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X rays emitted by electrons channeling through a periodically distorted lattice are studied. The lattice

distortion works as a wiggler. The intensity of the radiation due to the resonance scattering of the wiggler

field can be made comparable with that of the channeling radiation.

X rays emitted by electrons and positrons channeling
through crystal lattices constitute an attractive radiation
source. ' They also give us important information on the
properties of crystals. The purpose of this paper is to dis-
cuss the character of x rays produced by electrons or posi-
trons channeling through a distorted lattice. Either static
strain in superlattices or ultrasonic waves can provide the
periodic distortions.

The channeling electrons (or positrons) propagate freely
along the crystal axis or planes, but they are bound in the
perpendicular directions by the potential of the atomic array

a =C(r, ,z') .

We choose z' along the beam propagation, and r q is the
perpendicular position vector. An attractive potential traps
the bound states. The period in z' is the lattice constant in
the undistorted lattice.

We first consider long-wavelength (compared to the lat-
tice constant) phonons of wave number k~=kqrq+k, z'

and frequency ~~. The phonons distort the lattice, and the
atomic sites deviate from their equilibrium positions by
r o cos( k, z

' —co~ t' ) . Radiation from electrons channeling
through this distorted crystal is the focus of this paper.
Although we describe only the case of axia} electron chan-
neling here, the theory will work for positrons and planer
cases as well.

The distorted potential will be represented by Eq. (1) if
r q is replaced by r i —xocos(k, z' —ru~t'), where xo is a
component of r 0 perpendicular to z'. The axial potential,
then, consists of a rapidly oscillating component determined
by the lattice constant and a slowly oscillating component
determined by the phonon wavelength. The rapid oscilla-
tions induce bremsstrahlung upon the passage of electrons.
Since we are interested in the slow oscillations, we will aver-
age the potential over a lattice constant. ' The electron velo-
city v is comparable to the velocity of light c and is much
greater than co~jk, so that the lattice distortions appear to be
almost static. The periodical distortion may also be pro-
duced by a strained-layer superlattice, in which case the dis-
tortion is entirely static, i.e., co~ = 0.

We discuss the problem in the rest frame of the electrons.

H =Ho+Hl+H2
where

(4a)

Ho=
2

+ey@( r g)+H d=Ho+H„d
2m

H~= — p a —eyxo V@( r q) cosg
mc

2eH,=,a a,
2mc

(4b)

(4c)

(4d)

and a and H„,d are the vector potential and the Hamiltonian
of the radiation, respectively.

The time-independent energy,

HolI, nk ) (Ei+lt~k(nk +~) 1 li, nk )

consists of the electron energy E;, and the energy of pho-
tons of wave number k, and the polarization ~ . The fre-
quency of the photons cok equals ck. The perpendicular en-

After the Lorentz transformation, we obtain the scalar po-
tential

C ( r q, z) =y$( r q) —yxo '7@( r q) cos(

and the axial component of the vector potential

W, ( r, ,z) = pe( r, ,z),
where y = (1—p')

p= v/c

and

g=yk, (z —~r) .

The channeling electrons are bound in the potential well y@
and are perturbed by an oscillating potential yxo' Pecos(
at the frequency of co„=yk,v. We should note here that
—Vyxo V@cos( is the electric field seen by the channel-
ing electrons having a straight trajectory. This field is en-
tirely different from the crystal field appearing in solids, and
we call it the distorted lattice field.

The Hamiltonian for our system in the electron rest frame
is written as
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ergy levels of electrons are determined by the attractive po-
tential y@( r ). The vector potential A, given by Eq. (3)
shifts the energy levels in two ways. The azimuthal magnet-
ic field, B=BA,/Br', causes spin-orbit coupling. The aver-
age spin-orbit energy ((e/2mc)a- B) is estimated to be
(ey@)/(Compton wave number x radial scale length of i').
A term (e/mc)p, A, also arises in the Hamiltonian. The
average value of this term is of the order of magnitude
(eye) x (breadth of the beam energy per mean beam ener-
gy in the laboratory frame). These two contributions arising
from A, are small and, therefore, neglected in Eq. (4).

We shall assume that initially the electron is at the state
Ii ) and there is no photon present, i.e., nk = 0. Due to the
perturbations H~ and 02, photons are emitted. The first-
order interaction process is the spontaneous emission of
photons, which is the channeling radiation. ' The photon
emission rate, the number of photons of frequency
(ok QJ(f = (E Ef )/'iI emitted into the solid angle of d 0
per electron per second, is given by

Pf'; dII = ~'ao, l(f Ie. pl() I'dII (6)

where n is the fine-structure constant and ap the Bohr ra-
dius. There are two other first-order processes: the emis-
sion and absorption of the distorted-lattice energy. In these
processes, no photon is created. Ho~ever, the electrons are
efficiently pumped into higher energy levels in the absorp-
tion process.

The scattering of the distorted-lattice field by the channel-
ing electrons also causes emission of photons. Since the in-
teraction energy yxo V$ is very large compared to
(e/mc)p a, it may be as important as the spontaneous
emission of photons. The processes we consider are the ab-
sorption of distorted-lattice field energy followed by the
emission of a photon and the reversed process. The contri-
bution of H2 in Eq. (4) can be neglected because it is the
higher-order process. The transition probability for this
scattering is given by

2 2

ir2 2mc

with the matrix element

e 2~5 (p e.)f.(Vyk). ( (Vy@)f.(p e.).;f'
mC haik „E„—E; t((0„+i50i„(—) E„—E; +ir(oik+ i5oi„;)

where (f);, stands for (i If I, ). The frequency breadth 5(o„; represents the sum of the inverse lifetime of the nth (I/r„)
and ith (I/v. ;) level and the inverse transit time of the electrons through the crystal (1/r, ). We have assumed that the
breadth of the levels due to the finite lifetime is narrower than the separation of the levels, i.e. , 5(o„;« I(o„;I. In the case
of coherent scattering that both initial and final states are in the same energy level, the transition probability has a form

j~ A

p(n) A 1 3 2 2 4 g P ' a)in(Px)ni
0'. QpXp Alkyd

2 n I ((ok + i 5ni)/Qini

(p )i.(p e.).i
I + (~k + (5~nl)/~nl

We have used a relation (yV„Q)o = (E; —E, )(p„)J/if which is derived from the commutation relation [H, , p] =ityV@,
where subscript x stands for the component of the vector in the direction of xp. The spectrum of the photon frequency has
a breadth of 5co„; around the center frequency of co„because of the lifetime effect.

At the low-frequency limit, where cuk (( cu„;, as is the case in Rayleigh scattering, we find

2

P; dQ = n aoxooikir Xoin( [(p' ) en(p(„n)„;+(p„);„(p e )„;] dQ2' n, a
(10)

Note that this photon emission rate is proportional to cok instead of the cuk found in the conventional Rayleigh-scattering for-
mula. This is simply because of the difference in definitions. At the high-frequency limit, where cvk )& ao„;, we obtain the
photon emission rate of Thomson scattering,

2

P; = n aoxo cd/, 'ir g[(p e );„(p„)„;+(p„);„(p e )„;]
2m

This case is analogous to the emission from the free electrons propagating through the wiggler. It is interesting to note that
the Thomson scattering arises from H2 given by Eq. (4d) in the conventional photon scattering theory. 4 In our case of
distorted-lattice field scattering, the second term of the expression of Ht in Eq. (4c) yields the Thomson scattering.

When the frequency of the distorted-lattice field co„matches the energy difference between two levels co„; one can expect
resonance scattering. The photon emission rate for this case is

Pii('~d& = ~ ao oikii
'

I(p ' e ) xo(p )ni/irI dQ2' ace ni
(12)

It is interesting to compare this transition probability to the
probability of spontaneous emission. Equations (6) and
(11) yield

P('/P ' = (oi;/5idn;)'(xo/5;n) (13)

where 6„;'= (p„)„;/ii is approximately the scale length of
the electron wave function in the perpendicular direction. If

I

one takes typical values, '2 e.g. , 5„;= 0.3 A and
co„;/5oi„; = 10, the intensity of emission due to scattering be-
comes comparable to the intensity of spontaneous emission
when xo = 0.03 A. The frequency-matching condition
co„=co„; requires the wave number of the lattice distortion:

kn = omni/yti
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The wavelength of the distortion satisfying this relation

depends on the shape of the potential distribution and the
electron beam energy. For values of y = 10—100, the
wavelength of the distortion falls in a range between a few

hundred and a few thousand angstroms. This value of the
wavelength is a typical period of the superlattice. The
amount of displacement in so-called strained layer superlat-

tice is much larger than the displacement we need, and the
electrons would be dechanneled. Ge„Si~ „-Si superlattice
with x equals a few times 10 ' gives us a right amount of
displacement. GaA1As-GaAs is also suitable for our pur-

pose provided that the positron channeling is employed.

The monochromaticity of the photon is determined by both
the breadth of the energy levels and the finite transit time
of charged particles in the crystal. If the number of periods
of the superlattice exceeds 100, then the breadth due to the
transit time can be neglected. The photons are polarized in

the direction of lattice displacement and are emitted in the
forward direction within a solid angle of y '. Their energy
is A2y'~k in the laboratory frame.
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