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Renormalization-group study of the ferromagnetic Ising model on the triangular lattice
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The dynamic real-space renormalization group of Mazenko and Valls is applied to the zero-field
ferromagnetic Ising model on the triangular lattice. Renormalization equations valid for all tem-
peratures above the critical temperature T, are derived for the susceptibility, specific heat, structure
factor, and correlation length. The magnetization is found for T & T,. The critical exponents and
amplitudes for these quantities are calculated. The agreement between the known static properties
and the renormalization-group results is good to excellent, and shows that this renormalization-
group method can accurately calculate nonuniversal, as well as universal, quantities on different lat-
tices. The computed dynamic structure factor, however, exhibits nonmonotonic behavior as a func-
tion of temperature. This nonmonotonic behavior is conjectured to be due to approximations in
determining the expansion parameters.

I. INTRODUCTION

The renormalization-group method is acknowledged to
be one of the most intuitively appealing and useful ways
of treating systems at their critical point. Largely ig-
nored but implicit in the real-space renormalization group
is its ability to treat the entire phase diagram, not just the
critical point. ' Although there have been calculations of
static properties away from the critical point, most
dynamic renormalization-group treatments obtain only
the critical-point time-rescaling exponent z.

There are two difficulties that must be handled before
the renormalization group can treat general length and
time scales. Both the long- and short-range correlations
must be included in the treatment if the nonsingular
behavior is to be obtained, and long-range couplings in the
renormalized Hamiltonian must be treated or eliminated.
Most formalisms treat only the longest-length scales
correctly and hence derive only the singular behavior at
critical points, where the length scales are infinite.
Mazenko et al. include short-range information by in-

troducing a projection operator to separate the long- from
the short-length scales and treat the short-wavelength
fluctuations by perturbation theory; the critical fluctua-
tions are treated as usual by renormalization.

The long-range spatial correlations in the renormalized
Hamiltonian can be treated by truncation' or Monte Carlo
methods. The long-time correlations lead to a non-
Markovian renormalized spin-flip operator. These nonlo-
cal temporal correlations are more difficult to eliminate
than the nonlocal spatial correlations. They must be elim-
inated, however, since it is not clear whether a non-
Markovian spin-flip operator is in the same universality
class as the original one. In order to eliminate the non-
Markovian effects in the renormalized spin-flip operator
and preserve its form, Mazenko et al. ' introduce an
eigenvalue equation that the renormalization transforma-
tion must satisfy.

Mazenko and Valls find reasonable values for the
equilibrium dynamic structure factor for the two-

dimensional Ising model on the square lattice, both above
and below the critical temperature T, . They also obtain
a good agreement with experimental results for the none-

quilibrium evolution of the time-dependent structure fac-
tor for quenched systems. These good results are ob-
tained from a first-order expansion in the coupling be-

tween cells. In contrast, the low-order cumulant expan-
sions' predict qualitatively the wrong decay of correla-
tions when used away from the critical point.

In this paper, I extend the method of Mazenko and
Valls to the triangular lattice in order to determine wheth-
er their method can accurately determine both universal
and nonuniversal quantities on different lattices. If the
method can accurately obtain lattice-dependent quantities,
then it can also be used to study models with frustration.
These models often have a glass transition where the
length and time scales are not infinite, and hence standard
renormalization-group methods are not appropriate.
Frustration is a lattice-dependent quantity; the nearest-
neighbor Ising model on the square lattice cannot be frus-
trated, while the antiferromagnetic nearest-neighbor cou-
pling on the triangular lattice leads to frustrated triangu-
lar plaquettes.

The calculated results for the static properties of the Is-
ing model on the triangular lattice compare favorably
with known values of both the universal and lattice-
dependent quantities for all temperatures and wavelengths
studied. These good results are obtained from a lowest-
order expansion with the effective parameters determined
with the use of known short-range correlations. The re-
sults of an analogous calculation for the dynamics, al-
though generally reasonable, have qualitatively incorrect
features not found in the results of a similar calculation
on the square lattice. I conjecture that the dynamical re-
cursion relations are more sensitive than the static equa-
tions. The small errors I make in approximating the
time-rescaling parameter (which can be evaluated exactly
on the square lattice) may be the cause of the nonmono-
tonic behavior of the dynamic structure factor which I ob-
tain.
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This paper is organized as follows. In Sec. II, I intro-
duce an expansion in a small intercell coupling parameter,
introduce the renormalization transformation, define the
projection operator which separates long-wavelength from
short-wavelength fluctuations, and obtain the temperature
recursion relation. I use the projection operator to derive
formal recursion relations for static quantities in Sec. III.
The static quantities treated are two- or four-spin-
correlation functions, but the method can be applied to
functions of any number of spins. From the recursion re-
lation for the correlation between any two spins, I calcu-
late the recursion relation for the susceptibility and the
correlation length. The recursion relations for the mag-
netization, a single-spin correlation, and the specific heat,
a four-spin correlation, are also found. In Sec. IV I speci-
fy the parameters appearing in the formal relations, and
obtain numerical results. The results for general tempera-
ture (and various wavelengths for space-dependent aver-
ages) are plotted; in addition, the recursion relations are
analyzed to obtain critical exponents and amplitudes. I
compare the numerical answers with previous results for
the static quantities as a function of temperature and
wavelength. In Sec. V the formalism for the dynamical
correlation functions is presented. I derive the recursion
relations and present the numerical results for space- and
time-dependent spin-correlation functions and the dynam-
ic structure factor, and discuss the numerical difficulties
in Sec. VI. The results are summarized in Sec. VII.

II. FORMALISM

and

Vo(a) = g Oi, aai, a+i
i,a

(2.1b)

Vr(~) g i' a(~i +3s,a+1+iri+3s, a —i

+~i+35 &, a —I+~i +3 5+&,a+I) . (2.1c)

The solid lines in Fig. 1 represent the bonds in the intra-
cell coupling Vo,' the dotted lines represent the bonds
comprising the intercell coupling Vl. I introduce a pa-
rameter A, and rewrite the Hamiltonian as

H (o ) = IKc(~)+~[K —Kc(~)] I Vo(a')

+XIKr(z)+ X[K —Kr(z) ] I Vr(a') (2.2)

The parameter A, measures the strength of the intercellular
coupling; A, = 1 corresponds to isotropic couplings
Kc ——Kr ——K, while at A, =O, Vr does not appear in H. If I
were to expand Kc and Kr in Eq. (2.1a) directly in powers
of 1,, the isotropy condition at A, = 1 would be difficult to
satisfy order by order; in contrast, the Hamiltonian in Eq.
(2.2) automatically becomes isotropic as A, ~1. I expand
Kc(A, ) and Kr(A, ) order by order:

parameter, the Hamiltonian is separated into intracell Ho
and intercell HI contributions:

H(~) =Ho(0 )+Hr(a') =Kc Vo(&)+Kr Vr(0 ), (2.1a)

where

I consider the Ising model on a triangular lattice with
Hamiltonian

H ( o ) =K g o r err,
&~j&

Kc(X)= g Kc~",

Kr(z) = QKrz",

(2.3a)

(2.3b)
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where a factor of —P has been absorbed in the definition
of the coupling constant K and (ij ) indicates that i and j
are neighboring sites. I divide the lattice into cells, each
containing three spins, and introduce vectors i to label the
cell, and vectors 5„a=1,2,3 to label the position of the
spin within the cell (see Fig. 1). The notation cr;, is intro-

duced for the spin at the lattice site i+ 5, .
In order to treat the coupling between cells as a small

Z = g e ' '=Zp[1+A, MC, Nr +0 (A, )], (2.5)

where N is the total number of spins, Zo is the partition
function for uncoupled cells, r is the intracell nearest-
neighbor correlation function

ao"=(a'i, aiTi, a+i ~0=
2 —ao

(2.6)

and obtain the Hamiltonian to first order in A, :

H(a)=Ko Vo(~T)+A[~i Vo(ir)+KoVr(o')] (24)

with ~i K Kp+Ki——. Th—e partition function to first
order in A, can be written as

/
/

/
/

/
/

ly
/

/
/

/ —————e

ap ——tanh(2Kp ) .

H(o)
P(i7) = z =Pp(o)[1+A5Hi(o)+O(A, )]

The equilibrium probability distribution P (a ) is

(2.7)

(2.8a)

FIG. 1. Diagram of the triangular lattice showing the bonds
inside a cell as solid lines and bonds between cells as dotted
lines. Crosses indicate where the renormalized spins are situat-
ed after a renormalization operation.

with

Eo Vo(a)
e

Pp(iT) =
Zo

(2.8b)
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5HI =~I[Vo(o)—~ Vo(0)~o]+KoVI(o) (2.8c)

of T" which satisfies the constraints (2.11) and (2.12) can
be written as

P(p)= QP(o)T(p, o) (2.9)

The renormalization group is implemented by a coarse-
graining transformation T(p, o), which maps operators
on the original lattice onto coarse-grained or renormalized
operators on the new lattice by the relations

T"(p;,o;, ) = —,
' [1+@;P(cr,,)],

where

(2.17)

(2.18a)

(2.18b)

and

A(p)P(p)= QA(o)P(o)T(p, o) . (2.10)

In order that the coarse-grained variable corresponding to
a single spin is also a single spin, I take g to be a weighted
sum of single-spin variables. Isotropy considerations im-

ply that each spin iri the cell must be weighted equally:

In order to preserve the normalization of the probability
distribution on the new lattice,

g T(IJ„cr)=1

must be satisfied. I follow Mazenko and Vallss and intro-

duce the additional requirement

tt(O'i, a ) =n I g +i,a

where

I

[3(1+2r)]'~

(2.19a)

(2.19b)

( T(p, ~)T(IJ',~) ) =&„,„P(p),
where

N'

P~P
J= PgPJ

(2.12)

This condition implies that a single-spin operator on the
original lattice is mapped onto a single-spin operator on
the renormalized lattice. The operator P, defined by

Q T(p„o )[PA (o )]P(o)=A (p)P(p)

PA(o) = g g ' ' A (cr')P(cr'), (2.13)
P(p)

is a projection operator, namely, P =P; this identity is de-
rived with the use of Eq. (2.12). When applied to a func-
tion A (cr), P selects those parts which are mapped onto
the coarse-grained function A (p):

I show in Sec. VI that this choice of g is also appropriate
for the dynamics.

I use the method developed previously ' to find the
first-order contributions to P(o) and T(p, cr). By break-
ing up the calculation of T into first finding its "magni-
tude" and then finding its "direction, " the algebra in-

volved is greatly reduced. I construct

T(p, o)=Tp(p, ,a)+ATI(p, ,o)+0(& )

with the constraint that

Then I construct a rotation which diagonalizes

(2.20)

I find that TI makes no contribution to G to first order
and that the only contribution comes from the first-order
probability distribution:

= g T(IJ„o)A (o)P(cr) .
G(p, p') =5„„P(p)+Ah(p,p, ')+O(A, ) (2.21a)

and

( PA (cr) ) = (A (p) )

(PA(o)p&(~)) =(A(p)&(p)) .

(2.15a)

(2.15b)

To obtain an explicit form for T(p, o) to zeroth order
in A, , I write T in the independent-cell approximation as
follows:

(2.14)

Thus, QA(o)—:(1—P)A(o. ) is the short-range part of
A(cr), which renormalizes to 0. These short-range fluc-
tuations can be treated by perturbative techniques. I note
the further useful identities involving P:

with

and

P(p) =Pp(p)[1+2AvfK(yP](p)+O(A, )],

Pp(p) =( —,
'

)

1/2
I +2r

3

(2.2 lb)

(2.21c)

(2.21d)

(2.21e)

N'

T(p, o ) = g T"(p;,cr;, ) . (2.16)
The coupling characterizing the renormalized probability
distribution is

In the absence of a magnetic field, the most general form K'=2v1XO . (2.22)
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III. STATIC RECURSION RELATIONS

Cia,jb &vari, airj, b &

and its Fourier transform, the static structure factor,

(3.1)

I develop recursion relations for the pair correlation
function

iq (R. —R. )C(q)= —g C e " ib

i,a;j,b
(3.2)

In order to evaluate the long- and short-range parts of
C;, jb, I require Eqs. (2.15) and the coarse-grained opera-
tor II;, jb(p) corresponding to cr;,crib. For T & T, and
hence & cr;, & =0, the relation is

II;, jb ——viji~p, (1 5;;—)+5; i[5, b+r (5, b+ (+5,b, )]+0(A, )

=viPij +5, [5,b'+r(5, b i+5,, b ) —v, ]—+0(X) .

For completeness, I also note that the coarse-grained operator M~, (p) corresponding to o;, is

M;„(P)=vijb;+O(&) .

With the use of projection operators, Eq. (3.1) becomes

Cia,jb &vari, airj, b &
=

& P(ir;, airj, b) &+ & Q(ir;, airj, b ) &

& II ,jb ( ~ ) '& v i C ',j+5i j [5, b +r (5, b + ~ +5a b i ) v', ]—

(3.3)

(3 4)

(3.5)

where a prime indicates that the quantity is defined on the
course-grained lattice. I derive a recursion relation for
C(q) by Fourier transforming Eq. (3.5), and rescaling N
and E.

I

moment p2 of the static correlation function

P2

6X
' (3.10a)

C(q) =vlf (q)C'(q')+ I 1+r [f(q) I]—vif (—q) I,
where

f(q) =1+—', cos(q„)+—', cos(q„/2)cos[(~3/2)q~]

is the cell structure factor, and

q» =(v 3/2)q»+ 2q&

q~ = ——,'q„+(V 3/2)q~ .

where
(3.6)

P2 g Cia,jb( i, a Rj, b )
i,a;j,b

(3.10b)

(3.8a)

(3.8b) p2=9vip2+2viX +2(r —vi) . (3.11)

and d is the nearest-neighbor distance. In order to calcu-
late g, I require a recursion relation for p2. Such a recur-
sion relation follows from Eqs. (3.5) and (3.10b) and a re-
scaling of d and N. The result is

X=3&&X (3.9)

Note that after one renormalization, the x axis is rotated
by 30' (or equivalently 30'+n60') as illustrated in Fig;. 2.
Thus, any vector on the new lattice is related to a vector
on the original lattice by a rotation as well as a rescaling.

The susceptibility X is related to the average over all of
the spins of C;a jb, or equivalently C(q=O). The q~O
limit of Eq. (3.6) yields the recursion relation

In the following, I require the short-range correlation
functions

e(rn, n) =—g &o.~1
(3.12)

where b and c are linearly independent nearest-neighbor
vectors, as shown in Fig. 2. Recursion relations for the
short-range correlation functions of interest are

The correlation length g can be found from the second e(1,0)= ,
' r+ 3 v&e'(1, 0—),

e(3n, 0)=v&e'(n, n),

(3.13a)

(3.13b)

and

e(n, n) = e'(vni, O) . (3.13c)

I derive a recursion relation for the specific heat, de-
fined by

CH g ( &~'~j~k~i &
—&~ ~j & & ~k~i & ) .

(~~), (kI)
(3.14)

FICr. 2. Sketch of the two nearest-neighbor vectors b and c
on both the site lattice and the renormalized cell lattice.

Each spin is temporarily labeled with one subscript for
simplicity. By substituting Eq. (3.3) into Eq. (3.14), the
recursion relation for CH is found to be
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C~ ———,vi(C~ —3)+3+4r —3vi

+ (24—4r —20vi)vie'(1, 0}

+(2+ 10r —12vi )vie'( 1, 1)

+4(r —vi )vie'(2, 0) . (3.15)

IV. DETERMINATION OF THE STATIC PARAMETERS
AND NUMERICAL RESULTS

In order to obtain numerical results from the recursion
relations derived in Sec. III, I specify the lowest-order ex-

pansions of Ec and IC&. These parameters are determined

by ensuring that the pair correlation functions have the
correct short- and long-range behavior. As shown in Ref.
5, most simple cumulant expansions do not predict ex-

ponential decay of spatial correlations for T&T,. In or-
der to guarantee exponential decay, I require that

bE, E»1
E, E((1,

(4.1a)

(4.1b)

e(6n, O) e"(2n, O)

e(3n, O) e"(n, O)
(4.2)

Series expansions of e(n, O} show that the exact solution
E"(E) to Eq. (4.2) satisfies Eq. (4.1}. The fixed point of
Eq. (4.2) should locate the critical point; the exact correla-

tion functions satisfy Eq. (4.2) at K =K"=E, to within

0.2%. Thus, I take the solution to Eq. (4.2) for K"(E) to
be a check on any recursion relation for K'(E).

In order to derive the nonanalytic recursion relation for
K', I define a function p(K) and assume a recursion rela-

tion of the form qr(E') = [q&(K)]". The function

e4E
~(E)=e4x', (4.3)

e +3

where b is the length rescaling factor, equal to V 3 with

the present choice of cell.
On the square lattice, K'(E} was determined by consid-

ering the two-spin-correlation functions for spins in dif-
ferent cells. This procedure cannot be used to derive a
nonanalytic recursion relation, such as E'-E, which is

appropriate for the triangular lattice. I note, however,

that the rescaling factor b for two consecutive renormali-

zations is 3 and hence K" is an analytic function of K.
From Eqs. (3.13b) and (3.13c) I find

e(3n, O) =viv'i e"(n,0),
which implies

If I take Ko E——, I replace bonds of total strength 6K by
bonds of strength 2K. If instead I take the relation
Eii(K) =3E, then I do not change the total strength of the
bonds "felt" by any single spin. These considerations are
consistent with the ideas of Migdal-Kadanoff bond mov-

ing. ' I can ensure the correct magnitude for Kii by re-

quiring that Eq. (3.13a) be satisfied by the exact nearest-
neighbor correlations. Upon solving Eq. (3.13a) for Es, I
find

tanh(2E ) = 2[9@(0,1)—2e'(0, 1)] (4.4)
3+9e(0, 1)+2@'(0,1)

With the exact solution for e(0, 1),"Eq. (4.4) specifies the
function Eii(E). I plot Eii 3K—versus tanhK in Fig. 3
and observe that this quantity remains small for all K.

With K'(K) and the lowest-order expansions of Kc and

Ez determined, I evaluate numerically the static correla-
tion functions from their renormalization equations. The
recursion relation for any particular pair correlation func-
tion can be solved exactly at T =T, . Using the fact that
the nearest-neighbor correlation e(1,0)

~ r ———', , I find the

effective intercellular coupling tanh(2Eii)
~ r ———,", . With

the use of this result I can find all pair correlation func-
tions at the critical point. The numerical values of three
short-range correlations are listed in Table I. It is seen

that this method predicts their value to within 2%.
Stephenson" has found the limiting long-range behavior
of the correlations at the critical point: e(O, r)-A~r
with Ap ——0.66865, and v= 4. Our calculation predicts

e(0,2")=e(0, 1)(vi, )" (4.5)

with Aii
———,

' and v=ln —,", /in& 3=0.228, an error of ap-

proximately 9%. I have also compared the exact results

to the renormalization-group predictions above T, ; the ac-
curacy is similar to that at T, .

The second type of critical behavior associated with
two-spin correlations is the divergence of the pair correla-
tion length defined in Eq. (3.10). Iterating Eqs. (3.9) and

(3.11}I find g-go
~

(u —u, )/u,
~

"with gii ——0.425. Our
choice of the recursion relation for K' implies that the ex-

ponent v is given exactly by the relation

ln(dE'/dE)
~

x.

lnb

0.9

0.8

0.7

0.6

is a reasonable guess based on duality considerations. The
recursion relation obtained with the use of this y satisfies

Eq. (4.1) and agrees well with Eq. (4.2). Hence, I use this
form of y to determine E'(K), which is equivalent to
specifying the lowest-order intercellular coupling Kii [see
Eq. (2.22)].

Once I make a choice of K'(K), I can determine the ef-

fective intracellular coupling Kii. The spins on the origi-
nal lattice each "feel" six bonds of stren th K, while the
same spins feel two bonds of strength ED to lowest order.

0.3

0.2

O. I

00 0.2
I

04
I

0.6
I

0.8
[j

FIG. 3. Plot of 3E —Kp vs u =taahE.

l.o
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e(0,2)

e(0,3)

i~
——0.5882

867 0 5652

289
=0» 5 190

MC and exact

0.5865+0.01'

0.5619"

0.5078

TABLE I. Comparison of renormalization-group (RG) with
Monte Carlo (MC) and exact results for short-range two-spin-
correlation functions at T = T, .

CH

25

20—

IO

l

I
I
I

'Monte Carlo results.
"Reference 19—results are exact to the four digits shown.

1M= 1—
16(1+u )u (1+u)

(4.6)

The magnetization behaves as
P

~cM-D
uc

(4.7)

just below T, . From Eq. (4.6) I obtain D=1.21 and
P=0.125, in comparison to the recursion solution to Eq.
(3.4) which yields D=1.34 and P=0.113. The agreement
away from the critical point is much better. The in-
clusion of symmetry-breaking effects in T (p,o)for.
T (T, should improve the agreement near the critical
point.

The solution to the recursion relation for the specific
heat, Eq. (3.15), is plotted in Fig. 5 and compared to the
series results. ' The exact result for the specific heat has a
logarithmic singularity at T, . The result for the specific

l.0

The only function I study below T, is the magnetiza-
tion. Above T, the magnetization is zero; this fact is
reproduced by the recursion relation, Eq. (3.4). The solu-
tion to Eq. (3.4) is plotted in Fig. 4. For comparison, the
exact result" is

1/8

0
0

l I I

0.05 O. lO 0.l5 0.20 0.25 0.30
U

FIG. 5. Plot of the specific heat vs u=tanhE. Solid line is
the solution to Eq. (3.15) which diverges as

i
( u —u, )/u,

~

Dashed line is the series result (Ref. 12).

heat on the square lattice remains finite at T„giving
a=0 for the critical exponent. On the triangular lattice,
the renormalization group predicts a divergence for the
specific heat with exponent a = ln „,/lnv 3=0.068.
However, a change in the calculated value of the spin re-
scaling vi at T, of 0.92% would give a logarithmic singu-
larity. Despite the fact that the renormalization-group re-
sult diverges faster than the exact result at T„ it remains
smaller than the exact result until it is very near T, . The
overall agreement in Fig. 5 is good for small u (large T),
but only fair near T, .

I now study the behavior of the susceptibility P by
iterating Eq. (3.9) and find that near T„
7-C+ i(u —u, )/u,

i

r with y=1.771 and C+ ——0.9552.
High-temperature series results give C+ ——0.924 21, a
difference of 3%, and the estimate of y differs from the
exact value of —,

'
by 1.2%. A plot of X is shown in Fig. 6

for small values of X; the agreement for larger values of X
is also reasonable due to the accurate values for the criti-
cal exponent and amplitude.

For q&0, the agreement between C(q) found from Eq.
(3.6) and the series results is not as good as for q=0. A

0.8—
30

0.6—
20—

0.4— X lS—

0.2—
IO—

I

0.52 0.54
0 i l l l 1 I

0.26 0.28 0.50
U

FIG. 4. Plot of the magnetization vs u=tanhK. Solid line is
the result of iterating Eq. (3.4) while the dashed line is the exact
solution (Ref. 11).

I I I

0 O.OS O.IO 0.l5 0.20 0.25
U

FIG. 6. Plot of the susceptibility p vs u=tanhK. Solid line
is the solution to Eq. (3.9) while the dashed line is the series re-
sult (Ref. 13).
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A (cr, t) =D A (cr, t) = Q D (cJ,o')A (cr', t), (5.1)

200 where D (o,o ') is the stochastic spin-flip operator, which
can be written in the form

l 50

c(q)
D(cr, o') = ——g A(")oi gert, W;, (o.) .

i,a

(5.2)

l 00

50

0 I I I l

l.00 l.OI I.02 l.05 l.04 l.05 l.06
T/Tc

FIG. 7. Plot of C(q} against T for several fixed values of
q„=q~. Solid lines are the result of iterating Eq. (3.6) while the
dashed lines are the series result (Ref. 13).

plot of the results for C(q) versus tanhE for various
values of q is shown in Fig. 7. The curves compare well
with the series results, ' with the maximum difference
typically less than 10%.

The values derived from the recursion relation for C(q)
are generally the sum of positive and negative contribu-
tions, due to the possibility that f(q) in Eq. (3.7) can be-
come negative. The equivalent function on the square lat-
tice f, = [1—cos(q„)][1—cos(qz )] is always positive.
Thus, all of the terms obtained by iterating the analog of
Eq. (3.6) are of the same sign; the relative error in the fi-
nal answer is the same size as the relative error of the ad-

ditive terms. For the triangular lattice, the relative error
in the final answer can be much larger due to cancellation.
For example, if I start the iteration near T„ the negative
contribution is generally about half the size of the final re-

sult for C(q). Thus, significant cancellation must occur
to achieve the agreement shown in Fig. 7.

In order to study the accuracy of the calculated C(q) at
larger q, where f ( q) is negative and the series are less reli-

able, I have performed Monte Carlo simulations of a lat-
tice of 100 by 100 spins. I discarded the first 100 Monte
Carlo steps for T away from T, and the first 300 Monte
Carlo steps for T near T, . I sampled the system every 5

Monte Carlo steps and measured C(q). For the large q
that I used, widely separated parts of the lattice gave un-

correlated contributions to the average. I was able to ob-

tain reasonable statistics after 7000 Monte Carlo steps.
The renormalization-group solution is accurate to within
10% over the entire range of q and T studied; for exam-

ple, at q„=~/2, q~ =2~/~3, and u =0.2 I found
C (q) =0.437 by the renormalization group and

C(q) =0.41+0.015 in the simulations; at q„=m, q„=3.82,
and u =0.2 I found 0.587 and 0.56+0.02, respectively, for
C(q). Thus, I conclude that the oscillating sign of f(q)
does not affect the accuracy of the static recursion rela-
tions.

V. DYNAMICAL FORMALISM

D (o,o')P(cr') =D(o', o )P (o ), (5.3)

or equivalently,

W;, (cr)
~

W;, (cr)
~

—2E; (cr )=e (5.4)

Note that with regard to E;,(o ), all pairs of neighbors
of the site i,a are equivalent. Thus I can restrict my at-
tention to functions W;, that preserve the equivalence of
each pair of neighbors. I write W;, in the form

W;, (o.)=1+a ri' ca+g2( 3r)c+3a3g( )o (5.5)

where the function cr' is the sum of all neighbors of cr; „
the function g2 is a sum of all pairs of neighbors of o; „
and the function g3 is a sum of all sets of three neighbors
of cr;, Ifind th.at the resulting spin-flip operator

D(o, cr') = ——g A~ "I W( )crr;c, o,', ,
7

i, a

(5.6)

satisfies detailed balance and stationarity if a; satisfies'

a i
————,

' tanh(2K),

a2 ———, tanh (2X),

(5.7a)

(5.7b)

and

The constant a determines the basic spin-flip rate, A("I is
a product of 5 functions

g[i a] 5
cTycT Q b ~ bj,b (~i,a)

which ensures that each term in D changes, at most, one
spin at a time and

E;,=E g crj b
&ia,jb &

(the sum is over the nearest neighbors of the site i,a) is
the energy associated with a spin flip at site i,a. The
function W;, depends only on the spin o;, and its six
nearest neighbors.

The spin-flip operator D must keep the equilibrium
probability distribution constant in time. I only consider
spin-flip operators that obey the stronger condition of de-

tailed balance [which, with the form of D in Eq. (5.2),
implies the above condition on the probability distribu-
tion]

To introduce dynamics, I study the Glauber model, in
which the time evolution of a spin operator is given by a3 ————,'0 tanh (2E) . (5.7c)
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satisfy detailed balance and stationarity order by order in
To expand D I rewrite Eq. (5.5) to distinguish be-

tween products of spins in the same cell and products of
spins in different cells. Equation (5.5) then becomes

(5.8a)

where

Then, D~ is the generalization for the triangular lattice of
the "minimal coupling operator" defined on the square
lattice.

In order to obtain dynamical recursion relations, I must
derive a perturbation expansion of D~ and require D to

I

a ——1 +b10;,0c+b2o;ao.I +c1o.I +c20.Ioc+c3o', +d1o;ao.I +d20;, 0coI +d30i aoc

and

s
~C =i, a+1+~~;a —1 ~

C+I ~i —35a+1,a+1+~i —35a —l,a —1+i+35a, a+1+~i +35a,a —1 ~

n~I i —35a+1,a+1~i+35a, a —1+i —35a+ l, a + 1~i +35a,a+1+~i —35a+ 1,a+1i —35a l, a —1

+ 5a —1'a + 5a'a + 5a —1'a &+ 5a'a+1+ i+35a'a+ &+ 5a'a —i

C
OC =Oi, a+1~i,a —1 ~

T
5a+1' + a —1' + a' + a+1' + a —1' + 5a'

+~i —35a+1'a+1 i +35a,a+1 ~+35a,a —1+ i —35a —l, a —1 i +35a,a+1 i+35a, a —1 '

(5.8b)

(5.8c)

(5.8d)

(5.8e)

(5.8f)

The generalization of the detailed balance condition, Eq.
(5.4), is

W',.(~) I,.=+(,(I, ~,+~,~)=e
W, ((r)

~

(5.9)

Equation (5.9) is equivalent to seven independent condi-
tions involving the eight parameters b;, c;, and d;. An
additional equation is needed to specify the expansion pa-
rameters and guarantee that Eq. (5.8a) reduces to (5.5) in
the isotropic limit. Since I have already statisfied detailed
balance and stationarity, I am free to choose the reason-
able condition that c3 is at least second order in the inter-
cellular coupling. This choice specifies the coefficients to
first order and ensures that E'(K) derived by static and
dynamical methods agrees to that order. I find that bi
contributes to lowest order, and b2 and c2 contribute at
first order. W' becomes, to first order,

D T(p, o)=D„T(p,cr) . (6.1)

In addition, this requirement ensures that D satisfies sta-
tionarity and detailed balance on the renormalized lattice.

To zeroth order, Eq. (6.1) is satisfied by my static
transformation given by Eqs. (2.16) and (2.17) as long as g
is any eigenfunction of the zeroth-order spin-flip operator.
In addition to the expansion of 8' found in Sec. V, I also
introduce an expansion of

a(A, ) =ao+ g a„A," .
n=1

Upon combining both expansions, I obtain the lowest-
order spin-flip operator

I

spin-flip operator D . I avoid these problems by requir-
ing that my coarse-graining operator T(p, o ) satisfy '

1

i,a 1 2 Coi, a C 2 Il, a I + 4 I C~COI

with

(5.10a)

with

i,a
(6.2a)

ai =tanh(2EI ) (5.10b) 0 C S8' a =1— (r;,O,
2 7

(6.2b)

ac =tanh(2ICc) . (5.10c)
The odd eigenfunctions and eigenvalues of D are given in
Table II. The slowest odd mode is

VI. DYNAMICAL RECURSION RELATIONS
AND RESULTS

Given the expansion for D, the formalism for deriving
dynamical recursion relations can be directly applied. ' I
have already ensured that the correlations are short range
in space for T&T„' I must now ensure that the operators
and correlations remain local in time as well. Most
straightforward renormalization procedures lead to nonlo-
cal, non-Markovian contributions to the renormalized

it("(o)=n, g u;.

with eigenvalue 1,("=ao(1—ao). Thus, my previous stat-
ic transformation maps o.;, onto the slowest mode of the
renormalized cell. This property of leaving the slowest
evolving mode in the problem while summing out the fas-
ter modes implies that the T((M, o ) chosen from static con-
siderations is also appropriate for the dynamics. To
lowest order, I find for the renormalized spin-flip opera-
tor
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TABLE II. List of the odd eigenvalues of the zeroth-order spin-flip operator D P,'"'= —AI")PI").

The (b's are defined as ()() ((q) = g, e''i'o; „(()3——ff, o;, .

A, '"'/ap

1 —Qp

(n) N„

3
2+Qp
2 Qp

1/2

1+Qp/2
1 2'

N2 3

1 —Qp
6

2 —Qp

1/2

1+Qp/2
1 4m

N2 3

QpN'2+""
4 2+Qp

1/2
1 —Qp

2 24—Qp

I

D (P,P )=— g AJ I6'P(P(
2

I find that to lowest order

(6.3)

(6.4)

I expand g; in terms of the complete set Ig" I of eigen-
functions of D and again use the projection operators to
derive

4

Ct((jb(t) =v(C J(t')+5;
q g v„(a)v„(b)e ~ ', (6.10)

Tl =2

D'(o, o') =—
i,a

(6.6)

and where W;, if the first-order part of Eq. (5.10). The

averages over the uncoupled probability distribution can

be evaluated to give

D'"(o,o') = — at(1 rac) g A('I„P—~P', , (6.'7)

i,a

where r is defined in Eq. (2.6) and 5,' =35, . There is also

a contribution to D'" which involves n~ times 8" '; this

term can be grouped with D' ', leading to a replacement

of ao by uo+A, ai in the formula for D"'. With the use of
the fact that (1—rac) =3k,'"vi and that P,' = 1, I collect
the zeroth- and first-order terms to find

To find the first-order contribution to the spin-flip

operator, I expand Eq. (6.1) order by order and use Eq.
(2.12) to obtain

D ( r')Pp( )o=(QTp((c;cr)D (o', o')T ( ,pccc))op, (6.6)
a'

with

+v*„(a +1}v„(a), (6.11b)

to'=co/b. , and q' was defined in Eqs. (3.8).
As in the static case, the inhomogeneous term in Eq.

(6.11a) vanishes in the limit q —+0. In the limits q ~0 and
~—+0, I obtain

where the sum runs over all odd eigenfunctions of D ex-

cept for the slowest, v„(a)= (g("'cr;, )o, and t'=6 t where
b, =(z'/a is the time-rescaling factor. Note that since
A,("'& A,

(" for n & 1, the inhomogeneous term in Eq. (6.10)
decays faster than the C'(t') term. The sum in Eq. (6.10)
would include the even eigenfunctions of D as well, but
the v„(a) are zero for those modes.

The Fourier transform of Eq. (6.10) yields the following
recursion relation for C(q, co):

vif(q) ' f.(q)~("'
C(q, to) = C'(q', co')+2 g, ,

(6.11a)
zco +A,

where

f„(q)= —,
' g v*„(a)v„(a)+v*„(a)v„(a+1)

I

D (pr p ) = y &p p'( 1 2ut v 1pl pl +s )—(6.8)
3v)

2

C(0,0)= C'(0,0) . (6.12)

D t
C; zb(t)=((r; e crj b) . (6.9)

The form of the spin-flip operator is preserved to first or-
der, which is seen by comparing Eqs. (5.6) and (6.8). The
recursion relation obtained by equating coefficients,
ut ——2viui, is consistent with Eq. (2.22) to first order.
The rotation taking T to T has no effect on D (P,P') ob-
tained above and hence D =D to first order.

I now consider recursion relations for the dynamical
correlation function

I can use Eq. (6.12) to determine the expansion parameter
ao. I note that ao is related to b by Eq. (6.4) and the for-
mula for X"':

ciao
(1—a()) .

CX

(6.13)

I follow Mazenko and Valls and determine 6 by relating
C(0,0) to memory functions; these in turn are related to
( W;, ). ' One finds that b, is the ratio of characteristic
frequencies: '
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(6.14)
0.5

Included in ( Wi, & are two-spin correlations e(l, l) and
four-spin correlations whose temperature dependence is
not known in closed form. To find these functions I cal-
culate them using the static renormalization group. I de-
fine the functions

0.4

Sl ( +i,a~i, a + i~i, a —limni +35,a —1 &

S2 (vari, atri, a+liri, a —i~i —35 +l,a+1&

S3 ( ~i,a ~i, a + 1 i +35,a + 1~i —35 &,a + 1 &

(6.15a)

(6.15b)

(6.15c)

0.5

0.2

Before the renormalization group is applied to these func-
tions, a further average over all translationally and rota-
tionally equivalent spin configurations should be per-
formed. I find that

O. I

( W;, &
= 1+6a 1 e(0, 1)

+ 12a2[25(0, 1)+2@(1,1)+e(0,2)]

+16a3(6S,+S,+3S3), (6.16)

where al, a2, and a3 are defined in Eqs. (5.7). The recur-
sion relations for the functions in Eqs. (6.15) can be found
as usual by the methods of Sec. III:

Sl 6 [v1$2+r(1+2vl)e'(0, 1)+vlre'(l, l)+r ]

S2 ——, r (1+2v—l)e'(0, 1),
S3 rvle'(0, 1) . ——

(6.17a)

(6.17b)

(6.17c)

The functions e(0, 1) and e(0,2) can be computed exactly;
e(1,1) is obtained from Eq. (3.13c).

I now evaluate the dynamic recursion relations numeri-
cally. I first examine the accuracy of the approximation
for A obtained by substituting the solution of Eqs. (6.17)
into Eq. (6.16). Since there are no exact results published
for the four-spin correlations, I used Monte Carlo simula-
tions to find their values. I was able to obtain a good ac-
curacy for the local-spin correlations with only 500 Monte
Carlo steps since I performed both a space and time aver-
age. Both the Monte Carlo and renormalization-group re-
sults for the functions S3 and S~ are plotted in Fig. 8; the
difference between the results for the two methods is gen-
erally less than 10%. Since the largest errors occur where
the correlations are small, I expect that my calculation
differs from the exact result for ( W;, & by less than 10%.
The result for 6 is plotted in Fig. 9.

Next, I iterate Eq. (6.10) to find the autocorrelation
function C;; (t). In the infinite- T limit, the spins are un-
correlated and

I

0 0.05 O. IO O. I5 0.20 0.25 0.50
U

FIG. 8. Comparison of the values for the four-spin-
correlation functions found by renormalization-group and
Monte Carlo simulation. Dashed line is the result of iterating
Eq. (6.17c) for S3 while the triangles are the Monte Carlo results
for that function. Solid line is the solution to Eq. (6.17a) for S&
and the circles are the corresponding Monte Carlo results. The
size of the symbols is the size of the estimated error in the
Monte Carlo data.

correlation function does begin to decay very slowly, as
shown in Fig. 10.

I now iterate Eqs. (6.11) to find C(q, co). The results
are plotted in Fig. 11, for fixed q. There is no calculation,
known to the author, of the dynamic structure factor for
the Ising model on the triangular lattice. The results are
reasonable for small co; for larger co and T near T„note
that C(q, co) is not a monotonic function of T. For exam-
ple, as u increases from u =0.25 to u =u, =0.2679 ( T de-
creases), C(q, co) initially decreases 30—50% before rising
sharply. As T, is approached, this nonmonotonic
behavior occurs for smaller co.

These nonmonotonic results are probably due to the
sensitivity of Eqs. (6.11) to slight numerical errors rather

I.O

0.8

0.6

0.4

C;, ;,(t) ~ „o——e (6.18) 0.2—
which is plotted as the dotted line in Fig. 10. At lower T,
the correlations decay more slowly, until at T, a long-
time tail should appear. Our results for u=0.01 decay
slightly faster than those given by Eq. (6.18), but they
overshoot by no more than 3%. As T is lowered the

I

0.05
0
0

I I

0.20 0.25 0.50
I

O. I 5
U

FIG. 9. Plot of the time-rescaling factor 6 vs u=tanhK for
T) T@.
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= 0.50

0.25

0

0.25

0.20

0.15

0.10

I
-t---

2 4

of improving the accuracy is to compute the four-spin-
correlation functions using a first-order renormalization-

group calculation. Also, one could take the entire dynam-
ical calculation to one higher order. It was found in the
square lattice calculation that many qualitative deficien-
cies in the results below T, (infinite susceptibility and

negative correlation length) could be eliminated by taking
one more order in the perturbation expansion' as well as

by introducing broken-symmetry effects.

FIG. 10. Plot of the spin autocorrelation function, C;, ;,(tj,
as a function of time; n is a microscopic inverse time scale.
Dotted line is the exact infinite T(u=0) result.

than a fundamental flaw in the method. Near T, it is
necessary to iterate many times to reach sufficiently large
T, such that C(q, co) can be calculated. Upon each itera-
tion, a factor of I/b. in Eq. (6.11a) increases the impor-
tance of any numerical inaccuracy. For a value of T
where the nonmonotonicity occurs, typically ten iterations
are required. An indication of the sensitivity of Eqs.
(6.11) to small numerical errors is that the difference be-
tween using single and double precision on an IBM model
no. 3081 computer to evaluate the iteration can be over
10%. This sensitivity is due to the fact that f(q) can
change sign and that the structure factor is the sum of
positive and negative contributions. Although single pre-
cision is sufficient to calculate the cancellation for the
statics, greater precision is required for the dynamics.
The results for C(q, co) did not change further when qua-
druple precision was used. Hence, numerical precision is
not the cause of the nonmonotonicity but indicates that
Eqs. (6.11) are very sensitive to small errors.

One possible error is in the calculation of b, . One way

IO4

0.10-

0.05-

lOo I

O. I

I

0.2 0.3
M/0

FIG. 11. Plot of the renormalization-group result for the
dynamic structure factor versus frequency for a fixed value of
the wave vector. Behavior for larger co and u is anomalous; the
correlations should increase monotonically with u.

VII. DISCUSSION

I have found that the renormalization-group method of
Mazenko and Valls can be extended to the triangular lat-

tice to give good results for the static properties. The
method yields accurate results for the universal quantities,
such as critical exponents, and also for nonuniversal

(lattice-dependent) quantities, such as amplitudes, on both
the square and triangular lattices. All functions that are

averages of spins can be calculated for all temperatures as

a function of distance or wavelength. While the recursion
relations derived here can be used for T &T„ the in-

clusion of symmetry-breaking (magnetic field) effects
would increase their accuracy. For correlation functions

of a moderate number of spin variables, from which all

thermodynamic functions of interest can be obtained, the
lowest-order recursion relations generated by the methods

used here can be derived easily and provide a relatively ac-
curate value of the function for general temperature and

wavelength.
The results for the dynamics are less clear. The calcu-

lated autocorrelation function exhibits the correct qualita-

tive behavior, and agrees with the known high-

temperature behavior. There are no results known to the
author for the dynamic structure factor C(q, co) for gen-

eral (q, ro), and T to make quantitative comparisons. The
nonmonotonicity in C(q, co) is qualitatively incorrect, but
it is expected that with a more accurate determination of
the expansion parameters the method will give qualitative-

ly correct results for the dynamical quantities for all pa-
rameter values.

Since our real-space renormalization-group method ac-
curately predicts lattice-dependent quantities, it should be
a valuable tool to study frustration, which is a lattice-
dependent phenomenon. For antiferromagnetic coupling
on the square lattice, flipping the sign of alternate spins
maps the problem onto a ferromagnetic coupling of the
same strength; our method predicts this well-known map-

ping. ' On the triangular lattice, however, there is no
such mapping, since each elementary triangular plaquette
is "frustrated" by antiferromagnetic couplings and the
ground state is infinitely degenerate. The application of
the methods used here to the antiferromagnetic Ising
model on the triangular lattice should yield important in-

sights into the dynamics of frustration in such models.
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