as the only available check of that theory at
second order in t.

This achievement is of particular importance because the
appearance of the t ln term in the single-particle density of
states for the long-range case made it questionable if this
last quantity would scale at all even in the short-range case.
As it was shown by Finkel'stein and further analyzed in
Refs. 12 and 15, the single-particle density of states can be
completely eliminated via a wave function renormalization
from the group equations for the couplings. Here we have
shown further that in the short-range forces case, N is in it-

self renormalizable at least at the order considered, and it is
therefore a good candidate to be a scaling quantity.

a t = t [C t
—2C2 —2(y r

—7'2)'+ +2+ +1+ (y i
—2y2)

(20)
The renormalizability condition (16) for N determines f' to
be
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