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Free-energy formula for a strong-coupling superconductor with Shiba-Rusinov impurities
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We derive a formula for calculating the free-energy difference between the superconducting and the nor-

mal states of a strong-coupling superconductor with localized states within the gap (induced by magnetic

impurities). The present formula is a generalization of the one given by Bardeen and Stephen (for the

electron-phonon systems) to include the effect of Shiba-Rusinov impurities.

where
jA-„=(a k t, a k t, a k t, a k t) (2)

A-k is its conjugate, T, the ordering operator for the ima-

ginary time 7, and a-k„ the creation operator for a conduc-
tion electron with energy e-k and spin p, .

The self-energy of the impurity-averaged Green's func-
tion consists of

with
X (P) = X' /(P) + X' '(P) + X' '(P)

X' (P) = —T x~g, ~
D(P —P')p3G(P')p3

p/

X'-'(P) = —r XV, , p, [G (P') —G'(P') ]p3,
p/

(3)

Bardeen and Stephen' (BS) gave a formula for calculating
the difference Os ~ between the free-energy in the super-
conducting state and the corresponding quantity in the nor-
mal state of a strong-coupling superconductor. It is based
on the Eliashberg formalism of the theory of supercon-
ductivity. Mitrovic and Carbotte5 have shown that the BS
formula remains valid when magnetic impurities described
by the Abrikosov-Gor'kov6 (AG) theory are added to the
superconductor. Schossmann and Schachinger find that the
above formula is still valid when the superconductor con-
tains Shiba8-Rusinov~ (SR) impurities. The purpose of this
Rapid Communication is to point out that the BS formula is
modified nontrivially in the Shiba-Rusinov case.

The SR theory of magnetic impurities in a weak-coupling
superconductor is a generalization of a we11-known AG
theory. In the AG model the interaction between a conduc-
tion electron and a magnetic impurity is assumed weak and
the lowest-order Born approximation is used to treat the
scattering. In the SR model the scattering is calculated ex-
actly for a single impurity problem by treating the impurity
spin classically. This theory shows the existence of localized
states within the Bardeen-Cooper-Schrieffer (BCS) energy
gap and also modifies the various properties. Several prop-
erties of the superconducting alloy in the SR model have
been calculated by Nagi and collaborators' " and Ginsberg
and collaborators. '

We use a 4 x 4 matrix temperature Green's function

G -„-„,(r) = —(T,A -„(r);A -„,(0)) (I)

where X' /(P) is the contribution from the electron-
phonon interaction (g, ); D (P —P') is the phonon
Green's function; X' '(P) comes from the repulsive
screened Coulomb electron-electron interaction ( V", )
and has been written following Ref. 5 [Gd(P) is the diago-
nal part of G(P)]; X' '(P) is the contribution from the
electron-impurity interaction and is based on Refs. 8 and 9.
Furthermore, n; is the impurity concentration, ( )
denotes the averaging over the positions and spin directions
of a low concentration of randomly distributed magnetic im-
purities and the volume has been taken unity. We have
used the abbreviated notation P = (k,ice„), where ro„ is
Matsubara frequency [i.e., co„= 7r T (2n + 1), with T as tem-
perature and n as an integer]. In writing Eqs. (6) and (7),
the scattering potential U--, has been expanded in a series

k k

of thc Legendrc polynomials:

U-„-„,= g (2l +1)UIPI(e e')
I G

where e = kj(k~ and

UI = VIP3+ JIS ~ o.

1+p3 1 —p3A= G + 02' o2 (10)

n(X) = ——gTr(in[ —G '(P)]+ X(P) G(P)]
2 p

+ —/[in[ —D '(Q)]+7r(Q)D(Q)]+8(G)
2 Q

Here, a; and p; (i = 1, 2, 3) are Pauli spin matrices operat-
ing on ordinary spin states and the electron-hole spin states.

By using the stationary properties of the thermodynamic
potential with respect to the self-energy, we construct the
free-energy functional (hereafter simply called the free en-
ergy). This functional was first discussed for normal Fermi
systems by Luttinger and Ward, ' whose work was extended
to the electron-phonon system by Eliashberg. The free-
energy functional can be written as (volume = 1)

X' '(P) = n, X (2i+ I)X;--'(P),
1~0

X;- (P) = U, I —QG(p) U
k

(6)

where vr(Q) is the self-energy of the phonon Green's func-
tion. The function H(G) is determined to give the self-
energy written in Eqs. (3)-(7) and we obtain
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2

8(G ) = — $ Ig I D (P —P') Tr[G (P)p&G (P') p2]
PP

T2 „„„„l1
OO

XVP p Tr([G(P) —G (P)]p3[G(P') —G (P')]p2) — '
X X(21+1) Trln 1 —QG(P)U1 . (12)
n 1 0 kt

After the impurity averaging, the self-energy X(P) and the Green's function G (P) are spin independent. Then one can use
the functions G (P), F(P), Xl(P), and X2(P) which are related with G (P) and X(P) and have been used in Refs. 1 and 3
(G = Gll, F = —G14, Xl= Xll, and X2= X14). Consequently, Eqs. (11) and (12) give

0 = —2T X{~ln[ —$(P) ]+Xl(P)G (P) —X2(P)F(P)I+ —x (ln[ —D '(g) ]+2r(g)D (Q))
P 2 Q

—T' X{lz I'G(P)D(P —P')G(P') F(P)—llgp ~ I'D(P —P')+ &p p ]F(P')}
PP

with

—n; T g g (2l + 1) In[Re(S)R1( —S) ]
n ~01 0

$(P) = [IQlg 6k —Xl(P) ] [1~.+ ~a+ Xl( —P) ] —X2(P)

G (P) = [i 01„+ok+ Xl( —P) ]If(P)
F(P) = —X2(P)ly(P)

Rl(S) = 1 —(Vl+ J1S) $G(P) I —(Vl —J1S) $G( —P) + [(Vl) (J1S) ] $F(P)
k k k

1 2

(13)

(14)

(15)

The quantity Rl( —S) is obtained from Eq. (17) by changing S —S. Equation (13) can be rewritten as

II= —T X(ln[ —@(P)]+X (P1)G(P) —X,(P)F(P))+—X(ln[ —D '(Q)]+2r(g)D(Q)}
P 2 P

—T X[X1 '(P)G(P) —X2 '(P)F(P)] —n;T $ x(2l+1) In[Re(S)R(( —S)]
P n ~01 0

where we have used

—T X[X1(P)G(P)—X2(P)F(P)] = —T X[X1 '(P)G(P) —X2 '(P)F(P)]

—T g([X — (P)+X -'(P)]G(P) —[X'- (P)+X'-'(P)]F(P)}
P

and have canceled the term inside the curly bracket with the terms proportional to!g !2 and V", in Eq. (13).
Ultimately we are interested in calculating the difference Os ~ between the free energy in the superconducting state Qs

and the corresponding quantity in the normal state QN. By assuming that gars(g) = m. N(g) [and consequently
Ds(g) =DN(g)], we get

s —N Bs+ ~sR

II BS T X (in[AS(P)l4'N(P) ] + [X1S(P) X1N(P) ] [Gs(P) + GN(P) ] X2s(P)F (P))

(20)

(21)

~ II SR T g ([XlN (P) + Xls (P) ] [Gs(P) GN(P) ] X2S (P)F (P)}

—n; T X g (2l + 1) in[Rls(S)Rls( —S)/R1N(S)R1N( S) ]
n ~01 0

(22)

In writing Eqs. (21), (22) we have used

X [Xls(P) Gs(P) —X1N(P) GN(P) ] = g{[Xls(P) —X1N(P) ] [Gs(P) + GN(P) ]+X1N '(P) Gs(P) —Xls '(P) GN(P)) (23)

and

g ([Xls (P) + Xls (P) ]GN(P) [X1N (P) + X1N (P) ]GS(P)) = 0
P

(24)

In Eq. (20), QBS represents the term derived by Bardeen and Stephen and EQSR is the correction brought in by the SR
theory.
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To proceed further, we use the following form of the single-particle Green's function

G (l') = I/~. —[~k+ &(/~. ) ]p3 ~np 2~2) (25)

Putting this in Eqs. (3)—(7), the various contributions to the self-energy can be obtained by following standard pro-
cedures. 5 8 9 Then using Eqs. (21) and (22) we obtain

-0
O)n

Ass= 227TN(0) $ [(o1 +6 ) —o1 ] 1—
n ~0 (

- 2 + g 2) 1/2

[ I „2 I 2+Uz'
EQsa= —277TN(0) X $ (2!+1)I 1/ 2 2,/

—1 —nT g g (2l+1) +in
n~Ol 0 U„'+2r1' U~'+ I ' '

~ «o/-o gl+U 1+U

(26)

(27)

77N (0)
~/'( I + ~/') +iP(I »/') +i—('

(1+v/ j&')'+—4j/'
(28)

(1+~,' j/ )'—
( I + U/ J/ ) + 4J/

U„=o1„/5„

(29)

(30)

Here, o1„ is the normal-state value of o1„, u/= 77N(0) V~, j/= 27N(0) J1, and N(0) is the one-spin single-particle density of
states at the Fermi level for the conduction electrons in the normal state of the pure host metal. We may remark that in the
AG approximation pl becomes 1 and 60 sR becomes zero. Thus in the AG approximation 0 q ~ = 0 qs.

Knowing the self-energy X(P), the explicit forms of o1„and A„can be written as

OO U (1+U )'
co„=ol „+5o1 z + g ( 2 l + 1 )I 1/

l 0 ql'+ Un'

OO (I+ U2)1/2
/3, „=27T g [X(n —m) —p, '] 2,/2

+ $ (2I +1)1 2/ +U

(31)

(32)

OO U
go1„=vr T g X(n —m) ™2

1+U
(33)

n;

~N(0)
v/(I+u/) —j/ (I+221/)+ J1

(I+» J/ ) +4J/
(34)

where X(n —m) is the electron-phonon interaction parameter and p,
' is the Coulomb pseudopotential. Equations (31) and

(32) can be combined to get the equation for U„:

OO (1+U2)»2
~„+So1„=U„77T $ [r1.(n —m) —p,'], ,/,

— ' $ (21+1)(1—7//2)
ql+U

(35)

where we used

I'1, —I'2/ —— ' (1 —
vr 1')

2~N(o)

Equation (35) shows that U„does not depend on the potential scattering explicitly.
Substituting Eq. (31) and the corresponding expression of o1„ in Eqs. (20), (26), and (27), we obtain

(36)

As /1
= —227TN(0) $ o1„

n~0

I (1+ U )' U ' (1+U )' '
U (1+U )1/2 U

+ 2 + ~QJn

1 1

0 Un
1 + sion

( 2)1/2
1

t

OO 1 2

—n;T g g (2I+1) +ln
n~0l 0 gl + Un 1 + Un

(37)

It may be pointed out that Eq. (27) contained a term pro-
portional to I ~l which depends explicitly on the potential
scattering. This term has canceled out with a contribution
coming from Eq. (26). It means that 0 ss and /3, 0 sa
separately violate the Anderson theorem, ' but the final
result, Eq. (37) conserves the theorem.

For a weak-coupling superconductor with SR impurities,

the quantity Oq ~ is usually calculated by using'

fg
&S-1V= J 0 g

(3g)

where g and 4, respectively, are the BCS interaction con-
stant and the order parameter. It can be shown that the
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above equation gives an expression for Qs ~ which agrees
exactly with the weak-coupling limit of Eq. (37) (i.e. , with

Bco„and 5cuo equal to zero). For a strong-coupling host su-
perconductor, Eq. (37) in conjunction with Eqs. (33) and
(35) must be used.

It is appropriate here to discuss the origin of the differ-
ence between our result and that of Schossmann and
Schachinger. 7 The last term of our Eq. (12) agrees with the
corresponding term in Eq. (16) of Ref. 7 when the loga-
rithmic function is expanded in series. 1n going to Eq. (17),
the authors of Ref. 7 assume that the difference of the
Green's function for the superconducting and the normal
phases AG(=GS —G~) is small and neglect all terms of
third and higher order in AG. No such approximation has

been made in our calculation.
Summarizing, we have derived a formula fEq. (37)l for

calculating the free-energy difference As ~ for a supercon-
ductor containing Shiba-Rusinov impurities. This formula
represents an essential modification of the Bardeen-Stephen
formula. In the weak-coupling approximation our expres-
sion agrees exactly with the one derived by using the alter-
native approach given by Eq. (38). The real strength of Eq.
(37) lies in treating the strong-coupling superconductors
where Eq. (38) is not applicable.
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