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Critical anomalies of vibrational line shape at order-disorder phase transitions
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We study the critical behavior of the line-shape parameters for stretching excitations in dipolar molecular
solids. A theoretical model based on coupled anharmonic oscillators is used, with the assumption of two
discrete orientations of the associated dipole moments. At the phase transition from a disordered into an
antiferroelectric or ferroelectric dipolar configuration, the line shape is predicted to exhibit inflection-point
anomalies with divergent temperature derivatives and universal ratios of the critical amplitudes.

I. INTRODUCTION

The problem of anomalous thermal broadening of vibra-
tional spectra near an order-disorder phase transition in
molecular solids has recently arisen in connection with opti-
cal investigations of alkali cyanide crystals.""* Typically, one
is looking at the high-frequency stretching vibrations of the
CN~™ molecular ions which are spread into a narrow vibra-
tional band under the action of intermolecular forces. In
the orthorhombic paraelectric phase, the ionic electric dipole
moments are randomly oriented either parallel or antiparal-
lel to a crystal axis. At lower temperatures, the dipolar sub-
system undergoes an order-disorder continuous phase tran-
sition (the transition temperature T, is 89 K in KCN and
172 K in NaCN) into an antiferroelectric’ or ferroelectric®
configuration. Due to the anharmonicity of the vibrational
potential, the critical fluctuations of the dipolar electric
fields can be expected to perturb the stretching frequency,
and may thus affect the line shape of the excitation spec-
trum.

The purpose of this Brief Report is (a) to present a
theoretical model of coupled vibrational excitations based on
the physical picture outlined above, and (b) to predict the
type of critical  anomalies occurring in the vibrational
response using the theory of critical phenomena. We will
focus on the one-photon—one-vibrational-exciton (ground to
nth excited state) processes, ignoring the librational and
translational degrees of freedom, which do play an impor-
tant role in the assignment of mode symmetries in optical
spectroscopy, but are irrelevant to the present problem.

II. MODEL SYSTEM

We consider N coupled anharmonic oscillators on a pe-
riodic Bravais lattice, R;=1,2,...,N. The electric dipole
moment of the ith oscillator P; is allowed two discrete
orientations, which are described by a pseudospin S7=S;
= +1. Denoting by x; the stretching coordinates and by p;
the conjugate momenta, we write the vibrational Hamiltoni-
an

XVib=‘1[ E(pi2+w(2)xi2—2cxla)+7l' S O3 duxx; 1
i ij (=i

where wg is the stretching frequency, c¢ the cubic anharmoni-

30

city parameter, and ®; a short-range interoscillator cou-
pling.
The dipolar interaction energy is given by

Hi=—71 3 3 PPif(R)SS; 2)
i j(#i)

where P;=P(x;) is the magnitude of the ith dipole mo-
ment, and f(R;) with R;=|R,— R,| represents the radial
dependence of the long-range dipole-dipole coupling. As-
suming a linear relation between the dipole moment and x;,
say, P(x;)=Po+ (dP/dx)ex;, and introducing J; = P¢ (R;),
Eq. (2) becomes

fdi]:v:f.s_ A EJUSiiji'_ ‘;‘)\2 EJ,:,'S,'S]X,‘X] . (3)
ij ij

Here

#= =4 SIS,

ij

is a rigid Ising Hamiltonian, and the last two terms rep-
resent a vibrational-orientational coupling. The parameter
A= (dP/dx)/Py is of the order of inverse equilibrium oscil-
lator length.

Compared with the stretching vibrations, dipolar reorien-
tation is an extremely slow process.”® Therefore the second
term in (3) can be viewed as the potential energy in a static
force field Fi=\ 3,;J;S:S;. Since the frequency of small-
amplitude anharmonic oscillations is a linear function of the
applied field, cubic anharmonicity provides a mechanism by
which dipolar fields affect the vibrational frequency.

Ignoring for the moment the interoscillator coupling, we
obtain by using elementary second-order perturbation the-
ory the perturbed energy of the nth oscillator level in a field
F,':

E,(F) = (n+3)kwo— 2 (ch/wd) [ (n +5)2+ 5]
—3(n++)(ch/wdF; . 4)

An optical transition involves the energy difference be-
tween the perturbed nth and ground level. Defining an op-
tical transition frequency

w,()=[E,(F)—E(F)1/k ,
we find
wn()=w,— 3ren/wd) 3J;SiSk . %)
k
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with
wn=nwo— 2n(n+1)(c*/wf) .

The last term in (5) plays the role of a random frequency
shift due to dipolar orientations.

Since we focus on optical transitions which involve a sin-
gle vibrational excitation with energy Zw,(i), we can treat
them in terms of excitons within the single-phonon approxi-
mation.® Writing

xi="3 (MynoBn + Mo,Bin)
n

and introducing a new interoscillator coupling ti>,-,-E<I>,,
—)\ZJ,',S,'S,, we obtain a quasiharmonic effective Hamiltoni-
an

Hesr= Eﬁwn(i)BilBin + Iﬂlnol2 E&)UBI:B}II —‘;‘ E‘IUSiSf »
in ot

ijn
(6)

where M,o= (n,i|x;|0,i) is the matrix element for a transi-
tion between the perturbed ground and nth excited state of
the ith oscillator, and B,-: and B;, denote exciton creation
and annihilation operators, respectively, which satisfy the
usual boson commutation relations. The value of M, is
Mio= (#/2w0)Y?+ 0 (c) for n=1, and M,o=0(c) for
n > 1. By assumption, the contributions due to nonlocal
i # j terms are much smaller than the anharmonic part,
thus M, is site independent.

Although the detailed shape of J; will not be essential, it
should be noted that the Fourier transform J, has a max-
imum at some point go= Q/2, where Q is a reciprocal-lattice
vector. The choice Q =0 then corresponds to a ferroelec-
tric, and Q # 0 to an antiferroelectric dipolar arrangement
in the ordered phase, respectively. In view of its long-range
character, J, has a strong directional anisotropy near g =0.1°
In a ferroelectric, the point ¢ =0 coincides with the max-
imum of J,, and thus the anisotropy has a strong influence
on the critical behavior.

III. VIBRATIONAL RESPONSE AND MOMENTS

A periodic external force Ff™'e'“" applied to the jth oscil-
lator induces time-dependent vibrations x;(7) in the system.
The vibrational spectral function is defined as

x(@)= N [ dre 3 (xi(1x(0) (@)
i

where ( ) means a canonical average with respect to the
Hamiltonian (6). The function (7) is simply related to the
cross section for first-order Raman scattering.

Using the relation

xi(T) = E[MnOBI;(T) +M0nBin(T)]
n
and the equations of motion for the exciton operators, we
can rewrite Eq. (7) in the form
X(w)= - Ean ImGn(Z) s (8)
n
where z=w?—wl+ie and a,=2w,|M.ol%%, while G,(z)

represents the vibrational response due to the nth harmonic
process, i.e., one involving a transition between the ground
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and nth excited vibrational states. One has for Stokes

scattering (Fw, >> kgT')
Gi(2)=N"'3([z -V —a,®)7'ly) . 9)
ij
We denote by & an off-diagonal matrix with elements &,
by I the unit matrix, and by V the diagonal matrix

I/U = - BU (6}\0” w,,/w(s)) EJikSiSk .
k

Notice that a;=1+ 0 (¢), while a, > 1=0(c?).

The line shape of the vibrational spectrum (8) will be in-
vestigated by evaluating the frequency moments of G,(z).
The Mth moment is defined as

+o0
pp=—m""! f_m dz' z’MImG,(z' +ie) , (10)

where the integration is along the real axis. From (9) fol-
lows

pu=N"13 (¥ +a,(@—-2\8IS)1M},) | 11
oj

where S is a diagonal matrix Sy =8,S;. Thus we obtain for
the vibrational frequency shift A = u,

A=a,®0—N(Aa,+b, )N 2 3J_,C, , (12a2)
q

and the vibrational linewidth I', defined by I'’= u,— p,%,

2
F2=)\2(>\a,,+b,,)2[N‘2 S 1°C— [N—2 EJ_qu] ] .
q q

(12b)

Here b,=6cnw,/w;, and C,=(S,S_,) represents the
pseudospin two-point correlation function. It should be not-
ed that the results (12) have been obtained without the use
of approximations, and are formally exact for fwo>> kpT.
In the same limit, the correlation functions are determined
solely by the Ising Hamiltonian #%.

IV. CRITICAL BEHAVIOR OF A ANDT

Let us consider the quantities

N2 _ (S, S_g)=—U ; (13a)
q

N2 NS, Sy =W , (13b)
q

which appear in Egs. (12). Obviously, U is equal to the

internal energy per dipole, namely,

U=—3N"' 3J;(S5:85) =N~ ¥) , 14)
15

which is further related to the free energy $= — N ~!InZ,
where Z is the dipolar Ising partition function, via the ther-
modynamic identity U = 0%/908, with 8=1/kzT. Thus

U= —Bhlay/at » (15)

where t = (T — T,.)/T. is the reduced temperature. This re-
lation applies in the critical region, i.e., for |¢| << 1.

To derive a similar relation between W and &% we perform
a Hubbard-Stratonovich transformation!! of the dipolar par-
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tition function in terms of continuous spin variables ¢;:

Z=Qm)"N2p-12 [Hfj: dd>,] exp(—#[¢]) ;
J

Hlpl=+5 3(J " Dybid;— In(2coshe;) . (16)
iJ J

Here D is the determinant and J ~! the inverse of the N x N
matrix .7,75/31,-,. One can easily prove that the spin-
correlation functions transform according to the rule
S;— 3(J " Duds. Thus Eq. (13b) becomes

k

W=B"2% Sdeb-¢) =B 23(s?) . an
q

where the last average is, of course, / independent. Thus W
is related to the composite-operator average (¢?) of field
theory,!? and its critical part is proportional to first deriva-
tive of the free energy,'®i.e.,

W crire a‘gyat . (18)

Therefore, according to (15) and (18), U and W should ex-
hibit the same critical behavior.

For Ising systems with short-range interactions and spatial
dimensionality d < d*, where d* is the marginal dimen-
sionality (d*=4 for short-range coupled systems), renor-
malization-group (RG) approaches suggest that the singular
part of the free energy can be written in the scaling
form12,14

Frng(D) = [t12=F & (n/21"") 19)

where « is the critical exponent for the specific heat, A, is
the crossover exponent for the external field 4, and F + (x)
represents the scaling function with * referring to ¢t =0.
Adding the regular part of % one obtains in zero field

.7=/i'1t+/lizl2—/i i|t|2_a . 20)
It is essential to include the first of these terms, 4 1z, since it
contributes a finite amount to 8.%/8¢ as t — 0. The second
term, which is due to the regular part of the specific heat,
can be ignored in our case. The nonuniversal constants 4 i,
A,, and A + depend on parameters of the model, and can
be, in principle, calculated by the RG approach.!* It should
be mentioned that 4 4+/4_=0.55 at d=3, which is a
universal ratio.'?

It has been argued'> !¢ that antiferroelectric dipolar sys-
tems should exhibit the same critical behavior as short-
range coupled systems of the same dimensionality. The
reason is that the fluctuations which become critical have ¢
vectors near go* 0, and hence the dipolar anisotropy at
g =0 becomes ineffective. Therefore the critical behavior
of the vibrational frequency shift A and linewidth I" for the
case of an antiferroelectric structure can simply be deduced
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from (12), (13), (15), (18), and (20). We find
A(D)=A0)+A4 +t|t]7>, (21a)
[()=r(0)—B+tlt]™= , (21b)

where the indices + and — again refer to t — +0. The am-
plitudes have a universal ratio: 4 +/4 =B ./B_=0.55.

According to Egs. (21) the vibrational line-shape parame-
ters exhibit an inflection-point anomaly as T — T,. Notice
that both A and I' remain finite at 7., however, their
derivatives diverge, e.g., dA/dT« |T—T.|~% Since the
specific-heat exponent is usually rather small (o« =0.12 at
d =3), the predicted singularities are rather weak.

A different situation arises when the ordered structure is
ferroelectric. It is well known that for |¢| << 1, uniaxial di-
polar ferroelectrics and ferromagnets exhibit a quasi-four-
dimensional asymptotic critical behavior,!” i.e., the same as
short-range systems at d =d*=4. RG theories then predict
a modified Landau-type form for the free energy with
mean-field exponents (e.g., «=0) and logarithmic correc-

tion factors:!% 1617

F=A1t+4,*— 4 +Anle| |3+ 0 (nlinlel]) , (2)

with a mean-field ratio 4 +/4 _ =0.25.
Thus the predicted critical behavior of the vibrational
line-shape parameters for ferroelectric systems is,'®

A(D)=A(0) +A4%tlne[1V? (23a)
L(t)=T(0)—B%¢t|mn|e||V? . (23b)
The universal amplitude ratios are now A4/A_ =B}/

B. =0.25.

The same type of critical anomalies can be obtained for
the infrared-absorption linewidths and frequency shifts.

For T > T,, Egs. (21) and (23) agree with similar expres-
sions derived by Meissner and Binder'® and Binder, Meiss-
ner, and Mais'® for the critical behavior of the Debye-Waller
factor near structural phase transitions. Below 7., however,
their results differ in view of an extra contribution due to
the order parameter, which is absent in the present case.

In conclusion, it should be stated that the results (21) and
(23) apply to any transition between the ground and nth ex-
cited vibrational state. In particular, the critical exponents
are n independent, whereas the amplitudes 4 +, etc., and
the limiting values A(0) and I'(0), as well as the spectral
intensities a, [cf. Egs. (8) and (12)], are generally » depen-
dent. A novel feature is the predicted amplitude ratios,
which are always universal, i.e., n independent.
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