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We consider a system of Ising spins on a semi-infinite triangular lattice with nearest-neighbor
coupling constants that depend on the distance m from the boundary. An exact technique for calcu-
lating the boundary magnetization and the boundary pair correlation function is described. It relies
on repeated application of a mapping based on the star-triangle transformation. The case of cou-
pling constants that differ from the bulk coupling by an amount Am ~ for large m is examined in
detail. For y & 1 the inhomogeneity of the couplings leads to an interesting variety of modifications
in the boundary critical behavior. For y=1, A & A, (A, being a positive critical value), and for

y & 1, A & 0, there is a spontaneous surface magnetization at the bulk critical temperature.

I. INTRODUCTION sufficiently close to the bulk critical temperature. In this
paper we obtain exact results for ferromagnetic K;(m)
that vary asymptotically as

The critical behavior we describe below is entirely deter-
mined by this asymptotic form, i.e., is independent of the
m dependence of K;(m) for smaller m, as long as all the
K;(m) are finite, which we assume to be the case.

Since the dimensionless K;(m) are defined by
K;=J;Ik Tii, the m dependence of Eq. (1.1) could arise
from an inhomogeneous temperature or from inhomo-
geneous interaction constants J;. The latter could con-
ceivably result from surface-induced elastic deformations
of the lattice in a real system.

As the exponent y is reduced in Eq. (1.1), the inhomo-
geneity of the coupling constants penetrates deeper into

FIG. 1. Initial triangular lattice (solid lines) with coupling
constants Ki(m), m = 2, 2, . . . , and K2(m), m =1,2, . . . .
Intermediate hexagonal lattice (dotted lines) with couplings
p&(m), m =1,2, . . . , and p2(m), m = 2, 2, . . . . New triangu-

lar lattice (dashed lines).

The boundary critical behavior of the two-dimensional
Ising model with free surfaces and with homogeneous
nearest-neighbor interactions has been discussed
comprehensively by McCoy and Wu. ' The boundary
spins exhibit "ordinary" surface critical behavior, i.e.,
they order at the bulk critical temperature T, . The sur-
face critical behavior is characterized by critical ex-
ponents that differ, in general, from the bulk critical ex-
ponents. For example, the boundary magnetization m i

vanishes as ( T, —T)'i as T approaches T, from below,
whereas the bulk magnetization varies as ( T, —T)'i . At
T = T, the pair correlation function gii(r) of surface spins
separated by r falls off as r ' for large r, while the bulk
correlation function decays as r

The ordinary surface transition is driven by the bulk
transition and is insensitive to modifications in the surface
coupling strengths. Au- Yang has obtained exact results
for the two-dimensional Ising model with distinct surface
and bulk couplings Jii and Jz, respectively. She finds
that the amplitudes of quantities such as the surface mag-
netization depend on JIi, but the surface critical exponents
do not. Owing to the one-dimensional nature of the sur-
face, there is ordinary surface critical behavior for any
finite Jii. However, in the Ising model with a bulk dimen-
sion greater than 2, there are "surface, " "special, " and
"extraordinary" transitions for appropriately enhanced
surface couplings.

In this paper we consider a semi-infinite system of Ising
spins on a triangular lattice with nearest-neighbor cou-
plings Ki (m), m = —,, —,, . . . and K2(m), m = 1,2, . . . (see
Fig. 1) that depend on the distance m from the surface.
We are particularly interested in the case of couplings that
differ from the bulk couplings KiI3,K2~ at considerable
distances from the surface. If the difference K; (m) Kal, —
i = 1,2 vanishes for m ) I, where l is a finite penetration
depth, ordinary critical behavior is expected, since I is
negligible in comparison with the bulk correlation length
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the system. We shall see that for y &1 there is ordinary
surface critical behavior with the same critical exponents
as in the homogeneous semi-infinite case A =0. For y & 1

the inhomogeneous couplings produce a variety of in-

teresting modifications in the behavior at the boundary.
In particular, for y = 1, A & A, ( A, being a positive criti-
cal value) and for y & 1, A & 0, there is a spontaneous sur-

face magnetization at the bulk critical temperature T,
that vanishes for T~ T, . When y =1, the pair correla-
tion function g~~(r) of the surface spins decays with a
nonuniversal 3-dependent exponent g~~. For y &1, there
is an anomalous exponential decay of the form

exp[ —(r/g~~)' ] at bulk criticality for either sign of A.
This paper gives a detailed account of work that has al-

ready been reported in short communications. Hilhorst
and van Leeuwen showed how to calculate g~~(r) in the
case of m-dependent couplings with the help of a map-

ping based on the star-triangle transformation. They ob-

tained exact results for the case A &0. Burkhardt and

Guim extended the same approach to 3 ~0. Blote and
Hilhorst have examined the case y =1 more thoroughly
using a Pfaffian method, described and applied to the case
of random K;(m) in Ref. 1.

Burkhardt and Cordery have shown that the exact Is-
ing results are compatible with simple scaling or
renormalization-group arguments that are applicable to
any semi-infinite system with a divergent bulk correlation
length. The scaling theory predicts that inhomogeneous
couplings with the m dependence of Eq. (1.1) modify the
surface critical behavior for y & v ', where v is the usual
bulk critical exponent, but not for y & v

The paper is organized as follows. In Sec. II the star-
triangle method for calculating the boundary magnetiza-
tion and pair correlation function is described. The
method is applicable, in principle, to K;(m) with an arbi-
trary m dependence. In Sec. III exact results are obtained
for K;(m) with the asymptotic form given in Eq. (1.1).
The Ising results are summarized and compared with the
predictions of the scaling or renormalization-group theory
in Sec. IV. A brief account of the scaling theory is given
in Appendix A. The reader who is primarily interested in
a summary of the Ising results may proceed directly to
Sec. IV.

from an infinite sequence of mappings.
The star-triangle mapping we use is quite similar to the

mapping on which the exact differential renormalization-
group transformation of Hilhorst, Schick, and van
Leeuwen' for the two-dimensional Ising model is based.
However, in the application considered here, the transfor-
mation does not reduce the number of spins, nor is there a
rescaling of lengths.

The star-triangle transformation replaces a star of four
Ising spins (see Fig. 2) with nearest-neighbor couplings

p&,p2,p3 by a triangle of three Ising spins with couplings
E ] E2 E3 The relationship between the E 's and p 's,
which follows from a simple decimation or dedecoration
of the central spin of the star, is given by

cosh(p 1 +p 2 +p 3 )cosh( —p 1 +p 2 +p 3 )
E) ——

4
ln-

cosh(p t p2+p—3 )cosh(p & +p2 —p3 )
(2.1)

and its cylic permutations in the indices 1,2,3. In the ap-
plication of this paper (see Fig. 1), K2 K3 and——p2 ——p3.
Thus Eq. (2.1) implies

Kg F;(p),p——2), i =1,2

Fi(pi p2) =
~ »[cosh(pi+2p2)

X cosh(p, —
2p2 ) /cosh p 1 ],

F2(p~,p2) = —,
'

In[cosh(p&+2p2)/cosh(p~ —2p2)] .

(2.2a)

(2.2b)

(2.2c)

To map the semi-infinite triangular lattice of spins with
couplings K;(m, n) onto a similar system with couplings
K;(m, n +1), we first replace all the right-pointing trian-
gles of system n by stars. Labeling the K;(m, n) and the
couplings p;(m, n) of the resulting hexagonal lattice as in
Fig. 1, one sees that

K&(m, n)=F&(p&(m+ —,',n), p2(m, n)), m = —,', —', , . . .

(2.3a)

K2(m, n)=F2(p)(m, n),p2(m ——,',n)), m =1,2, . . . .

(2.3b)

II. METHOD OF CALCULATION

A. Difference equations for the coupling constants

We now describe a method for calculating the boundary
magnetization and the boundary pair correlation function
of the Ising system represented in Fig. 1, where the
nearest-neighbor couplings K~(m) and K2(m) are arbi-
trary functions of the distance m from the surface. The
method utilizes an exact mapping, based on the star-
triangle transformation, that replaces a semi-infinite tri-
angular lattice of Ising spins with coupling constants
K&(m, n) and K2(m, n) by a similar system with
transformed coupling constants K&(m, n + 1) and
K2(m, n +1). The boundary magnetization and boundary
pair correlation functions of the nth and ( n + 1)st systems
satisfy simple recurrence relations. One can calculate
these quantities for the initial system of interest (n =0)

FICr. 2. Star-triangle transformation. The three spins (dots)
at the tips of the star are coupled to the central spin with cou-
pling constants p~,p2,p3. Eliminating the central spin leads to
interactions E&,E2,K3, given by Eq. (2.1), between the three
remaining spins.
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Next, we replace the left-pointing stars of the hexagonal
lattice by triangles. Using the same labeling scheme for
the couplings K;(m, n + 1) of the resulting triangular lat-
tice as for the original triangular lattice, we find

Xg ——Yg (2.10)

B. Boundary magnetization and pair correlation function

K&( , ,n—+1)=F&(0, p2( —,', n) ),
K~(m, n +1)=F&(p&(m ——,', n), p2(m, n)),

3 5m= 2727. . .

Kq(m, n +1)=F2(p&(m, n), p2(m + —, ,n)),

(2.4a)

(2.4b)

The boundary magnetization m~(n) and the boundary
pair correlation g~~(r, n) of the system with coupling con-
stants K;(m, n) are defined by

(2.11a)

(2.11b)

Pl 1727 ~ ~ ~ ~ (2.4c)

Difference equations giving the K; (m, n + 1) in terms of
the K;(m, n) may be obtained by eliminating the p; from
Eqs. (2.3) and (2.4). The introduction of alternate vari-
ables,

X=exp( —4K~ ), Y=sinh (2K2),

C) ——cosh p), C2 ——cosh (2p2),

(2.5)

(2.6)

1 —X+Y 1+Y
1 —X X (2.7b)

The difference equations relating the coupling constants
of the nth and ( n + 1)st triangular lattices are given by

X( ,', n +1)—=X(—,',n)/[1+ Y(l,n)],
X(m, n +1)=[1—X(m —l, n)

(2.8a)

greatly simplifies the derivation. In terms of these vari-
ables the star-triangle transformation given in Eqs. (2.2)
has the purely rational form

C1 C2 —C1 —C2+1X= Y= (2.7a)
C1+C2 —1

'
C1+C2 —1

with inverse transformation

where oo and o., are boundary spin variables (that take the
values +1) separated by r lattice constants. The transfor-
mation equations

m~(n)=[1 —e ' ' ]'~ m, (n+1),
—4K ) ( 1/2, n + 1 )

]g~~ r, n =4 —e

X [g~~(r + l, n + I )+2g~~(r, n + 1)

+g~~(r —l, n +1)], r ) 1

(2.12a)

(2.12b)

under the mapping of Eqs. (2.8) follow from a straightfor-
ward derivation.

The thermal averages of interior spins (as opposed to
boundary spins) have considerably more complicated
transformation properties. The mapping replaces each in-

terior spin in a thermal average by triple-spin as well as
single-spin terms. Each mapping generates correlation
functions of larger numbers of spins, and the methods of
this paper are no longer applicable.

Useful expressions for the boundary magnetization
m

&
——m

& (0) and the boundary pair correlation function
g~~(r)=g~~(r, O) of the initial system may be obtained by
iterating Eqs. (2.12) with the boundary condition

g~~(O, n) =1—m &(n). These read

+ Y(m ——,, n)]X(m, n)/D(m, n), m&
——lim [f(n)]' m~(n)=+[f(oo)]'~ (2.13a)

Y(m, n + 1)= [1—X(m + —,, n)

m = —,, —,, . . . (2.8b) r 2n
g~~(r)= g 4 "— f(n)[1—m~(n)],

n=1
(2.13b)

+ Y(m + l, n)] Y(m, n)/D(m + —, ,n),

m =1,2, . . . (2.8c)

n

f(n)=Q [1—X( —,,j)],
j=1

(2.13c)

where

D(m, n) =1—X(m —l, n)+ Y(m + , ,n)—
+X(m, n) Y(m ——,', n)

—X(m —l, n) Y(m + —,',n) . (2.8d)

exp(2K»)sinh(2K») =1, (2.9)

which in terms of the variables X and Y of Eqs. (2.5)
takes the form

In this paper we study the influence of smoothly inho-
mogeneous couplings as given by Eq. (1.1) on the boun-
dary critical behavior at the bulk critical temperature, i.e.,
the K;z of Eq. (1.1) satisfy the bulk criticality condition"

A derivation of Eq. (2.13b) is given in Appendix B. In
writing the limit in Eq. (2.13a) as +[f(~)]'~, we have
set m

& ( ao ) = + 1, since a nonvanishing f ( ~ ) requires

X( —,, n)=exp[ 4K&( —,',n)]~0 —as n~ao .

Equations (2.13) completely determine m~ and g~~(r) in
terms of the sequence of X( —,', n) generated by repeated
mappings.

If the initial couplings are given by Eq. (1.1) with criti-
cal bulk couplings K;~, the quantity X ( —,, n ) tends
smoothly to zero in the limit n —+ oo, as discussed below.
The asymptotic form of X( —,', n) for large n reveals
whether or not the boundary magnetization vanishes. It is
useful to rewrite Eq. (2.13a) as

ln
~

m~
~

= —,'lnf(no) —
~ I dn X( —,,n), (2.14)

0
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n2

F(nz, n& ) =exp — dj X( —,',j)
n&

(2.15a)

(2.15b)

These expressions follow from Eqs. (2.13) upon replacing
sums by integrals and rewriting the binomial coefficients
using Stirling s approximation. The quantity no in Eq.
(2.15a) is a finite cutoff, on which the critical exponents
and correlation length of

g~ ~(r) do not depend.

C. Differential equations for the coupling constants

When the difference equations (2.8) are iterated numeri-
cally with initial coupling constants that vary with m ac-
cording to Eq. (1.1) and approach bulk critical couplings
for large n, both X(m, n) and Y(m, n) tend asymptotically
to zero for fixed m in the large-n limit. For large n,
X(m, n) and Y(m, n) increase smoothly and monotonical-
ly with m and approach the bulk critical values X~ ——Y~
asymptotically for large m. In the case of X(m, n) and
Y(m, n) which vary sufficiently slowly with I and n, the
difference equations (2.8) may be replaced by the differen-
tial equations

8 lnX( —,', n) = —[1+Y( i,n)] 'Y(l, n),
Bn

(2.16a)

where np is sufficiently large that in[1 —X( 2,n)] may be

replaced by —X( —,', n) and the sum over n by an integral.
From Eq. (2.14) it is clear that m

&

——0 unless the integral
converges, i.e., unless X( 2,n) tends toward zero faster
than n ' as n approaches infinity.

The asymptotic form of X(—,', n) for large n also deter-
mines the behavior of g~~(r) for large r. This behavior
may be conveniently calculated from the formulas

00 —3/2 —p2gng~~(r)-r dn n e " "F(n,np)[1 —I'( oo, n)],

u =2(XY)'~ /(1+ Y), v =2(1—X+ Y)'~ /(1+ Y) .

(2.18)

The inverse transformation, which is double valued, as
discussed below, is given by

2 2u(v +Q ) (2.19a)
2vQ

Yl /2 g /

Q (u, v) = [1——,
'

(v —u) ]' +[1——,
'

(v +u) ]'i
(2.19b)

(2.19c)

Thus the original couplings K~ and K2 are related to u

and v by

exp( —2K~ ) = u(v +Q )

2vg

sinh(2K2) =Q/v .

(2.20a)

(2.20b)

Before proceeding, we note that the domain of fer-
romagnetic couplings, E] )0 and X2 )0, is mapped via
Eqs. (2.5) onto the strip 0&X& 1 and Y&0. The critical
line of Eq. (2.9), which corresponds to X = Y, divides the
strip into a region X & Y of subcritical couplings ( T & T, )

and a region X& Y of supercritical couplings. This is
summarized in Fig. 3.

Equations (2.18) map both the subcritical and supercrit-
ical domains of ferromagnetic couplings onto a triangle in
the u, v plane with sides along the lines u =0, u =v, and
u+v =2 as shown in Fig. 3. The critical line corre-
sponds to the side u +v =2. The double-valued property
of the inverse mapping (2.19) stems from the + sign in
Eq. (2.19c). The upper and lower signs correspond to cou-
plings on the weak-coupling ( T & T, ) and strong-coupling
(T& T, ) sides of the critical line, respectively. The vari-

= —(1—X+Y)
—' Y +(1—X)

dn Bm Bm
(2.16b)

ainY „,, „,aX aY
dn Bm Bm

(2.16c)

To determine the asymptotic behavior of X( —,', n) for
large n, we exactly solve the coupled nonlinear flow equa-
tions (2.16b) and (2.16c), with boundary condition (2.16a)
and with initial couplings given by Eq. (1.1). Equations
(2.16b) and (2.16c) are translationally invariant in m and
n, i.e., if X(m, n) and Y(m, n) solve the equations,
X(m —mp, n —np) and Y(m —mp n —np) do also. The
constant n p may be chosen arbitrarily, but mp is fixed by
Eq. (2.16a). Having obtained an explicit solution to the
differential flow equations, we will argue that it also satis-
fies the difference equations (2.8) in the large nlimit. -

The partial differential equations (2.16b) and (2.16c) as-
sume the much simpler form

Bu BU BU Bu
u =v, u =U

Bm Bn
'

Bm Bn

in terms of the variables

(2.17)
FIG. 3. Domains of the variables K&,E2, X, F and u, U, as

discussed below Eqs. (2.20). The solid lines indicate the critical
line. The dashed lines separate regions with K~ & 0 and IC~ & 0.
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ables u and U have an interesting duality property' that
we do not utilize.

In seeking a solution of the nonlinear partial differen-
tial equations (2.17), it is advantageous to perform the
hodograph transformation, ' i.e., we regard u and U rather
than m and n as the independent variables. This results
in the equivalent pair of equations

am an am an
(2.21)

which are linear in m and n and readily soluble by separa-
tion of variables. The solutions involve (modified) Bessel
functions I„,E„, n =0, 1. We consider superpositions of
the form

m =mp+ u I dp[wi(p)Ii (pu )Ip(pu)+ w2(p)Ii (pu )ECp(pu ) + w3(p)ICi (pu )Ip(pu) +w4(p)E& (pu)Kp(pu)]

n =np+v I dp[wi(p)Ip(pu)Ii(pu) —w2(p)Ip(pu)Ei(pu) w3—(p)Ep(pu)Ii(pu)+w4(p)ICp(pu)E, (pv)] .
0

(2.22a)

(2.22b)

Here, mp and np are constants, and wi(p), . . . , w4(p) are
weight functions. These quantities are determined in the
next section.

The appropriate boundary conditions to be imposed on
the solution (2.22) to the differential flow equations follow
from the original difference equations (2.8). The differ-
ence equations determine all the X(m, n) and Y(m, n)
from the initial values X(m, O) and Y(m, O). The dif-
ferential equations (2.21) follow from Eqs. (2.8b) and
(2.8c) and must be supplemented by the surface boundary
condition (2.16a), which follows from Eq. (2.8a). The dif-
ferential equations (2.21) and the boundary condition
(2.16a) determine u(m, n) and u(m, n) for all m, n from
the initial values u (m, O) and U(m, O).

III. SURFACE CRITICAL BEHAVIOR

X(m ——,',0)= Y(m, O)=X&, m =1,2, . . .

corresponding to Eq. (1.1) with A;=0. The couplings
generated from these initial values (with X~ ———,', corre-

sponding to Ei~ E2~ —,'ln3) b——y n =——500 computer ap-
plications of the mapping of Eqs. (2.8) are shown in Fig.
4. The couplings are no longer homogeneous everywhere,
but the criticality condition X = Y is still satisfied locally,
i.e., the points representing X and Y lie on a single curve.

For m & n the coupling constants have not yet been af-
fected by the surface-induced inhomogeneity, which
penetrates one layer deeper with each iteration, and still
have the value X~ ———,. For —,'n &m &n, X and Y are
practically indistinguishable from —,', and for m & —,

'
n, X

and Y lie very close to the straight line X=Y=m/n.
For other initial couplings Xz in the ferromagnetic
domain 0&X& &1 similar results are obtained. After
many iterations the numerical results correspond closely
to the analytical expression

m/n, m/n &XiiX=Y= (3.1)Xz, m/n ~X~

A. Homogeneous couplings

Before considering the surface critical behavior for
smoothly inhomogeneous couplings, we discuss the case
of homogeneous initial couplings that satisfy the bulk cri-
ticality condition (2.10), i.e.,

These computer results point the way toward a particu-
lar class of analytical solutions of the differential flow
equations (2.16). The subspace X = Y, in which the criti-
cality condition is satisfied locally, is clearly an invariant
subspace of the equations. In this subspace Eqs. (2.16)
take the form

8lnX( 2, n) = —[1+X(l, n)] 'X( l, n),
Bn

a 1~
Bn

BX
Bm

(3.2a)

(3.2b)

X, Y

04—
m= —n

3

~ ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 +
04

e
0

0

0.2-

0

I0
0~

0
0

0
0

0
0

0~
0~

I

50
I

100
I

150 200
m

FIG. 4. X and Y (open and solid circles, respectively) after
500 iterations of the difference equations (2.8) with initially

homogeneous couplings X = Y = —,.

One may readily verify that Eq. (3.1) does indeed solve
Eq. (3.2b). A more general solution may be obtained by
replacing m and n by m —m0 and n —no, respectively, as
discussed below Eq. (2.16). However, boundary condition
(3.2a) clearly requires mp ——0 for large fixed n This va. lue
of mp is compatible with the numerical results shown in
Fig. 4.

One may verify that the slanted portion X = Y=m/n
of the critical similarity solution satisfies the difference
equations (2.8) for large n, as well as the differential equa-
tions (2.16). The matching of the slanted and horizontal
branches at m/n =X~ can also be studied analytically
with the difference equations. The flow equations (3.2)
imply that the result X=Y=m/n in the limit of fixed
m, n —+ (x holds quite generally if the initial couplings are
locally critical and vary sufficiently smoothly with m.
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To see this, we solve Eqs. (3.2) as follows. Regarding
m as the dependent variable rather than X, we rewrite Eq.
(3.2b) as

0+1/2 ~"a

XIp(pu )[Ki (pvii )I i (pv ) —Ii (pvg )K i (pv )] .
Bm
Bn

(3.3) (3.6b}

which has the general solution

m = nX+F (X) . (3.4)

B. Smoothly inhomogeneous couplings

The function F(X) is fixed by the initial couplings
X (m, 0). Boundary condition (3.2a) further restricts
F(X). In the large-n limit in which one expects the dif-
ferential flow equations to be applicable, Eq. (3.2a) is
satisfied for any F(X) that vanishes as X~O. Thus Eq.
(3.4) yields X=mln for n~oo, m fixed, as in Eq. (3.1).

Inserting the result X( —,',n)=(2n) ', n »1 for the
critical subspace X = Y into Eqs. (2.14) and (2.15), we ob-
tain predictions for the surface magnetization m i and the
surface pair correlation g~~(r). We find m i

——0, as expect-

ed, and g~~(r)-r ",
g~~

——1 for large r This .is the same
value of q~~ obtained by McCoy and Wu' for the semi-
infinite Ising model on a square lattice with homogeneous
critical couplings.

I,(x)=(2mx) '~ e"[1+0(x ')],
IC„(x)= (2x /~) '~2e "[1+0(x ')],

for x ~&1, and the relation

pp 'e ~'=I cr s

(3.7a}

(3.7b}

(3.g)

to evaluate the integrals. Solving for u and v, one obtains
1/2 1/0'

c ua I (o)
Qg —Q =

Vg 27K m
as m —moo, (3.9a)

U —Ug

Qg —Q

1~@ n
as m —+Do

0 Ug m
(3.9b)

The constant np in Eq. (2.22b) does not contribute in the
large-n limit and has been dropped.

The asymptotic behavior of the integrals in Eqs. (3.6)
for m~ oo, n fixed, where u =uii, and v =vii, is entirely
determined by the behavior of the integrand for large p.
We make use of the asymptotic forms

We now turn to the case of smoothly inhomogeneous
initial couplings that vary as

K;(m) =IC&+A;m ~, m &&1 (3.5)

+I, (pve )Kp(pv) ], (3.6a)

i = 1,2, where E ~~ and K2~ satisfy the bulk criticality
condition (2.9). We calculate the asymptotic behavior of
Ei( —,,n) which determines the critical behavior of mi
and g~~(r), from appropriate solutions of the differential
flow equations, beginning with the general solution given

by Eqs. (2.22).
First, we choose the weight functions wi(p), . . . , w4(p)

in Eqs. (2.22) so that the couplings X;(m, n) vary as in Eq.
(3.5) in the limit m —+oo, n fixed. From our experience
with the critical similarity solution (3.1) and with numeri-
cal results from the difference equations, we expect that
for large fixed n, X and Y increase monotonically from
the value 0 at or near m =0 to the bulk value Xz ——Fz at
m = Oo, with the criticality condition X =7 approximate-
ly satisfied locally. We shall show that solutions possess-

ing all these properties are obtained with weight functions
that have the asymptotic form

wi(p)=cp +'~ exp( pue)Ei(pve), —

w2 (p) =cp + ' exp( pue )Ii (pve ), —

w3(p) =w4(p) =0,
for large p. The quantities c and o will be related to the
A; and y of Eq. (3.5). With these substitutions for the
weight functions, Eqs. (2.22) take the form

m —m =uc f dpp +'~ e

XIi (pu )[Ki (pve )Ip(pv )

We now determine the spatial dependence of the cou-

plings E; for m ~ oo, n fixed that follows from Eqs. (3.9)
and compare it with Eq. (3.5). Equation (3.9b) implies
that v —vii «ue —u for m »n. Thus Q(u, v), as defined

by Eq. (2.19c), may be replaced by

Q(u, v)=[1——,'(ve —u~) ]' +(uii —u)' (3.10)

A, = —,
'

A sinh(2Eie), A2 ———,A cosh(2Kze)

and the parameters c and cr in Eqs. (3.6) must satisfy

cr = 1/(2y),
4~'"~A ~'"

I [1/(2y)]sinh(4J 2e)

(3.11)

(3.12)

(3.13)

In principle, the differential flow equations can be solved
for an arbitrary' ratio Ai/A2. However, in this paper
we only consider the particular ratio implied by Eqs.
(3.11).

Having matched Eqs. (3.6) with the initial conditions
(3.5) in the limit m~oo, n fixed, we now determine the
asymptotic behavior for n~oo, m fixed. From our ex-
perience with the critical similarity solution and with
computer results from the difference equations, we expect
that u and 5U=2 —v fulfill the conditions u, 5U «1.
Under these circumstances the second term in the in-

The upper and lower signs in Eq. (3.10) correspond to
couplings that are weaker than critical ( A; & 0) and
stronger than critical (A; &0), respectively, as discussed
below Eqs. (2.20). Inserting Eqs. (3.9a) and (3.10) into
Eqs. (2.20) and making use of the criticality condition
(2.9) for the bulk couplings, one finds the asymptotic
behavior given in Eq. (3.5), where the A; have a particular
ratio Ai/Az ——2sinh(2@iii)/cosh(2@2&). In order to fit
the initial condition (3.5), the quantity A defined by
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tegrand in Eqs. (3.6a) and (3.6b) is negligible in compar-
ison with the first. Using the asymptotic forms (3.7) for
Io(pv) and I1(pv), and substituting cr =(2y) ', we obtain

2(m —mo)+
I

A
I

/A
X(m, n)=

2n

Pl —Vl p
Y(m, n) =

A &0 (3.18a)

+~(.& —y)l(2y)I +& e
—p6v

'1/ 2U21

(3.14a)

(3.14b)

m —m, = "' f dpp" 1')"-'1'I)(pu)e-&"
2 t/2' Pl —f71 pX(m, n)=

Here,

2(m —mo)+
~

A
~
/A,

Y(m, n)= 2'
A &0 . (3.18b)

We discuss the cases y & 1, y = 1, and y & 1 separately.

1. y&1

From Eqs. (3.7), one sees that the asymptotic behavior
of the integrals in Eqs. (3.14) is determined by the asymp-
totic forms of I1(pu) and Io(pu) for pu »1 if
0 &6v —u «u. Evaluating the integrals using these limit-
ing forms and solving for u and v, one obtains

cI [1/(2y)] 1

2+2~V21 (m —mo)n

'1/2U21 2 Aq
A, = —,sinh(2E2&), (3.19)

X( —,',n)= —,'(1 —A/A, )n ', A &A, . (3.20)

Inserting these results into Eqs. (2.14) and (2.15), one
finds that m1 ——0 and that g))(r) decays as r )) for large
r, with a nonuniversaI exponent

in accordance with Eq. (3.13).
The surface boundary condition (2.16a) requires mo ——0

for A &0 and m() ———,'(A/A, ) for 0&A &A, . In both
cases,

2(m —mp)
(3.15) 11))(A)=1—A/A, , A &A, (3.21)

The inequality 0 & 5U —u « u is clearly fulfilled in the
limit m fixed, n ~ oo for y & 1, but not for y & 1. Calcu-
lating X and Y from u and v using Eqs. (2.19), we find
X(m, n) = Y(m, n) =(m mo)—/n for either sign of A.
[Recall that the upper and lower signs in Eq. (2.19c) cor-
respond to 3 &0 and 2 &0, respectively, as discussed
below Eqs. (2.20).] The surface boundary condition
(2.16a) clearly requires mo ——0. Thus for y & 1 in the limit
n~co, m fixed,

X(m, n) = Y(m, n) =m /n . (3.16)

Equation (3.16) is identical with the critical similarity
solution (3.1) for m & n Since . Eqs. (2.14) and (2.15)
determine the surface magnetization m1 and the correla-
tion function g) (r) of the surface spins from X( —,', n),
there is ordinary critical behavior for y & 1. At the bulk
critical temperature, m1 ——0 for either sign of A, and

g)((r) falls off as r "'~,
1I))——1, just as in the homogeneous

semi-infinite' case A =0.

2. y=1

For y =1 it is no longer permissible to use the asymp-
totic forms for Iv(pu) and I1(pu) with pu »1 in evaluat-
ing the integrals in Eqs. (3.14). Making use of exact re-
sults for the integrals' and solving for u and 5U, one finds

1/2

n ', (3.17a)
C

u =2 (m —mo) + f71 —Pl pQ 2V2)

+2(m —mo) n
2U2)

(3.17b)

Calculating X and Y from u and v using Eqs. (2.19), with
the upper and lower signs corresponding to 3 &0 and
2 & 0, respectively, we obtain

that varies continuously with A. For 3 =0, the result

g)) ——1 for homogeneous couplings is recovered. [In Eq.
(4) of Ref. 4 for 21))(A), a factor 2 is missing; our Eqs.
(3.19) and (3.21) give the correct result. ]

At A =A„X(—, , n) as defined by Eq. (3.20) vanishes.
However, it does not vanish identically, but instead ap-
proaches zero faster than n '. We will show below that
X( —, , n) =(n inn) ' for large n How. ever, before consid-
ering the special point 3 =3, in detail, we discuss the
case 3 &A, .

For A &A, we set mo ———,
' in Eqs. (3.18), so that

X( —,,n) vanishes to order n '. Substituting
Y(l,n)= —,(1+A/A, )n ' from Eq. (3.18b) into the sur-
face boundary condition (2.16a), we see that

—(1+A/A )/2
2,n =c)n (3.22)

where c& is an undetermined constant. Inserting this re-
sult into Eq. (2.14), one finds that m ) &0 for A & A„ i.e.,
there is a spontaneous surface magnetization at the bulk
critical temperature. In Appendix C we show that m&
vanishes as ( A —A, )'/ as A approaches A, from above.
Equations (2.15) imply that g()(r) decays as r )) for
A &A„with the nonuniversal exponent 11))

——A/A, —1.
This result and Eq. (3.21) may be combined into the single
formula

A ~' y=l (3.23)

The correction to the order n ' behavior given in Eq.
(3.22) is not implied by Eqs. (3.6) but follows from Eqs.
(2.22) with the same w)(p) and w2(p) as discussed above,
with w&(p) =0, and with

( )
1/2+(1 —A/A )/2

(3.24)

for large p. This choice for w3(p) does not alter the
A;m " dependence of EC& and Kz for m~~, n fixed.
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X(m, n)=
1

m 2 cp m cp+, Y(m n)= +
n nlnn ' '

n nlnn

(3.25)

The constant co is fixed by the proportionality constant in

w3 (p ). The value of m o has been chosen so that the con-
tribution to X(m, n) of order n ' in Eq. (3.25) vanishes at
m = —,. The boundary condition (2.16a) implies co ——1.
Thus

The constant c i in Eq. (3.22) is fixed by the proportionali-

ty constant in Eq. (3.24). The amplitudes of mi and g~~(r)
depend on the value of c&, but the critical exponents that
we calculate do not.

We now return to the case A =A„where the choice

wi(p) cc p'~ (lnp) exp( —2p)

for large p yields a consistent solution that satisfies the
boundary condition (2.16a). In the region m fixed,
n —+ oo, one obtains

(2.16a) to generate X ( —,', n), taking Y( 1,n ) from Eq.
(3.30b). The resulting expressions are

y'('+y) a 0

X( —,', n)= .
y)/(~+y)c2exp

1 —y
A)0

(3.31)

where cz is a constant.
Substituting Eqs. (3.31) into Eqs. (2.14) and (2.15), one

finds the following results for mi and g~~(r). For A &0,
m ~

——0 at the bulk critical temperature, as expected. For
A & 0, m i &0. In Appendix C we show that m i vanishes
as A'~(i" i') as A approaches 0 from above. For either
sign of A, g

~ ~

( r ) exhibits an anomalous exponential decay
of the form

g~~(r)-exp[ —(r/g'~~)' ] (3.32)

at the bulk critical temperature. Written in terms of A

with the help of Eqs. (3.13) and (3.29), the correlation
length

X( —,',n)=(n inn) ', A =A, . (3.26)
g,

' = -,' (1—y)

Upon substituting Eq. (3.26) into Eqs. (2.14) and (2.15),
one sees that mi ——0 and that g ~(r) decays as (lnr) ' at
the bulk critical temperature.

3. y &I

is given by

1 —y
2iA

i

sinh(2E )I [1/(2y) ]
~'~'r[-,' +1/(2y)]

The integrals in Eqs. (3.14) may be evaluated using the
small argument expansions

Io(pu) = 1+0((pu ) ),
Ii(pu)= —,pu[1+0((pu) )],

(3.27a)

(3.27b)

for u/5u «1. Keeping only the first term in the expan-
sion and solving for u and U, one obtains

8y m —mp

5v 1+y n

where

sU =an y/" +y', (3.28)

a = Ic(2uii) ' I [ —,
' +1/(2y)] j

" "+~' . (3.29)

The inequality u/5u « 1 is fulfilled in the limit m fixed,
n~ ao if y & 1. Calculating X and Y from u and u using
Eqs. (2.19), with the upper and lower signs corresponding
to A & 0 and A & 0, respectively, we find

X(m, n) =an i' "+ ', Y(m, n) = 2y m —mp

1+y n

(3.33)

In the limit y —+0, the inhomogeneous semi-infinite sys-

tem with couplings K;(m)=K;&+A;m ~ and bulk criti-
cal couplings reduces to a homogeneous semi-infinite sys-
tem with noncritical coupling s. In this limit the
anomalous exponential decay reduces to an ordinary ex-

ponential decay with characteristic length g~~
——(2

~

A
~

)

in agreement' with Ref. 1.
One can readily verify that our solutions X and Y to

the differential flow equations (2.16) for m »n and
m «n also satisfy the original difference equations (2.8)
in the large nlimit. L-ack of an explicit solution for inter-
mediate m prevents us from checking this for all m.
However, all evidence suggests that X and E' vary increas-

TABLE I. Asymptotic forms of X( —,, n) in the large-n limit.

The quantities A, and g~~ are defined in Sec. IV. c~ and c2 are
constants on which the critical properties summarized in Table
II do not depend.

X( 2, n)

2y m —mp
X(m, n)=

1+y n

A & 0 (3.30a)

Y(m, n) =an i' "+i',

A &0 . (3.30b)

y&1
y=1

y&1

A arbitrary

A &A,
A=A,
A&A,
A&0

(2n)-'

2 (1—A/A, )n

(n inn)
—(1+A/A )/2

c1n

an y "+y'

Applying the surface boundary condition (2.16a) to Eq.
(3.30a), one finds that ma=0 for A &0. For A &0 we
satisfy the boundary condition as in the case y = 1,
A &A, considered above. We set mo ———,

' in Eq. (3.30b),
so that X( —,, n) vanishes to order n ', and then use Eq.

A&0 c2exp

Here, a=

+y (1—y) /(1+y)
1 —y

2/(1+y)
1 —y

2gI~
'
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TABLE II. Critical behavior of the boundary magnetization m ~ and of the boundary pair correlation
function gll(r) of the inhomogeneous semi-infinite Ising model on a triangular lattice at the bulk critical
temperature. The results shown here are discussed in Sec. IV.

y

y&1
y=1

A arbitrary

A&A,
A &A,
A=A,
A&0
A&0

0
(A —A, )'~', A~A,

0
0
0

A "~"'-~'~ A ~0

gll(r)

r

(lnr)

exp[ —(r/g~~)'
—'],

ingly slowly with m and n as n increases, and that the
asymptotic behavior for large n of the solutions to the
difference and differential equations is indeed the same.
Our results for the large-n behavior of X( ,', n)—and for
the critical behavior of m

&
and g~~(r) are summarized in

Tables I and II, respectively.

A ~
———,A sinh(2K&z), Az ———,A cosh(2Kz~) . (4.2)

At bulk criticality, i.e., when exp( —2K~~)=sinh(2Kzz),
we find the following critical behavior for the spontane-
ous surface magnetization mt and the pair correlation
function g~~(r) of the surface spins:

(1) F«y & 1, ~, =0, and g~~(r) decays as r ",
g~~

——1.
This value of g~~ is the same as in the homogeneous semi-
infinite' case A =0.

(2) For y =1, m~&0 if A &A, = —,sinh(2Kzg). As A

approaches A, from above, m~ vanishes as (A —/I, )'
The critical exponent gll which characterizes the behavior
of g~~(r) for large r is nonuniversal, varying with A ac-
cording to

vyii(A)=
i

1 —A/A,
(

(4.3)

At A =A„where g~~ vanishes, g~~(r) decays as (lnr)
(3) For y & 1, m~&0 for 3 &0. As A approaches zero

from above, mi vanishes as 2' " ~'. For either sign
of A, g~~(r) decays according to the anomalous exponen-
tial form

g~~(r)-exp[ —(r/g~, )'- ],
y sinh(2Kz~ )I [1 /(2y) ]

~'/zl-[-,'+ I/(2X)]

(4 4)

(4.5)

IV. CONCLUSIONS

We briefly list our main findings, which are summa-
rized in Table II, and compare them with the predictions
of the scaling or renormalization-group approach re-
viewed in Appendix A.

The results pertain to the two-dimensional semi-infinite
Ising model on a triangular lattice, with inhomogeneous
coupling constants K~(m) and Kz(m) (see Fig. 1) that ap-
proach the bulk couplings K;~ at large distances m from
the surface as

K;(m) =K;~+3;m ~, m &&1 . (4.1)

The A; have a particular ratio' implied by

p, /(i —~)
m, -A ' (4.6)

as A approaches zero from above. Here P& is the conven-
tional exponent associated with the ordinary semi-infinite
transition. For the two-dimensional semi-infinite Ising
model, Pt ———,', v= 1, and Eq. (4.6) reduces to the result

m~ -3' " ' obtained with the star-triangle method in
Appendix C. The scaling prediction

~

—v/( 1 —vy) (4.7)

derived in Appendix A for the characteristic length at the
bulk critiml temperature when y &1 is also consistent
with the exact Ising result given in Eq. (4.5). The predic-
tions of the scaling theory have also been verified' for the
semi-infinite Gaussian model with inhomogeneous cou-
pling constants that vary as in Eq. (4.1). In the marginal
case y =v ' =2, the critical exponent g

l I

is again
nonuniversal.

Enhanced couplings in conjunction with infinite-range
bulk correlations produce the nonzero boundary magneti-
zation at the bulk critical temperature in the Ising results
for y = I,A & 3, and y & 1,A & 0. Above the critical tem-
perature, the bulk correlation length is finite, and m] van-
ishes. Thus the surface magnetization is discontinuous at
T= T„whereas the bulk magnetization is continuous.

In this paper we have only considered surface critical
phenomena at the bulk critical temperature. With an ap-
proach based on Pfaffians, Blote and Hilhorst have re-
cently obtained results for T&T, in the marginal case
y =1. We refer to Ref. 6 for a detailed discussion of the
rich critical behavior. The star-triangle method of this
paper can also be used for temperatures T&T, . Work on
this and other applications of the method is in progress.

APPENDIX A: SCALING THEORY

Our exact Ising results are compatible with a simple
smling theory ' that is applicable to any smoothly inho-

The crossover in critical behavior at y = I, with ordi-
nary critical behavior for y & 1, anomalous behavior for
y & 1, and nonuniversality at y = I, is entirely consistent
with the scaling or renormalization-group approach of
Appendix A. According to this approach the inhomo-
geneity of the coupling constants is "irrelevant" for
y & v ', "relevant" for y & v ', and "marginal" for
y =v in any semi-infinite system with bulk exponent v.
For the two-dimensional Ising' model, v=1.

In Appendix A it was argued that for y & v ', m] van-
ishes as
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K'(m/b) =R(K(m)), m »1 (Al)

far from the surface. Here, b is the factor by which
lengths are rescaled, and the function R is the same as in

the renormalization transformation

K~ ——R (Kg ) (A2)

for homogeneous bulk couplings.
Linearizing Eq. (Al) around the bulk fixed point K~

gives

K'(m/b) K~ ——b—'[K(m) —Kz], (A3)

where y, =v ' is the thermal scaling index of the homo-
geneous bulk system and v is the conventional critical ex-

ponent associated with the bulk correlation length. Upon
substituting K'(m ) Kz ——A —'m and K (m ) K~-
=Am ~ into Eq. (A3), one finds that the parameter A

transforms according to

A'=b ' A (A4)

From Eq. (A4) one sees that the inhomogeneity of the
couplings is "relevant"' ' and modifies the surface criti-
cal behavior for y &y, =v ', but is "irrelevant" for y &y,
and "marginal" for y =y, .

At the bulk critical temperature the correlation func-
tion of the surface spins transforms as

mogeneous semi-infinite system with a divergent bulk
correlation length. In this theory the short-range coupling
constants K(m) are assumed to transform locally as the
system is renormalized. More specifically, we argue that
for K(m) which vary sufficiently slowly with m, the re-
normalization transformation has the form

holds for all y &y„not just y =0, we are led to an
anomalous exponential decay of the form

gii(, A)-e pI —[ /g'ii(A)] (A9)

The exact results of Eqs. (4.4) and (4.5) for the Ising
model (y, =l) and corresponding results' for the inho-
mogeneous semi-infinite Gaussian model (y, =2) are con-
sistent with Eqs. (A7) and (A9).

In analogy with Eq. (A5), the spontaneous surface mag-
netization at the bulk critical temperature transforms as

—(d —1 —y~ )

mi(A)=b 'mi(b ' A). (A10)

Since b is arbitrary, Eq. (A10) implies that m i vanishes as

(Al 1)

for y &y, as A approaches zero from above. In Eq. (Al 1),
P& ——(d —1 —yh )/y, is the conventional exponent associ-

1

ated with the ordinary transition in the homogeneous case
A =0.

One can readily derive approximate renormalization
transformations that satisfy the locality condition (Al)
and thus correctly predict the relevance, marginality, and
irrelevance of the inhomogeneity in the coupling constants
for y(y„y=y„and y&y„respectively. One such
transformation, based on the Migdal-Kadanoff method, is

applied to the two-dimensional Ising model in Ref. 20.
The approximation also yields a nonuniversal exponent pic
in the marginal case y =y, and a nonvanishing surface
magnetization at bulk criticality for A greater than a
threshold value A„ in qualitative agreement with the ex-

act results.

—2(d —1 —y„)
gii(r, A) =b gii(«b b ' (A5)

(A6)

in accordance with Eq. (A4) and standard scaling analy-

ses. ' ' The scaling index y~ is the conventional index
1

associated with a surface magnetic field in the homogene-
ous semi-infinite case A =0. Since the scale factor b is
arbitrary, Eq. (A5) implies

—2(d —1 —yI, )
' Fy(r ' A)

APPENDIX B: DERIVATION OF EQ. (2.13b)

In this section we derive Eq. (2.13b), which determines
the correlation function gii(r, O) of the initial system, from
the sequence of X(—,', n).

Iterating Eq. (2.12b) n times, one obtains an expression
of the form

gii(r, O) = —,
' g P( 1j —1 r, 0)f(j)gii(0 j)

From Eq. (A6) one again sees that if y &y„ the correla-
tion function exhibits ordinary critical behavior, falling

—(d —2+11 )
off as r i'

pic
——d —2yp, , just as in the homogene-

1

ous semi-infinite case A =0. For y &y, the asymptotic
behavior depends on the form of the scaling function

F~(x) for large x = [r/gii(A)] ', where

(A7)

+ g P(s, n
~

r, O)f(n)gii(s, n), r &1
s=1

(Bl)

where f (n) is defined by Eq. (2.13c). The first sum gives
the contributions of all the gii(O, j) produced in the n

iterations. The second sum only involves correlation
functions gii(s, n) with spin separation s &1. The coeffi-
cients P(s, n

~

r, O), which are determined below, vanish
for ir —s~ &n

From Eqs. (2.12b) and (B1) it follows that the
P(s, n

~

r, O) satisfy the difference equations

P(s, n +1
~

r, O) = 4 [P(s + l, n
i
r, O)+2P(s, n

~

r, O)

+P(s —l, n
i
r, O)], s & 1 (B2)

with boundary conditions

The quantity gii(A) is a finite characteristic length at the
bulk critical temperature. When y =0, gii(A) is propor-
tional to the usual bulk correlation length.

An ordinary exponential decay exp( r/gii) in the spa-—
tially homogeneous case y =0 corresponds to

F~(x) -exp( —x ')1/y~ (AS)

for large x and y =0. If we conjecture that Eq. (AS) P(s, O
~

r, O) =5„, , P(O, n
~

r, O) =0 . (B3)
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Equations (82} and (83) have an obvious interpretation in
terms of a random walk. For s & 1, P(s, n

~
r, O)

represents the probability that a particle with initial coor-
dinate r (a positive integer) is at s after n steps in which
the particle changes its coordinate by +1,0, —1 with
probabihties —,', —,', —,', respectively, and sticks if it reaches
the origin. The solution to this problem is '

1 27
P(s, n

~
r, O)=

4~ n+r —s
271

gll(r, 0)= —,
' g P(1 n 11",0)f(n)g~~(O, n) .

n=1
(85)

Substituting from Eq. (84) and making use of elementary
properties of the binomial coefficients, we write Eq. (85)
as

The first term on the right-hand side is the solution to the
random-walk problem on an infinite line without sticking
at the origin. The second term, which corresponds to an
"image" particle with initial coordinate —r instead of' r,
ensures that the boundary condition (83) at the origin is
satisfied.

We now take the limit n~oo in Eq. (Bl). Since f(n)
and g~~(s, n) are bounded, and g," &P(s, n

~
r, O) vanishes

in the limit n~ oo, only the first sum on the right-hand
side of Eq. (81) survives, and we obtain

—(1+3/A )/2
c&n A)A,X( —,,n)=.
(n inn) ', A =A, (C4)

for large n,. From these asymptotic forms it is clear that
I(A,y) is indeed finite for A & A, and infinite for A =A, .

For 3 very close but not equal to 2, we argue that
X( 2,n) varies as (n inn) ' for moderately large n but—(1+3/A, )/2
crosses over to c~n ' when the two asymptotic
forms become comparable. The crossover, which occurs
when inn =k/(A —A, ), k being a constant, provides an
effective upper cutoff in the integral I(A,y). Thus the
leading singular behavior as A ~A, is given by

exp[k/(3 —A )]
I(A,y) + f— ~—ln(A —A, ) . (C5)

np n inn

Substituting Eq. (C5} into Eq. (2.14), one obtains
m~-(A —A, )'~ as in Eq. (Cl).

In an alternate approach which leads to the same re-
sults, we utilize the interpolation formula

X( —,,n) =(n lnn+c& n '
)

1 (1+3/A )/2

which reproduces the large nbeh-avior in Eq. (C4) for
both A &A, and A =A, . Substituting Eq. (C6) into Eq.
(C3) and changing the integration variable to x =inn
gives

I(A,y)= dx(x+c& 'e'") ', e= —,(A/A, —1) . (C7)
Xp

2'
g~((r, o) = y 4 "— „ f (n)g(~(o, n) .

n=1
(86) This integral has upper and lower bounds I& and I&

given by

Upon substituting g~~(O, n) =1—m f(n) into Eq. (86), one
obtains Eq. (2.13b).

APPENDIX C: CRITICAL BEHAVIOR OF m~

I& (A,y) =f dx x+
Xp c )s!

I& (A,y) = dx e '"(x+c
&

')
p

(Cga)

(C8b)

m~-(A —A, )'~, y =1, A~A,

m~-A t ~ ~, y &1, Qs0.
(Cl)

(C2)

From Eq. (2.14) one sees that m& vanishes when the in-
tegral

I(A,y)= f dn X( —,', n)
np

(C3)

diverges positively. First, we study the divergence in the
case y =1, A~A, . According to Table I, X( —,', n) varies
as

In this appendix we show that the spontaneous surface
magnetization vanishes as

(2n) ', A =0 (C9)

for y&1, with a —
~

A
~

"+"', as given in Table I, re-
place Eqs. (C4).

which are more amenable to analytical integration than
the integral of (C7). Both bounds lead to the result of Eq.
(CS), I(A,y) + —ln(A ——A, ). We emphasize that there is
no arbitrariness in the coefficient of the logarithm.

Equation (C2) may be established in the same manner
as Eq. (Cl), expect that the asymptotic forms

c2exp — an" ' "+ '1+
1X( —,,n)= 1 —y
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ing the coefficient A in the above expansion in terms of A1
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Q(n, r)= g P(s, n
~

r, O)
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n+r
Q(n, r)=4 " g (k") .

k=n —r+1

Since ( ")& („"),

Q(n, r) &(2r —1)4 "(„").
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