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The hypernetted-chain equations for the momentum distribution n (k) of the S-particle Bose sys-

tem are derived by relating its Fourier transform, the one-particle density matrix n (r), to one of the
three radial distribution functions, g~p(r), in a formally equivalent system of a two-component mix-

ture of Xp ——2 and X =X—l particles in the zero-concentration limit pp-0. The Bose-Einstein
condensate fraction is shown to be proportional to the inverse of gpss(r) at the origin, n, =gyp(0).
When the theory is used to calculate n(k) in the ground state of liquid He, it is found that the
kinetic-energy sum rule required to be satisfied by n (k) is strongly violated unless the elementary di-

agrams are taken into account. This is done using a scaling approximation for the lowest-order ele-

rnentary diagrams by determining scaling factors so that different procedures for calculating the ki-

netic energy give the same result.

I. INTRODUCTION

Fantoni derived a set of coupled hypernetted-chain-type (HNC) integral equations for the one-particle momentum dis-
tribution

n(k)=An(oo)5(k)+p f [n(r) — (n oO)j
'e"''d r,

which is the Fourier transform of the one-particle density matrix

n(i lt —ri i)=
V jd rz d rN40( 1 rz NW0( 1 rz ' rN)

I d rfd rz d r+QQ(rl rz ~

The procedure employed by Fantoni is essentially a gen-
eralization of the usual HNC approach for the radial dis-
tribution function g(r) to sum up all nodal diagrams in
the cluster expansion of n(r). The calculation of the
Bose-Einstein condensate fraction n, = n ( Oo ) is analogous
to the calculation of the chemical potential in the HNC
treatment of classical liquids by Morita and Hiroike. '
The theory was subsequently generalized also for the
temperature-dependent one-particle density matrices both
in the cluster-expansion form as well as within the HNC
scheme of Fantoni. "'

Numerical studies of n, with. the HNC equations using
Jastrow wave functions to describe the ground state of
liquid He lead to results in fairly good agreement with
experiments and with Green's-function Monte Carlo cal-
culations. However, at large k the distribution n(k) is
inaccurate and hence the kinetic energy is too large by a
factor of 3. Also at low temperatures the temperature
dependence of n (k) and n, is given correctly when p=p„
where p, is the superfluid density in the two-fluid model.
At higher temperatures the results based on the Jastrow
ansatz together with the Penrose n-particle density ma-
trix are poor. In particular, one does not find any A, tran-
sition. ' However, this is not due to inefficiency of the
HNC approach in integrating n(r) from the n-particle
density matrix but follows from an inadequacy of the

l

Penrose density matrix to correctly incorporate the de-
pletion of the condensate.

In this paper we follow an approach where n (k) can be
expressed in terms of the radial distribution functions of a
binary mixture, which was first proposed by Reatto and
Chester. A numerical implementation of this theory was
done by Francis et al. using extended Percus-Yevick
equations for a fictitious classical two-component mixture
with the interaction potentials

PV» ———21nf, PV, z
——lnf, PVzz ———,

' lnf, (3)

where f is the Jastrow correlation factor

Qo(I, . . . , X)= g f (r; ) .

The best result obtained by these authors for n, (about
13%) is not far from other calculations.

To our knowledge, the two superficially different ap-
proaches described above have not been compared analyti-
cally nor numerically using wave functions that were
more refined than those accessible to Francis et al. In
this paper, we first show that, in fact, by using the HNC-
mixture formalism that was recently applied successfully
to several other problems, ' ' we can quite easily derive
the HNC equations of Fantoni' for the one-particle densi-
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ty matrix n(r). Surprisingly, the two approaches give a
different expression for the condensate fraction. In Sec.
III we generalize the approach of Sec. II also for the
temperature-dependent Penrose matrix. In Sec. IV we

compare the two formalisms numerically for liquid He in
the pure HNC approach as well as including the elemen-
tary diagram contribution within the so-called scaling ap-
proximation.

II. HNC EQUATIONS FOR n (r) IN THE GROUND STATE

The one-particle density matrix can be written in a Jastrow approximation'

n(rii )=VQA ' f d r2 d r&exp —,
' g u(rij)+ —,

' g u(ri j)+ g u(rJ)
2&j 2&j 2&i &j

where Qn is the normalization factor,

Q„= f d'r, . d'r„exp 'gu(r;;)' . (6)

Reatto and Chester (also see an earlier paper of Penrose and Onsager' ) noticed that the above integral is proportional to
one of the three radial distribution functions of a binary mixture consisting of two particles I 1, 1 j in the bath of N —1

particles t2, . . . , N].
The mixture wave function can be defined as'2'5

QM(1, 2, . . . , N)=exp
N Ep Np N

u«(r; rj )+ g—ujifi(rP rZ~)+ g —g uaj3(r~ r; )—
j=l i =1

where u, u &, and u ji13 are correlations between three different particle pairs and N +N j3 N. The —t—hree different ra-
dial distribution functions associated with these correlations can be defined in a compact form as follows

g p(r ' r j)= f Qjg(1, ~ ~ ~, N)d ri '' d r; id 1';+i 'd 1/id lj'+1 ' '. d rlv,
PaP 11

where

Q11= f CM(1». »)d'ri
and p or pji are the partial densities of the a- or p-type particles.

The one-particle density n (r) can be written in a form that is equivalent to gpji(r) apart from a constant factor A,

n(r„)=Agpp(r„),
after the following identifications have been made:

u«(r) =u (r), upji(r) =0, ua~(r) = —,
'

u (r) .

The constant A is easily calculated to be

(10)

NP(N13 i )

Ppp

dridri. dr&5(r, —ri )exp g u(r; )~ ~ ~

, =gpp(0) .
~ ~ ~dridri dr~exP upp(r» )+ g [up (rij)+up (ri 1)]+ g uaa(re)

2&i&j

(12)

Then, the Bose-Einstein condensate fraction is

n, =n ( oo ) =g pp'(0)gpp( oo ) =g pp'(0)

since g~li( oo ) =1 in the ground state of liquid He.
The three partial structure factors corresponding to the

respective radial distribution functions are' ' '
Sap(k) 6ji (pap@)' f e—'" '[——g j3(r) 1]'d r . —

The HNC equations relating u & and g p,

g ~(r) =exP[u ji(r)+Na~(r)+Eaj3(r)],

are then obtained by summing up all of the possible nodal

l

graphs into N j3 (Ref. 12):

N (ri2) = p f dr3c (ri3)h (r23)

+p~ f dr3C p(1 i3)h p(r23),

Npp(r12) pa f dr3cap(r13)hap(r23)

+pp f dr3cpp(ri3)hpp(r23),

N p(ri2)= p f dr3c p(r13)h (r23)

+p~ f dr3cpp(ri3)h p(r23) ~

Here, we have used an abbreviation

(16a)

(16b)

(16c)
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h P(r) =g p(r) —1 (17) Q(r) is calculated from the equations

and the direct correlation functions c~p are defined as

c~p(r) =g~p(r) —1 N~—p(r) . (18)

%hen we take the zero-concentration limit Xp ——2 or
pp&&p~, the last terms in Eqs. (16) can be dropped. We
now define new quantities that remain finite in the limit

pp=0 as follows (we adapt the notation of Ristig and
Lam for the Fourier transforms of N p, Npp, and c p):

and

Q(k) = —Qi(k)[Qi(k)+Q2(k)]
= —Qi(k)S(k)=g (k)S '(k),

Qp(k) =
Q i (k)[S(k) —1]=g(k)

S(k) —1

S(k)
[S(k)—1]

S(k)

(25)

(26)

N(k)=
q f N (r)e '" 'd r'=N (k),

(2n. ) p

—Q(k)=
~ f Npp(r)e '"''d r

(2ir) p

(19) gpp(r) =exp[ Q(r)—+Epp(r)],

g p(r)=exp[ —,u(r)+Q2(r)+E p(r)],

g (r)=g(r)=exp[u(r)+N(r)+E (r)] .

(28a)

(28c)

c p(k),

Q2(k)=, f N p(r)e '"''d r
(2~)'p

1/2

N p(k),Pa

Pp,

Npp(k),
Pp

Qi(k)= —f c~p(r)e ' 'd r'
(2~)'p

(20)

(21)

(22)

Here, E, E p, and Epp are the elementary diagram con-
tributions, and the function g(k) is defined as

I /2

g(k) =p f [g p(r) 1]e' "—' 'd r = S p(k) .

(29)

These equations are easy to solve by iteration; when g(k)
is solved from Eqs. (26) and (28b), the function Q(r) is
obtained as a single Fourier transform from Eq. (25).
Thereafter, the one-particle momentum distribution can
be calculated from

n(r)= =n, e
gpp"
gpp(0)

where

(23)

where N~p(k), etc. , are defined according to the defini-
tions of S p, etc., in Eq. (14).

The solution of the HNC equations is then very easy
and we obtain the following from Eqs. (10) and (15):

n(k)=Nn 5(k)+n p f —1 e'"''der .g pp(r)

gpp(0)
(30)

The difference between our result and the approach of
Fantoni' is that we calculate n, from Eq. (24), whereas
Fantoni uses the formulas analogous to the calculation of
the chemical potential in a classical liquid to obtain n, .
Fantoni's result is

n, =g pp'(0) =e &"' . (24) n, =exp(2R [f—1]—R [f 1]), —(31)

By keeping only the first terms in Eqs. (16), the function
I

where the function R is given by

R [f—1]=p f [Qi(r) —E p( )]— —f d kg(k)[Q, (k)+2E p(k)]+Ep,
(2m. )'p 2

(32a)

~ [f'—l]=p f [g(r) —1 —N(r) —E..(r)]— —f d'k[S(k) —1][N(k)+2E..(k)]+E. ,
(2ir)'p 2

(32b)

where E and Ep are one-particle elementary structures. These two approaches of calculating n, can be used to check
the accuracy of the approximations employed since the results should agree if all elementary diagrams are included.

III. HNC EQUATIONS FOR n (r) AT FINITE TEMPERATURES

The theory described in Sec. II can easily be generalized also for finite temperatures using the Penrose density ma-
trix ' as an input:

(r', , . . . , r~ ~P ~
ri, . . . , r~) =Q~ go(r'i ~ 6)Po(ri ~ rx)exp —, g [hi(r;, )+hi(r;';)+hi(r;', )+h2(r;,')]

l,J

(33)

Here, go is the ground-state wave function defined in Eq. (4) and the functions hi and hz are obtained in terms of the
Boltzmann factor for the thermal population of elementary excitations in liquid He (Ref. 17):
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h, (r)=— (34a)

(2m. ) p ~o k 1 —x.k
(34b)

Here, a'k =exp[ 13—e(k, T)], e(k, T) is the temperature-dependent excitation spectrum for liquid He, and So(k) is the
ground-state structure factor at T =0.

The one-particle density is then obtained as usual by integrating over all coordinates except for r i and r i
..

nT(rii )=VQ~'(T) f d'r, . d"r„exp —,
' g uT{rij)+ —,

' g uT(riJ)+ g uT(rj) —yr(r» ) (35)
2(J 2(J 2(l (J

where Q~(T) is the normalization factor

Q~(T)= f d ri ' ' ' d r~exp +uT{r(J) {36)
n, =n ( oo )=g pp' (0)gpp( a& ), (40)

I

The final equation is the same as in Sec. II but the Bose-
Einstein condensate fraction is calculated from

The temperature-dependent correlation function uT(r) is
now defined as

uT(r) =uo(r)+2hi(r)+2h2(r)

where gyp( oo ) is now given by

gpp( oo ) =exp[ ——,
' (T/Tp) ],

(41)
k ikr=uo(r)—,d k e'

(2~)3p So(k) 1+Kk
(37)

which reduces to the ground-state correlation function
uo(r) when T =0. yT(r) is the temperature-dependent
correlation between particles at r i and r i (Refs. 5 and 7),

yr(r) =h, (0)—h, (r)

1 ~ sin(kr)1—
(2~) p o kr

1
k dk

So(k)sinh[Pe(k, T)]
(38)

u (r)=uT(r),

upp(r) = —yT(r)=h2(r) —h2(0),

u p(r)=-,'uT(r) .

(39)

which vanishes at T =0, yo(r) =0.
The analysis for nr(r) proceeds in the same manner as

in Sec. III for the ground-state density matrix except that
now the following identifications for the mixture correla-
tion functions must be made:

To ——p(iric) (mc k)

where c is the speed of the sound. This result is in com-
plete agreement with that of Schulz and Ristig. 5

IV. APPLICATION TO THE GROUND STATE
OF LIQUID He

As an application of the mixture formalism, we calcu-
late the. Bose-Einstein condensate fraction n, and the
one-particle momentum distribution n(k) for liquid He
in the ground state including the elementary diagrams.
For the interaction of the two He atoms we use the stan-
dard Lennard- Jones 6-12 potential. The ground-state
correlation function u(r) is obtained by optimizing the
ground-state energy as in Ref. 18. We have used the
parametrized radial distribution functions of Smith
et al. ' as an input to our calculations. The HNC equa-
tions (16) and (28) are solved by using the iterative pro-
cedure of Ng,

' which converges quite rapidly, requiring
only about 20 iterations to obtain the root-mean-square
difference beween the radial distribution functions from
the two successive iterations to be less than 10 . The re-
sults for n, are given in Table I using both Eq. (24) to cal-
culate n, and Fantoni's equation (31). We have also cal-
culated the normalization of n (k), which should satisfy

TABLE I. HNC/0 result for n„ for gk n{k) and for the kinetic energy calculated from n{k) as well as from the Jackson-
Feenberg formula. The condensate fraction n, is calculated from both Eq. (24) (mixture) and Eq. (31) (Fantoni).

p (A-')

0.02185
0.02460
0.02185
0.02280
0.02460

n,

0.066
0.040
0.080
0.064
0.052

Mixture
HNC

n {k)
k (+0)

0.93
0.96
0.92
0.93
0.95

24.9
31.7
23.6
25.6
29.8

0.120
0.083
0.141
0.126
0.102

Fantoni
HNC

n {k)
k(+0)

1.70
2.01
1.60
1.69
1.87

45.5
66.5
41.1
46.6
58.9

14.99
18.53
14.45
15.50
17.69

Input
function

~ HNC

QHNC

+HNCE

~HNCE

~HNCE

I-am and Ristig
(Ref. 6)

n,

0.120
=0.08
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the sum rule

n, =l ——g n(k) .1

N k(~0)
(42)

2
(r12)

(iI )

Also the kinetic energy is obtained from n (k) via the in-
tegral

(T)
N

gk n(k) .
2m

(43)

The kinetic energy in the Jackson-Feenberg form can be
calculated in the Jastrow approxiination from'

Sm p f V u(r)g(r)d r . (44)

It is seen from Table I that our formalism satisfies the
sum rule (42) but that Fantoni's equation does not. In
both approaches the kinetic energies are too large and
especially Fantoni's equation gives 3 times the expected
value for (T).

To remedy the failures of these two theories we must
include the elementary diagrams in both calculations.
This can be done most easily by using the so-called scaling
approximation which was recently found to give rather
good results for the ground energy of liquid He in Jas-
trow approximations. ' '

In this HNCE (hypernetted-chain, elementary) theory,
the elementary diagram functions E p are approximated
by multiplying the lowest-order cont6butions Ea(4p) by ap
propriate scaling factors lr~p.

(b)

E (r, )
(iI)

gc)t

1
(ii )

E
88 (r12)

()I )
12' 13' 23

E p(r) =z~pE~p(r) . (45)

The nonvanishing lowest-order elementary diagrams E~p
in the zero-concentration limit pp-0 are given in Fig.
1(a). The scaling factor E is determined so that the
Jackson-Feenberg (JF) energy functional (44) gives the
same result as the Pandharipande-Bethe (PB) functional'

FIG. 1. (a) Lowest-order elementary diagrams E' ', E'"p, and
Epp. (b) Lowest-order Abe correction for g3. Solid circles carry
a factor p, solid lines are g —1 links, and wavy lines are
g p

—1 links.

TPB 2
2 1

2
3 3

4m p g(riz)t —Viu(riz)+ —,[Viu(riz)] Id riz — p gs(r&z, r13,rz3)Viu(riz) Viu(ri3)d rizd r13 .
8m

(46)

As described recently by Usmani et al. ,
' the three-particle distribution function can be approximated by

g3(riz ri3 rzs)=g(riz)g(ri3)g(rz3)[l+ —'(I+~ )~"'(riz riz, rzs)l (47)

TABLE II. Results in the HNCE-scaling approximation for n„ for gk n(k) and for the kinetic energies. s, s p, and Kpp are the
scaling factors.

p (A-')

Mixture
HNCE scaling

n(k)
k(+0)

n,

Fantoni
HNCE scaling

g n(k)
k(+0)

(T) (T)n K~=K~p= Kpp Input function

0.02185
0.02280
0.02460
0.02185
0.02460

0.139
0.124
0.102
0.117
0.0824

0.86
0.88
0.90
0.88
0.92

13.9
15.0
17.2
14.4
18.0

0.140
0.125
0.101
0.118
0.081

0.87
0.88
0.89
0.89
0.90

14.0
15.1
16.9
14.6
17.8

13.99
14.99
17.07
14.53
17.91

3.36
3.50
3.83
3.50
4.05

~ HNCE

~ HNCE

~ HNCE

&HNC

Q HNC
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2.0-

' ~FANTONI HNC

0.3

Q. 2

~FANTONI H NC

/
GFMC

HNCE ~
HNCE

05
0.)

URE HNC

0.0 I

5
r(A)

0.0

FIG. 2. One-particle density matrix n (r). Solid line is the
HNCE-scaling approximation, dashed line is the HNC/0 ap-
proximation with mixture formalism, and dashed-dotted line is
the HNC/0 approximation with Fantoni's formula. Both the
mixture formalism and Fantoni's formula with the HNCE-
scaling approximation give results that are indistinguishable in
this scale.

FIG. 3. One-particle momentum distribution k n (k). Nota-
tion is the same as in Fig. 2. Open circles are Green s-function
Monte Carlo (GFMC) results and the solid circles are neutron
scattering results from Ref. 21.

where the lowest-order correction to the superposition ap-
proximation A' ' is given in Fig. 1(b). The other two scal-
ing factors a p and ~pp are determined so that the kinetic
energies calculated from the momentum distribution via
Eq. (43) agree with the JF and PB results both when n, is
calculated with our formalism and with Fantoni's formal-
ism. In conclusion, the three different scaling factors ~«,

and ~pp are nearly the same. For example, at
p =0.021 85 A we obtain the following results:

=3.36, ~~p ——3.34, and K p ——3.37. Thus we can use
only one common scaling factor for all three different ele-
mentary diagrams E«, E~p, and EpfI. The results from
the HNCE calculations within the scaling approximation
are given in Table II. In calculations of the R functions
from Eq. (32) we have omitted the one-particle elementary
diagrams E and E~. From the HNCE equations we ob-
tain very good agreement between the two formalisms in
calculating n, . Also for the normalization of n(k) and
for the kinetic energy we now obtain the correct values.
The one-particle density matrix n (r) and the momentum
distribution n (k) are shown in Figs. 2 and 3, respectively.
It is seen that Fantoni s equation violates the normaliza-
tion of n(r), n(r =0)=1, quite severely in the HNC/0
approximation, whereas in our approach n (r) starts from
1. The reason is that our way of calculating n, is in fact
equivalent to this normalization condition. It is also seen
from Tables I and II as well as from Fig. 2 that Fantoni's
formalism for calculating n, is already very accurate at
the HNC/0 level. The reason is obviously because the
two elementary diagram contributions E f3 and E in
Eq. (31) cancel each other very effectively. Also in the
first terms of Eqs. (32a) and (32b) there is a cancellation
since both Q&(k =0) and N(k =0) diverge. Therefore,

the value of n, is mostly determined by integrals of gQ&
and (S—1)¹inmomentum space. Despite this success in
the calculation of n, the kinetic energy is much too large
in that HNC/0 approximation since it is very sensitive to
the tail of n (k) due to the weight factor k in the integral
(43).

V. DISCUSSION AND CONCLUSIONS

We have shown that the HNC integral equation for the
momentum distribution n (k) can be derived very easily
using the HNC mixture formalism. In our mixture equa-
tion at T =0 there are no direct correlations between im-
purity particles upp(r, I )=0, but only indirect correla-
tions mediated by the u-type host particles. The formula
obtained in this way for the Bose-Einstein condensate
fraction n, is different from Fantoni s results. For liquid
He, n, calculated from the mixture formalism is about

30%%uo smaller than the result from Fantoni's equation, but
the one-particle density matrix is correctly normalized,
n (r =0)=1, leading to the somewhat better result for the
kinetic energy when calculated in the pure HNC approxi-
mation. Both formalisms can be made to agree by includ-
ing elementary diagrams within the scaling approxima-
tion. Our final results for n„n (r), and n (k) are in fairly
good agreement with experiment ' ' as well as with
Monte Carlo calculations. ' The Green's-function
Monte Carlo result for n, is 11%, whereas the most re-
cent experiment ' gives n, —= 13%%uo which is close to our re-
sult, which gives n, =14%. The elementary diagram con-
tribution improves the behavior of n(r) especially near
the origin or equivalently the behavior of the tail of n (k),
which leads to a much better agreement with experiment
in these regions than earlier HNC calculations do.
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