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With the use of a new diagrammatic formulation, two coupled integral equations for the self-energy
functions of the f hole and f particle in the asymmetric degenerate Anderson model are solved numerical-

ly. All the diagrams are included in the equations except the cross terms (or the vertex correction). The
results for the spectral density function and the magnetic susceptibility show the scaling property described
by the renormalization-group theory.

We present the numerical results of the spectral density
function for the asymmetric degenerate Anderson impurity
model. '2 Using a new diagrammatic formulation, we have
solved two coupled integral equations4 5 for the f-hole and
f-particle self-energy functions. The scaling property of the
Anderson model described by the renormalization-group
theory (RGT) and scaling theory7 is demonstrated in our
result. The temperature-dependent magnetic susceptibility
is found to be in excellent agreement with the universal
curve obtained by RGT in the Kondo regime.

This is the first time that a diagrammatic method is
shown to give accurate results for the Anderson impurity
model in the Kondo regime. This method and its quantita-
tive results of the spectral density may be generalized and
used to study systems with many Anderson impurities, such
as fluctuating valence compounds, the Kondo lattice sys-
tems, and the heavy-fermion superconductors. On the oth-
er hand, it is extremely difficult to generalize the RGT 9

and the method of Bethe ansatz. '

More than ten years ago Keiter and Kimball5 presented a
Goldstone diagrammatic technique for the Anderson model
with a single impurity. However, there are practical difficul-
ties in the Keiter and Kimball theory. Using the Brillouin-
Wigner equations, they must adopt a very complicated regu-
larization procedure " to avoid accidentally vanishing ener-

gy denominators. To overcome this difficulty, recently we
have revised the approach taken by Keiter and Kimball. 3

Simultaneously, several similar approaches also have been
presented. '2 '4 But the final equations of all these ap-
proaches completely agree with each other. Gunnarsson
and Shonhammer'5 have calculated the spectral density at
zero temperature in the large-%limit.

We consider the asymmetric Anderson model3 4 in the
limit of infinitely large Coulomb interaction fJ. In Ref. 3,
we showed that the partition function is given by

Z " dz e &'

(Zo), ~' 27ri z —S(z)

dz e
2&1 z 6f~ Tin(z 6fm)

where (Zc), is the partition function for the noninteracting

conduction electrons, ~f the energy separation between the
configurations lm) (4f" ', J, m) and l0) (4f",J=O), and
the contour circles all the poles. There are %=2J+1 de-
generate configurations lm). S(z) and T (z) are the self-
energy function of configurations l0) (f hole) and l m ) (f
particle), respectively. They are constructed according to
the Goldstone diagrammatic rule given by Keiter and Kim-
ball. 5 Since [z —S(z)] ' and [z —ef —T (z —~f )1 ' are
analytic everywhere except on the real axis, we shall be only
concerned with z = x —ih, where 6 = 0+. The self-energy
functions 5 and T can be calculated perturbatively in series
of the hybridization energy 5 = gk l

I'k ~l'8(&k —co).
A better way is to use W ' as a small parameter and

make a 1/N expansion. '6 In Ref. 4, we have calculated the
ground-state properties by using a 1/N series of self-energy
functions S and T, The series quickly converges in the
mixed-valence regime where ef is not very negative (the
Fermi energy is set to be zero). As the 1/N expansion is a
perturbative method of summing up diagrams in 1/N order.
It is well known that in the Kondo regime the infrared
divergence cannot be eliminated by this kind of perturbative
approach. The approach described below overcomes this
difficulty.

If we neglect the vertex correction (or the cross terms4)
in the absence of a magnetic field, the self-energy functions
5 and T satisfy the following integral equations:4'

T (z) = — de
t D fe

z+ c+ cf S(z+ E+ Ey)

where 2D is the bandwidth and a flat density of states has
been assumed, For convenience, we take units XA =1 in
this paper.

We have solved the integral equations (1) and (2) numer-
ically and then use the solutions to calculate the magnetic
susceptibility X and the spectral density function
8 (cu ) = Im 6 (co —i 5)/m. Details of the numerical
methods will be given in a future publication. '
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TABLE I. Numerical values associated vvith curves A, 8, C, and D of Fig. 1. Curves B, C, and D are also
in Fig. 2, and curve A in Fig. 3. %'e have taken the unit NA=1. ef Ef and ~& are calculated by Eqs.
(3)-(5). nJ is the occupation number. X is in unit of g psJ(J+ I)/3.

Curve Kg[or Ef]

8
C
D

100
32.9
32.9
32.9

—7.5
—5
—2.5

0

—5.20
—2.09

0.41
2.91

—61
—3.10

0.736
2.29

230
9.14
0.865
0.148

0.906
0.856
0.552
0.292

At zero temperature the integral equations can be
changed to differential equations. One of the differential
equations can be integrated analytically. Taking appropriate
boundary conditions, we obtain an integration constant

aJ+ (1 —N ') InaJ=aJ' (4)

According to RGT, at a temperature T=aJ/o, (where o. is a
constant of order one) the system changes from a free orbi-
tal regime where susceptibility is given by

T /( 2 2) J(J+ 1) N
g pg

to the frozen impurity regime where TX=O. This kind of
temperature dependence of the susceptibility is shown in
curves C and D in Fig. 1. Values of N, ~~, D, etc. , for

For N = 2, ~~ is exactly the scaling invariant described by
Haldane in his scaling theory for J= 2. Just like the pre-

diction from RGT and scaling theory, depending on the
value of e& the solutions of the integral equations can be
classified into two different regimes: the mixed-valence re-
gime where eJ') —1 (Ref. 18) and the Kondo regime
where e& & —1.

In the mixed-valence regime, there is only one solution
E&& for the equation x = ReS(x —/5). At finite temperature
there is also only one solution E for ReT (E —i5) =E .

Ep is always less than E + e&, therefore, the ground state is

a singlet. In the last two rows of Table I, where e~ are posi-
tive, we have listed the values of E +~~—Ep=~~. It is

easy to show that they are in good agreement' with the
scaling equation

curves C and D are listed in Table I. In this regime the
ground-state energy and the magnetic susceptibility at zero
temperature obtained by solving the integral equations are
in excellent agreement with the result of the 1/N expansion
method. 4

In Fig. 2 the spectral density function R (r0) for curves C
and D shows only one peak at ~ = e~, which is always posi-
tive. The peak is rather symmetrical and Lorentzian-like.
The half-width is very close to the value of
ImT (E —I'5) =—(1—nJ)7r/N; nJ is the f-electron occupa-
tion number. The height is only a little less than N/rr'

There is a very very small peak at co =0 in curves C and
D of Fig. 2. This peak occurred due to the approximation
of neglecting the cross terms (or vertex corrections). De-
tails of this analysis will be given elsewhere. '7 The leading
cross term, calculated in Ref. 4, is shown to be negligible
for large N and large bandwidth. Therefore, the physical
quantities calculated from the integral equations should be
very accurate in spite of the approximation of neglecting the
cross terms.

At T=O K, the spectral density R (cu) at co=0 should
satisfy the Friedel sum rule. ' Curves C and D in Fig. 2
disagree with the sum rule. If we ignore the peak at co=0
and just assume a Lorentzian centered at 8& having width
(1 nJ)7r/N, the—n fairly good agreement with the sum rule
at co = 0 is obtained.

For very negative ~y, the system is in the Kondo regime.
At moderate temperature, both functions x —ReS(x —I'5)

and x —eJ —ReT (x —eJ —I'5) have only one root E02 and
E -l ef, respectively, and Ep2) E + e&. The physics is
controlled by the magnetic states

~
I ) . The numerical

results show that the effective ~~, i.e., e& ——E +ay —Ep2,
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FIG. 1. A semllogarithmic plot of [3XT/4J( J+ 1)p, ng21 vs

T/NA. The dots are the universal curve for symmetric Anderson
model by RGT {Ref.6). See Table I for numerical values.

FIG. 2. Spectral density R~{cu)NA for N=6, D/NA =32.9. See
Table I for numerical values.
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satisfies the scaling equation

eI ( I —N ') ln —eI =—ef (5)

The values of ef' for curves A and B in Fig. 1 are listed in
Table I. At a temperature T,tt= ~ef'~/ct, the system changes
from a free orbital regime to the local moment regime
where TX/(g ptt) approaches J(J+ 1)/3, as shown in Fig.
1.

As the temperature decreases below the Kondo tempera-
ture, the function x —ReS(x —i8) has two more roots Eo
and Eo~, where Eo& E +sf(EOI(E02. Since Eo is less
than E +~f, the ground state is the singlet. The moment
has now been quenched. The Kondo temperature T~ is

proportional to Tg —exp(ef') = Dtt ~ le f.
In Fig. 1 curves A and B both show the transition from

local moment regime to the frozen impurity regime at Kon-
do temperature, as described by RGT. The parameters for
curves A and B are listed in Table I. Curve A shows an ex-
cellent agreement with the universal curve6 (dotted line).
The Kondo temperature T~ of the universal curve is deter-
mined by requiring T~X=0.07; therefore, T~=0.002 for
curve A.

In the Kondo regime R (ta) has two peaks. In Fig. 3,
R (t0) is plotted for three different temperatures: (A)
T = 6X 10 4, (A') T = 10, and (A") T = 0.3. Values of
N, ef, and D are given in Table I, curve A. The curve B in

Fig. 2 and the inset in Fig. 3 show a broad peak at
m = Em+ ~f —E02 = ~f' & 0. Its half-width is about
ImS(Ep2 i8) = 7r and the height ts nf/Nn' . The presence
of the very sharp and asymmetric peak near co=0 is the
characteristic of Kondo behavior predicted from scaling
theory. This peak is centered at co = E + ef —Eo, just as the
peak at co=sf for curves C and D in the mixed-valence re-
gime. %hen the peak gets close to ~=0, its width gets
smaller and it becomes asymmetric. The asymmetry is due
to the particle-hole asymmetry of the Hamiltonian. The
half-width of the peak is approximately Ttc7r/N. The line

shape of this peak is essentially determined by the imaginary
part of T (x —i8) for x near E .
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FIG. 3. Central peak of the spectral density R~(co) Nh for N = 2,
D/Nb = 100, ef/NIS —=7.5. Curves A, A', and A" are for
T/»=«10-', 10-', and 0.3, respectively. The inset shows

m(0J) in a wider range.
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Because the peak at co=E +of —Eo is very close to
co=0, the effect of neglecting cross terms exhibited by the
very small unphysical peak at co=0 in curves C and D of
Fig. 2 is not found here. In fact the prediction of Friedel
sum rule, R (0) = 0.11 for curve B in Fig. 2 and
R~(0) =0.2 for curve A in Fig. 3, agree very well with the
numerical results R (0) = 0.11 and 0.21, respectively.

In summary, we have numerically solved two coup1ed in-
tegral equations for the f-hole and f-particle self-energy
functions S(x —i8) and T (x —i8), respectively. The scal-
ing property of the Anderson model is clearly exhibited in
our result of magnetic susceptibility and the spectral density
function.
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