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Two-dimensional Wigner crystal of electrons on a helium film:
Static and dynamical properties
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The interaction energy, phonon spectrum, and longitudinal and transverse sound velocity of a
two-dimensional (2D) Wigner crystal are calculated within the harmonic approximation for dif-

ferent values of the thickness of the underlying helium film and for different types of substrates
which support the He film. The phase diagram for Wigner crystallization is analyzed in terms of
the Kosterlitz-Thouless-Halperin-Nelson theory of 2D melting.

I. INTRODUCTION

During the last decade two-dimensional (2D) electrons
have been the subject of intense interest, ' e.g. , electrons in
metal-oxide-semiconductor (MOS) structures and elec-
trons on a He surface. Electrons in MOS structures
behave mainly quantum mechanically (Fermi energy
E~ —10—500 K) because of their relatively high density
n, —10"—10' cm . Lowering the electron density leads
to trapping of the electrons by impurities. On the other
hand, electrons on bulk helium form. the opposite limit;
they behave classically (EF-0.01—100 mK) with a densi-

ty range of 10 —10 cm . Bulk He films become un-

stable when the electron density exceeds 2.4&10 cm
But if one decreases the He-film thickness it is possible to
charge the He surface to a higher electron density; e.g. ,
for a He-film thickness of d —= 100 A the He surface can
support an electron density of about 10" cm (see Ap-
pendix), and one can enter the quantum regime. We ex-

pect that electrons on He films can form an interesting ex-
perimental system which bridges the gap between the clas-
sical (i.e., electrons on bulk He) and the pure quantum-
mechanical (i.e., electrons in MOS structures) 2D electron
systems known to date.

An interesting feature of the system of electrons above
a helium film is that it can form a 2D Wigner lattice.
Such a 2D crystallization was proposed by Crandall and
Williams and experimentally observed first by Grimes
and Adams and later in other studies. All these experi-
ments ' were done for electrons on bulk helium. In the
present paper we will apply Lindeman's melting criteri-
um as used by Platzman and Fukuyama to investigate
the influence of the thickness of the helium film on the
phase transition for %igner crystallization. An outline of
such a study was presented in Ref. 8.

A particular aspect of the system of electrons on a heli-
um film is the possibility of changing the interparticle in-
teraction. Because of the finite distance between the elec-
tron layer and the substrate the electron-electron interac-
tion is screened by the substrate. This screening effect can
drastically change the interparticle potential, e.g. , for a
metallic substrate and a helium-film thickness smaller
than the average electron-electron distance, the electron
electron interaction becomes a dipole-dipole interaction.

Classical aspects of such a dipole system were considered
in Ref. 9. In the present paper we discuss the electron-
helium film-substrate system for an arbitrary helium film
thickness and an arbitrary substrate dielectric constant.
We find that the dipole system exists only in certain lim-
its.

The paper is organized as follows. An estimation of the
phase diagram for 2D Wigner crystallization as a function
of the helium-film thickness is given in Sec. II in terms of
dimensionless units. In Sec. III we use the harmonic ap-
proximation to calculate the interaction energy and the
phonon spectrum for a 2D layer of electrons crystallized
in a hexagonal Wigner lattice. The effects of the He-film
thickness and of the substrate dielectric constant on these
properties are obtained. In the Conclusion we discuss the
implication of the screening effects on the phase diagram
for 2D Wigner crystallization. The stability of a helium
film charged with electrons is discussed in the Appendix.

II. PHASE DIAGRAM

The electrostatic interaction energy between two elec-
trons above a He film which lies on a substrate with
dielectric constant e is

V(r)=e 1 6
[r'+(2d )']'"

with 5=(e—1)/(e+ I), and d is the distance between the
electron layer and the substrate (d is approximately the
He-film thickness). Notice that for a metallic substrate
e= oo and thus 5=1. The second term in Eq. (1) is a
consequence of the screening of the interparticle interac-
tion due to the substrate. For small interparticle distances
(r &&d) the screening is negligible and one has essentially
a Coulombic potential: V(r)=e /r+ . . If, on the
other hand, the electrons are far apart (r &~d) we have
V(r)=e (1 5)/r+25e d /r + .—, which implies that
for a nonmetallic substrate the charge is renormalized to
an effective charge e'=eV1 —5. If 5=1, then the inter-
particle interaction is dipolar at large distances. This
shows clearly that by changing the He-film thickness the
interparticle interaction can be changed. For a metallic
substrate even the type of interaction can be changed from
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In the next section we need the ourier
interparticle potentia, q.

2

u(k)= ( —e
2n.e

1 —5e "") (2)

8 =0.9

which has the following limiting behavior:

u(k)=2nel. k+ for dk »1
and

u k =2m.e 1—k =2~ez 1 —5)/k+4m. 5e d+ or dk &&

(3)

nd n =1/4md . Thewith n =1/pro the electron density and nd ——

f he 2D electron system iskinetic energy o t e e

2 dp +p
(4)&=—J„,, „, „,

=1/ksT, where ks is Boltzmanns
d where the chemicaland T the temperature, an w er

b the normalization conditionpotential p is determined by t e norm

d p 1
(5)2 P(E — )

t t introduce the densityIt is convenient o in

4 1 4e4m2
2 I2 ~&I 2

KQg

=0.529 A the Bohr radius, and the tem-with aii =A'/me =0.
perature

()2me'

k fiI
2e 1T =

kgag

012,=33.6 K and n, =2.4)& 10For I =137 we have T, =33.6
c —2

Equations (3)—(5) can be written as

Fi(z)1/2
1/2F (z) (1+n /nd )

(&a)

tells us that melting
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I.O
T=O

plies d'=60.4 A if I =137) we have ni ——n2 ——n' .For
d & d* no solid phase exists (see Figs. 2 and 3).

0.8 III. INTERACTION ENERGY
AND PHONON SPECTRUM

0.6

Cl

CL
0.4

C3
ILJ

0.2

In this section we study the properties of the 2D elec-
tron system when it is crystallized into a two-dimensional
solid. The static interaction energy and the vibrational
spectrum will be calculated in the harmonic approxima-
tion

The interaction energy of one electron, which is taken
at the origin for convenience, interacting with all the oth-
er electrons is

0.0 I

0.1
nd/n

0.2 Ef = g V(R(l)),
1~0

(9)

FIG. 3. T=O cut of the phase diagrams of Figs. 1 and 2.

a renormalization of n, and T, . Explicitly n, ~n,'
=(1 5) n„—T,~T,*=(1 5) T„—which results in a
shrinking of the phase diagram. Thus for 5=0.1 we have
n/n, ~0.01 and T/T, ~0.01 if d —+0.

For 5= 1 and finite d the situation is totally different in
the low-temperature region. For n g&nd the potential en-
ergy behaves as ( V)-d n /, while the kinetic energy
(X)—n in the quantum regime. This implies that for
sufficiently small densities one has ( V) « (K), and the
system is in the liquid state. For n »nd, ( V) -~n and
thus for high densities we have again ( V) «(K), and
the system is in the liquid state. Thus at a fixed tempera-
ture the Wigner lattice can only exist for ni & n &n2,
where ni and n2 are a function of the He-film thickness.
For example ni 4(nd/n, )——, n2 ——1 2(nd ln, )' if —T=O
and ndln, «1. Remember that for 5&1, n, =O for
T=O because a classical limit exists, while for 5=1 the
system is always quantum mechanical for T~O. With
decreasing He-film thickness ni and n2 move to each oth-
er and for d =d' (we found ndln, =0.0901, which im-

which is identical to

Er'= lim g [V(R —R(l)) —V(R)],
/R/~0 1

where R(l) is the lattice position of the electron at site I
and V(R) is given by Eq. (1). The sum in Eq. (9) runs
over all possible lattice sites l except the origin. Because
the lattice sum is slowly convergent, it is advisable to use
the Ewald method which converts the sum in Eq. (10) into
two rapidly converging sums. In the Ewald method' "
one separates the lattice sum into a part which contains
the short distance interactions and a part which contains
the long distance interactions. The latter sum is then
transformed into Fourier space.

For 5&1, nonmetallic substrate, the energy Er' is diver-
gent. This is a consequence of the fact that the Fourier
transform of the interparticle interaction [see Eq. (2)]
diverges for k~O. We will subtract the contribution of
the k=O mode, Er, and consider

&r =&r'-&r'

which amounts to making the system charge neutral. "
For the system under study we found

&r

&o
d+2~L (0 d) 2~ ~ L

o
d +

G erf( d)
6 (go)

R (~0)

t

«c(g
I ROI ) erfc[g(

I ROI +do)'/ ]—5
(

I Ro
I

'+do)'"

with Er —2m.do/a, 7)=v'mg/a, do —dlb, Go Gb, E——o b/e——, b is the——lattice constant, a=a, /b with a, the volume of
the unit cell,

dx
(z r) ( 1 5 xf) —z/x-

o ~3/2 (12)

erf(x) the error function, and erfc(x) = 1 —erf(x) the complementary error function. g is an arbitrary constant which in-
dicates at which distance the lattice sum is split. For a hexagonal lattice we have a=@3/2, b =(2m/~3)'/ ro, the nor-
malized lattice vectors are Ro= (m +n /2, v 3n /2) and the normalized reciprocal-lattice vectors are given by
Gc——2m(m, ( —m +2n)/V 3) with m, n=0, 1,2, . . . .

We have checked that for all values of the He-film thickness the hexagonal lattice structure gives a lower interaction
energy than the square and centered rectangular lattice structure. For d ~ oo (bulk helium), Eq. (11) reduces to the result
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of Bonsall and Maradudin [Eq. (2.12) of Ref. 11]. This is easily seen if one recalls that

Ls(z, ao ) = —,
' &m/z erfc(Mz ) = —,

'
P I~2(z), (13)

where P„(z) is the Misra function.
The interaction energy of the electron in the hexagonal 2D Wigner lattice is plotted in Fig. 4 as function of the dis-

tance between the electron layer and the substrate and for substrates with different dielectric constants. With decreasing
He-film thickness the interaction energy decreases because of the enhanced screening of the interparticle interaction due
to the substrate. For d~O we have e~eV'1 —5, which implies that El at d=O differs with a factor 1 —5 with Fl at
d = oo, as is clearly apparent from Fig. 4.

In the second part of this section the phonon spectrum of the 2D Wigner crystal will be calculated in the harmonic ap-
proximation. Following Ref. 11 we define the matrix

R~ O j g v(R —R(t))e -' q '"—v(R) (14)

from which one can obtain the dynamical matrix

e
Cj(q) = — [Sj(q)—S"(0)] (15)

and the normal-mode frequencies

~' (q) = —,
' ([C (q)+C»(q)]+ I [C (q) —C»(q)]'+4C„~(q)C~„(q) J' ') . (16)

Inserting the potential (1) into Eq. (14) and using the Ewald method as before we find for the dynamical matrix

Cij(q)/coo= &'Ir/3@pi qpjLs 'g do — g sin (T~qo Ro)(5qIHI(riRo) &HI [g(R—o+do) ]I
29 4g2 2 m

R +0

—U RpRoj IH2(rIRo) —5H2 [rI(R p +do )' ] I )

1+ v'm/3 g (qp+Gp);(qp+Gp)jLs
2g G@0

I qo+Go I

'
d p

—Gpg Gp.Lg
4g

I
Go

I

'
2 pg dp

4q
(17)
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FICi. 4. Electron interaction energy as function of the relative
film thickness ( ro is the average electron-electron distance} for
different substrates.

(18a)

r

erfc(x)
x 2 X

and the summations are over the same lattice vectors as in
Eq. (11). If one observes that HI(x) =/I~2(x ) and
H2(x) =2/3/z(x ) then it is easy to show that in the limit
d~oo, Eq. (17) reduces to Eq. (3.10) of Ref. 11. In the
case of a metallic substrate (s = ao ) the present results are
equivalent to the results of Meissner et al. ' for the elec-
tron vibrational excitations in a three-layer structure.

The phonon spectrum is plotted in Fig. 5 along the
boundary of the irreducible element of the first Brillouin
zone" for different values of the He-film thickness and
for two different substrates: a nonmetallic substrate [Fig.
5(a)] and a metallic substrate [Fig. 5(b)]. The longitudinal
CI and transverse C, sound velocity are shown in Fig. 6 as
a function of d. From Figs. 5(a), 5(b), and (6) it is ap-
parent that (1) the screening effects are starting to play a
role when d/rp(1, i.e., when the distance between the
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FIG. 6. Transverse ( C, ) and longitudinal ( CI ) sound velocity
as function of the relative film thickness for different substrates.
Co e /gab

with Co e /mb. ——(ii) For a nonmetallic substrate with
5=0.9

0.0r J X
NAVE VECTOR

C, /Co ——0.16228+3.14(d/ro), d/ro « 1

and in general

(19d)

(b)

FIG. 5. Phonon spectrum in the case of (a) a nonmetallic and

(b) a metallic substrate along the boundaries of the irreducible
element of the first Brillouin zone for different values of the rel-
ative film thickness. coo ——8e'/mb' with b the lattice vector.

lim C, /Co ——0.5131701—5 .
d~0

(19e)

In the limit of bulk helium we have the well-known re-
sult C, /CG ——0.513 17.

IV. CONCLUSION

2.760(d/vo)', d/ro »1
Ci/Co= .

3.542d/ro, d/ro «1
(19a)

(19b)

electron layer and the substrate is comparable to or small-
er than the average distance between the electrons in the
crystal. Decreasing the film thickness and/or increasing
the dielectric constant of the substrate softens the phonon
spectrum. (2) For a nonmetallic substrate the longitudinal
sound velocity is always infinity. The reason is that for
5&1 the 2D electron system behaves, in the long-
wavelength limit, as a Coulomb system and thus, as is
well-known, coi-q' for q —+0. For the case of a metal-
lic substrate and d/ro & co the two branches of the pho-
non spectrum are acoustical in the long-wavelength limit,
i.e., co-q for q —+0. For 5=1 the system behaves, in the
q~O limit, as a series of dipoles. This explains why
coi-q as q~O. (3) Notice the superlinear behavior of the
transverse mode if d/ro&0. 5. This was already observed
in Ref. 11 in the case of a 2D Wigner lattice on bulk heli-
um. (4) The sound velocities as a function of the film
thickness have the following limits. (i) for a metallic sub-
strate (5= 1)

In Sec. II the phase diagram (Figs. 1 and 2) was
presented in terms of variables which were scaled by the
renorrnalization constants n, and T, . These constants de-
pend on the parameter I which contains information
about the interactions in the system. Thus we expect that
I will be a function of the He-film thickness.

For bulk He and for small temperature ( T& 1 K, i.e.,
the classical regime) Thouless' used the Kosterlitz-
Thouless' (KT) theory of dislocation-mediated melting,
as elaborated in greater detail by Halperin and Nelson'
and Young, ' to estimate 1". He obtained

I x
(C, /Co) (1—C, /Ci )

(20)

with 7=2 i 3'i m
i =20.728 and Co e /mb with b t——he

lattice constant and m the electron mass. For bulk He
one has C, /Co ——0.513, Ci ——ap, and thus' I KT——79.
Morf' showed that the experimental value I = 137 can
be explained if the temperature dependence of the sound
velocity C, is taken into account.

To obtain an idea of the film thickness dependence of I
we take

C, /Co 1.068d/ro, d /——ro « 1 (19c)

I KT(d) [C,( ~ )/C, (d)]'
1-[C,(d)/Ci(d)]'

' (21)
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where I zT( oo ) =137 and use zero-temperature values of
the sound velocity as obtained in the preceding section.
The validity of Eq. (21) in the quantum regime is ques-
tionable. At most we may expect that it will give us a
qualitative picture.

Taking into account the d dependence of I we have
calculated from Eqs. (8a) and (8b) the phase diagram for
Wigner crystallization in dimensional units. For a metal-
lic substrate this was shown in Fig. 4 of Ref. 8. For a
nonmetallic substrate with 6=0.9 the phase diagram is
shown in Fig. 7 for different values of the He-film thick-
ness. The closed circle on each line indicates where the
He surface becomes unstable (see Appendix).

Experimentally' it is easier to keep the electron density
constant and change the He-film thickness. Therefore we
plotted in Fig. 8 the phase diagram as function of the
He-film thickness for three values of the electron density
and for the case of a metallic and a nonmetallic substrate
(5=0.9).

Figures 7 and 8 show that the screening effects become
visible for d ( 10 A. For thin He films the solid-liquid
boundary is pushed into the quantum regime. For a typi-
cal temperature of T=0.4 K, Fig. 7 suggests that the
phase transition will begin to show quantum behavior
when the film thickness becomes smaller than about 200
A.

In summary, we have studied the interaction energy,
the phonon spectrum, and the phase diagram for Wigner
crystallization of a 2D system of electrons on a He film.
Such a system forms an almost ideal 2D fermion system
which provides the possibility of studying the transition
from a classical 2D to a quantum 2D electron system.
We expect that the analysis of the phase diagram present-
ed in this paper is only an estimate when Ez & kT. The
reason is that the calculation of I zr(d) was based on the

1.4—

1.2—

0.8—

0.6—

Ltj 0 4—

0.2—

10~ &04

FILM THICKNESS (A)

FIG. 8. Phase diagram as function of the film thickness for
different values of electron density and for a metallic (solid
curve) and a nonmetallic (dashed curve) substrate.

Kosterlitz-Thouless' theory of 2D melting, which is a
classical theory. Up to now no quantum analog exists for
the KT theory of 2D melting.

ACKNOWI. EDGMENTS

I would like to thank E. Andrei, C. C. Grimes, Y. Iye,
S. A. Jackson, and P. M. Platzman for stimulating discus-
sions. This work was supported in part by the National
Fonds voor Wetenschappelijk Onderzoek (Belgium),
Fonds voor Kollektief Fundamenteel Onderzoek (FKFO)
(Project No. 2.0072.80, Belgium) and North Atlantic
Treaty Organization (NATO).

APPENDIX

10»
In Ref. 2 (see also Ref. 19) the dispersion relation for

He surface excitations of a He film of thickness d, which
was charged with electrons (density n), was obtained:

1011

1010

cok =k2 3'
4+g +—k — k

2kd

4~e n 1+5e
d4 p p 1 g

—2kd

X tanh(kd), (Al)
E
LJ

109
I—
C/J

LU
C3

108

107

1O6
0.001 0.01 0.1

TEMPERATURE ( K j

FIG. 7. Phase diagram for a nonmetallic substrate for dif-
ferent values of the film thickness. Closed circles are the stabili-

ty points for the film.

where 5=(e—1)/(m+1) with e the dielectric constant of
the substrate beneath the He film, p=0.145 gem is the
He mass density, ~=0.378 erg cm the He surface ten-
sion, g the gravitational constant, and we took
a=9.5)&10 ' erg for the van der Waals coupling con-
stant of the He to the substrate. Details of the derivation
of (Al) and results in the limit of small He film thickness
can be found in Ref. 2. In this Appendix we elaborate on
the properties of this function (Al) for arbitrary He film
thickness.

For electron densities larger than a certain critical den-
sity the He surface excitation frequency ~k contains an
imaginary term for a certain range of wave vectors which
implies that for those electron densities the He surface is
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r

7 3Q =2.25 X 10+', (A2)

unstable. The critical density (n*) and corresponding
critical wave vector (k') are obtained from the equations
cok =0, Bcok/r)k=0, and are plotted in Fig. 9 as function
of the He-film thickness and for a metallic (e= Do ) and a
nonmetallic (i.e., e= 10) substrate.

The limiting behavior of the critical density and critical
wave vector are as follows (the He-film thickness d is in
cm): (1) for thick He films (d &10 A), one had k'd »1
and thus

CU

E
)p1 0C3

0-

V)
ir
UJ
C)

2m.e (n*)
19 4

'r
(A3)

' 1/2

d —3/2 99 2d —3/2

4~e
(A4)

(with n measured in cm and k in cm '), which is in-
dependent of the dielectric constant of the substrate. (2)
for thin He films and (i) a metallic substrate, k'=0 for
d & 8.9)& 10 A and thus one can use the property kd « 1

to obtain

&ps=

) ) (I IIIII ( ) ) Il)Ill I ) I IIIIII ( ( I( IIIII I I ( IIIIII I I (IIII(

~o ~o' &o~ ~o~ ~o' ~o6 &o7

FILM THICKNESS (A)

FIG. 9. Maximum electron density that a helium surface can
support and the wave vector (inset) of the instability as a func-
tion of the He film thickness for both a metallic (solid curve)
and a nonmetallic {dashed curve) substrate.

0
which is valid for d & 10 A. (ii) For a nonmetallic sub-
strate it turns out that kd « 1 only when 10 & d & 10 A,
which gives (with n in cm and k* in cm ')

I'

2— 2

(n') = . 1+ d+td + 2 z r/pg 1+
2 ' ' pg d' ('—1)'

i
pgd'

2 —16

=9 83 1019 e —1
1

2X10 d+ d + 2.6SX10
(e —1)'

(

2X10-"
1+ d' (A5)

e 2~e (n*)

1 d( —1)
T

3.83&&10 ' E(n*)

1+d(e —1)(n") 7.67&(10
(A6)

When d &10 A or 10 A& d &10 A then k d is of order 1 and no simple expression for n' or k* is found.
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