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Using thermodynamic fluctuation theory, we study the finite-size rounding of anomalies occur-
ring at first-order phase transitions of the corresponding infinite system. Explicit expressions for
thermodynamic functions are derived both for "symmetric transitions" (such as the jump of the
spontaneous magnetization in the Ising model from +M,p to M p as the field changes from 0 to
0 ) as well as for asymmetric cases, but restricting attention to (hyper)cubic system shapes. As an

explicit example for the usefulness of these considerations in Monte Carlo simulations where it may
be a problem to (i) locate a phase transition and (ii) distinguish first-order from second-order transi-

tions, we present numerical results for the two-dimensional nearest-neighbor Ising ferromagnet in a
field, both below the critical temperature T, and at T, . The numerical results are found to be in

very good agreement with the phenomenological theory and it is shown that one may extract the
magnitudes of jumps occurring at first-order phase transitions in a well-defined and accurate way.

I. INTRODUCTION

Finite-size scaling theory' has become a powerful and
well-established tool for the studies of second-order phase
transitions (see Refs. 3 and 4 for reviews). More recently
finite-size effects at first-order phase transitions also have
found attention. ' While finite-size scaling concepts for
second-order phase transitions have been applied in Monte
Carlo simulations as a standard tool, " ' none of the pre-
dictions regarding finite-size effects at first-order transi-
tions have been tested by Monte Carlo methods so far.
On the other hand, the precise location of first-order
phase boundaries with Monte Carlo methods has been a
long-standing problem in the literature (for some recent
discussions see, e.g. , Refs. 16—20). Particularly cumber-
some is the accurate estimation of jumps at phase transi-
tions which are only weakly of first order —then even the
distinction from second-order transitions may be a prob-
lem. ' '

We illustrate the difficulty by discussing qualitatively
the rounding of the magnetization jump in the Ising fer-
romagnet as the field is varied (see Fig. 1). ' In an infinite
system, the magnetization jumps from +M,~ as H —+0+
to —M,~ reached for H~O . In a system with all linear
dimensions L finite, however, no singularities can occur
and the variation of the magnetization (S)t with field H
is perfectly smooth. Rather than the infinitely steep vari-
ation of (S)L with H from H =0 to H =0+ occurring
for L~ oo (5-function singularity of the susceptibility in
the infinite system), (S)L has a large but finite slope (of
order ML L "/ktt T, see Sec. II) for a finite region of fields
( —MLL /k&T &H (ML, L"/k&T, see Sec. II). Here
+Ml are the values of' the magnetizations where the prob-

H„,„,= —J g SS,—HgS, , IS, =+II
&,ij & i

(2)

leads to (S)L, ——0 for H =0 independent of L, and hence
there is no shift of the transition field with size, in more
general cases there will be both a rounding and a shift of
the transition„and hence the extrapolation towards
I —+ oo is nontrivial.

The problem is even more complicated since a Monte
Carlo simulation represents a numerical realization of a
dynamical stochastic model described by a Master equa-
tion' (Glauber kinetic Ising model in our example). It
may be hard to observe the correct thermal equilibrium
behavior discussed so far; instead, the system stays during
most of' the observation time in the vicinity of one peak of
PL (s), and hence one rather observes a metastable branch.
The limit of metastability, but even the magnetization in
the metastable branch itself, may then exhibit some sys-
tematic dependence on the observation time —note that
the first-principle theory of metastability is still a largely
unsolved problem of statistical mechanics. Only for

ability distribution PL(s) at zero field is maximal, and d
is the system's dimensionality.

These considerations already show that one needs to ex-
trapolate from the smooth behavior of the finite system
suitably towards L~ oo, in order to estimate the parame-
ter at which the transition occurs (in our case the field
H =0) as well as the jump of the considered quantity (in
our case the magnetization jump 2M,~ ). While in the
simple Ising case the spin-inversion symmetry

H, IS; I ~ H, I
—S;I—

of the Hamiltonian
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FIG. 2.G. 2. Time evolution of the magnetization m (t) plotted vs
observation time t [measured in Monte Carlo steps (MCS}/spin]
in an Ising nearest-neighbor square lattice of linear dimension
L =6 with periodic boundary conditions at a temp r tmpera ure

/ =2. 1 (note k~T, /J=2. 269) for three values of the field
H. Time averages m of m(t) are then estimates of (s)I aud
are indicated by arrows.
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FIG. l. (a) Variation of magnetization (s )L in a finite Ising

ferromagnet plotted vs magnetic field, as observed in thermal
equilibrium (full curve) and in a Monte Carlo simulation with

sufficiently short observation time where metastable branches
(dash-dotted line) occur. The behavior of the infinite system is
also indicated (schematic). +M,~ is the spontaneous magnetiza-
tion of the infinite system, +Mr is the most probable value of
the magnetization in the finite system at 0=0. (b) Schematic
probability distribution Pl (s) of the magnetization for two cases

[open circles in (a)] where the magnetization is iu between +MI. .

small L is it easy to see many transitions from +M t
I, and vice versa occurring (Fig. 2), and then one can

sample the correct distribution PL (s) and the equilibrium
magnetization

+1
(s)L ——f dssPL(s) .

In the present work, we wish to demonstrate that in spite
of these difficulties one can understand the finite-size ef-
fects seen in simulations of first-order transitions quanti-
tatively. Hence, one can use finite-size scaling theory of
first-order phase transitions to locate phase boundaries
and reliably estimate "jumps" (areas under 5-function
singularities, such as the latent heat in a first-order transi-
tion driven by temperature variation) not only in princi-
ple, but in practice.

We start by working out a phenomenological theory of

sli ht
inite-size effects at first-order phase trans't' bansi ions y a

s ig t generalization of our previous discussion of the
probability distribution Pl (s) in Ising mod 1 b 1

e results of our approach are not only in agree-

ment with renormalization-group argumets ' ' based on
the concept of the description of a first-order transition by
a "discontinuity fixed point, " but yield also explicit pre-

ictions for the associated finite-size scaling functions.
Section III then presents our numerical calculations for
Ising square lattices in a field below T, and compares the
results to our theoretical predictions. As a contrast,
finite-size scaling in a magnetic field at T, is studied in
Sec. IV, and it is shown that first- and second-order tran-
sitions are easily distinguished, even though the scaling
powers y/v ( =

4 ) and (y+P)/v ( =—", ) (associated with
finite-size scaling in the two-dimensional Ising model at
T, are only slightly smaller than the scaling power d
(= ) associated with the first-order transitions. Section
V then generalizes the treatment of Sec. II, which was re-
stricted to the "symmetric" case [cf. Fig. 1 and Eq. (1)], to
more general asymmetric situations. Numerical studies of
asymmetric first-order transitions, such as those occurring
in q-state Potts models for q &4 in d =2, will be present-
ed in a later publication. Section VI contains finally our
conclusions.

II. FINITE-SIZE SCALING IN ISING SYSTEMS
BELOW T,

We start recalling the double Gaussian approximation
of Ref. 15 for the probability distribution of the magneti-
zation of an Ising system below T, at zero field,

PI (s)= —,'L" (2mk~TX(1))

X I exp[ —(s —ML, ) L "/(2k' TX(1))]

+exp[ —(s+ML ) L /(2k~TX(L))]] . (4)

Equation (4) should be accurate when L exceeds distinctly
the correlation length g at H =0+ (or H =0 ) in the in-
finite system (which below T, is easy to achieve, as g then
s ays finite); in this limit X(L) is well approximated by
X =X( ), the susceptibility of the infinite system (at
H=O+ or H==0, respectively), and ML can be replaced
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f=f0+(r/2)s +(u/4)s sH . —

A standard calculation yields M as the solution of

(7)

=rs+us —H =0,
Bs

by the spontaneous magnetization M,~. Note that X[L~
describes the susceptibility of the finite system staying in
one ordered phase only; it should not be confused with the
total susceptibility XL (introduced below) which also con-
tains fluctuations where the system jumps back and forth
between the two ordered phases.

The generalization to nonzero field H then simply is ( A

is a normalization constant)

PI (s) =A( expt —[(s M»—) 2Xs—H]L /2kBTXI

+exp[ —[(s+M») 2Xsh—]L /2kBTXI ) . (5)

An alternative formulation is obtained in terms of a free
energy per spin f as

PL, (s) ~ exp( fL "Ik—BT),
where, away from T„f can be described in terms of a
(generalized) Landau theory as (f0 is some constant)

i.e., +M» =+@' r l—u for H =0, and linearization
around M» for H&0 yields X '=r+3uM, &. Rewriting
Eq. (7) in terins of M,~,X instead of r, u yields (fo is
another constant)

f=fo+ (M, s) —sH —.
8M,pg

Near s =M» Eq. (8) yields

f=f0+(2X) '(M» —s) —sH,
while near s = —M» Eq. (8) yields instead

f=fo+(2X) '(M»+s) sH .—

(8)

This fact implies that near the peaks of the distribution
PL (s) the formulation in terms of the free energy, Eq. (6),
and the double Gaussian approximation are identical. In
between the two peaks neither of these expressions is ac-
curate, since there PL(s) reflects interfacial contribu-
tions, ' but since PI (s) there is very small, one obtains
only negligibly small corrections to (s)L, (s )i., etc.
from this regime.

Since the normalization constant A in Eq. (5) can be
written as

2 d
A = 'L, " '(2~k -TX)-'"ex

2kB T
HM, pL"

cosh
8

we can rewrite Eq. (5) as

(2~kB TX)
PL(s) = 2L

cosh(HM»L /kB T)
KMsPL"

k, T

HM, pL"
+exp — " exp

AT

(s M» XH )— —
2k' TX

(s +M» XH)—Ld
2k' TX

(10)

Thus PL (s) still is a superposition of two Gaussians, now
centered around the shifted magnetization +M»+XH, as
expected. The relative weights of the two peaks are no
longer equal as in Eq. (4), however, but rather proportion-
al to exp[ HML»" ( /kTB)] and exp[ HM»L /(kBT—)],
respectively.

From Eq. (10) it is now easy to obtain the moments
(s")L of interest. The first moment (s )L considered in
Fig. 1 becomes

HMsPL(s )I, XH +M»tanh——
B

EH„„„d-kB TI(M»L"), (13)

because H has to exceed this value to find the behavior
characteristic of the infinite system, Eq. (12a). The sus-
ceptibility of the finite system XL, becomes

XL, =(&(s )I, /BH)T

These results have been anticipated in Fig. 1. It follows
hence that the width hH over which the transition is
rounded is of the order of

We conclude that for HM»L /kBT»1 we simply have
the bulk behavior

=X+M2+ d HM, pl,
kz T cosh (14)

(s),=XH+M„.
while in the inverse limit HM»L IkB T && 1 we find

(s )I —XH+HM, p~/(kB—T)

HM, P "I(kBT) . —

(12a)

(12b)

which shows that instead of the 5-function singularity at
H =0 we now have a smooth peak of height proportional
to L . The only scaling power of L which enters in (s )I,
Xi, etc. comes in simply via the volume L of the system.
This result agrees with previous approaches. ' Of
course, it is easy to show that
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FIG. 3. (a) Susceptibility PL, plotted vs magnetic field H at k~T/J =2. 1 for various I.. (b) For the smaller systems the data are
replotted on different scales.

(s'), = M,', +X'H'+ and hence the fluctuation relation

)L (s )L kBT+L/L (16)

HM, pL
+2M,QH tanh

B T (15) holds as usual. Higher-order cumulants are then obtained
as

Msp sp(s )L —3(s )L(s)L+2(s)L=2M, ~ tanh —tanh
B B

(17)

and

(s )L'—:(s )L —3(s )L —4(s)L(s )L +12(s )L(s)L —6(s)L

2 HMspL" 2 2
HMspL'

6M sp 1 —tanh " ——1 —tanh
AT 3 kgT

(18)

The reduced fourth-order cumulant UL (sometimes also called the renormalized coupling constant26) then becomes

(s )L'" [1—tanh (HM, ~L /kBT)] ——,
' [1 tanh~(KM, L"/k—BT)]

$2 2

[1+/ H /M kBTy/M pd+ tanh(HM Ld/k T)]2
SP

(19)

It is seen that this quantity goes to UL = —,
' for H=0

(Ref. 15) while UL —+0 for large L when H&0. At a
second-order transition in contrast, Ul approaches a non-
trivial value in between these two limits. ' Studying the

value to which the maximum of UI (H) converges when
L~ Oo can also serve to distinguish between second- and
first-order transitions and to locate the field H at which
the transition occurs.
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Next we check the predicted size dependence b lot-
tin

'

g the height of the susceptibility maximum as well as
y po-

various characteristic fields versus system size i 1 -1I og- og
orm (Fig. 5). These characteristic fields relate to the

width hH over which the rounding of the first-order
phase transition occurs [Eq. (13)]. Indeed the data are
nicely consistent with the predictions AH„„„d~L, and

XL (H =0) cc L [Eqs. (13) and (14)].
Moreover, Eq. (14) suggests that XL /L can be

represented as a single function of a scaled field HL /J,
apart from a correction term X/L . This means that all
the curves of Fig. 3 can be collapsed on a single function.
Figure 6 shows that this data collapsing works reasonablona y
well. This is the first time that a scaling function associ-
ated with finite-size scaling at a first-order transition has
been estimated with Monte Carlo methods.

At small fields one can see systematic deviations from
scaling distinctly exceeding the statistical scatter F'er. igure

s ows that these deviations are indeed consistent with
the variation due to the predicted correction term in Eq.
(14), and XI (H =0)/L converges to the exactly known
value as L~ao,

XI (H =0)/L =M,p/kg T+X/L (20)

Thus we conclude that the numerical data conform nicely
to the predictions of the phenomenological theory
developed in Sec. II, and that finite-size effects at this
first-order transition in the Ising model are well under-
stood. Of course, in practice it may be more convenient
to observe the metastable hysteresis between +ML and
—Ml. (Fig. 1) and extrapolate this behavior to L~ao,
rather than to apply the present first-principles method,
or estimating the spontaneous magnetization; but the

present techniques, apart from the fact that its theoretical
justification is more satisfactory, may be advantageous in
cases where the order of transition is not so clear.
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IV. FINITE-SIZE BEHAVIOR OF THE ISING
MODEL AT T, AS A FUNCTION

OF THE MAGNETIC FIELD
-0.50

0.05 0.10
I

0.1 5

In order to check whether by this analysis one can
clearly distinguish the order of a transition we have per-ave per
ormed precisely the same calculations as above for the

critical temperature of the Ising model [T,/J-=2. 269
(Ref. 30)]. While the qualitative character of the results is

FIG. 8.~ . Susceptibility PL, (a) and reduced cumulant U& (b)
plotted vs magnetic field at the critical temperature for various
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the same, one clearly recognizes that the cumulant max-
imum converges to a distinctly smaller value,
UL (H =0)=0.618 in our case (see Fig. 8). This nontrivi-
al cumulant value is the signature of the second-order
character of the transition. Above T„of course, the dis-
tribution tends to a Gaussian and UI tends to zero. '

This conclusion is strongly corroborated when one stud-
ies the size dependence of the susceptibility maximum and
of the characteristic fields (Fig. 9). Again one finds
straight lines, but the slopes are no longer determined sim-

ply as the system's dimensionality; rather the slopes re-
flect the critical exponents y/v (= —,

'
) and (y+P)/v

(=—,
'

), since finite-size scaling theory now predicts'

X =L i' "X(HL '"+~' ) (21)

where X is a nontrivial scaling function. Figure 10 gives
direct evidence for this standard form of finite-size scal-
ing. Of course, the fact that such small values of L give a
nice fit indicates the fortuitous smallness of all correction
terms to finite-size scaling in the Ising model.

Specific-heat anomalies at phase transitions of mono-
layers physisorbed on grafoil are typically rounded due to
the finite size of the substrate lamellae. Often, it is not
clear whether these peaks correspond to rounded second
or first-order transitions. ' Outside the regime of the
rounding the specific heat is consistent with a power-law
divergence (characteristic of a second-order transition)
even in cases where one expects a first-order transition. '

This problein has motivated us to present the field
dependence of the susceptibility in log-log form (Fig. 11)
to check for possible straight-line behavior which can be
interpreted in terms of apparent exponents. However, in
the present case, the straight-line behavior is restricted to
a rather narrow region of fields, and the "exponent" seen
is completely unphysical. Even at T„where straight-line
behavior with slope 1 —1/5 =0.9333 must occur for
L~ao, this exponent is not seen at all for the present
range of sizes and fields. The behavior in Fig. 11 con-
trasts to the size dependence which gives a much clearer
picture (Figs. 5 and 9), but which unfortunately is not ac-
cessible experimentally.

V. FINITE-SIZE SCALING AT ASYMMETRIC
FIRST-ORDER PHASE TRANSITIONS

1

2.5
H Ll.875/g

7.5

Defining a reduced field

h =H H, (L), — (22)

FIG. 10. Scaled susceptibility pl. /L ' ' plotted vs scaled field
HL ' /J at the critical temperature for various L.

where H, (L) is an effective critical field where in the fin-
ite system the (rounded) transition between both phases
occurs, we generalize Eq. (5) as follows:
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p&(s) =A( (2irksTX+) '~ exp[ —[(s —M+) —2X+sh]L /(2k~ TX+)]

+(2irksTX )
' exp[ —[(s+M ) —2X sh)L /(2ksTX )[) . (23)

hM+L

AT
(24)

Here we have assumed a jump of the magnetization from M+ at h =0+ to —M at h =0 (in the limit L~ao), and
the susceptibilities X+ (at h =0, s =M+) and X (at h =0, s = —M ) may be different. Of course, the point s =0
may be a choice of the origin which need not be of any physical significance; it is the difference (M+ +M ) between the
two branches which is of physical interest. The constant A is determined by the normalization condition; furthermore,
at phase coexistence ( h =0) it is assumed that the areas under both peaks of the probability distribution are equal.

From the normalization condition, we find instead of Eq. (9)

X+A L" X J'L"
A =L exp exp +exp exp

2 g T B

With Eqs. (23) and (24) it is a straightforward

X+h L"
(X+h +M+ )exp exp

2

&+h 2L"
ep

2k T exp

hM L

AT
hM L

matter to calculate the moments (s"&i. One obtains

hM+L g2Ld
+ (X h —M )exp exp

B B

+exp
B

(25)

and

(("&.—( &. )
Ld 2

AT
I+h'L" hM L'

[(X+h +M+ ) +ks TX+/L "]exp exp
B B

h L"
+ [(X h —M ) +kii TX /L "]exp exp

2k~ T
hM Ld

AT
X h L" hM L"

X exp exp
2 B

g2Ld
+exp exp

hM Ld —(s &&L "/(4&) . (26)

Thus (s&r, changes from X+h+M+ for hM+L »ksT
to X h —M+ for —hM L »ksT. The region over
which the transition is rounded hence is asymmetric; of
course, the exponents governing the size dependence of
this width of the rounded region and of Xi are still given
by the dimensionality, as in the symmetric case.

Of course, it is rather straightforward to generalize this
treatment to other quantities, such as the internal energy
instead of the magnetization; also the intensive variable
driving the transition may be the temperature itself; rather
than a field. Then X+, X in the above formulas get the
meaning of specific heats at phase coexistence.

VI. CONCLUSIONS

In the present work, we have analyzed finite-size effects
at first-order phase transitions based on thermodynamic
fluctuation theory. This treatment agrees with corre-
sponding renormalization-group work, which has predict-
ed that the transition is smeared over a region of order

", and that the 5-function singularity is replaced by a
peak of height proportional to L; moreover, our treat-
ment yields explicit predictions for the finite-size scaling
functions describing these smeared-out singularities.

As an application, the phase transition of the square Is-
ing model below T, as a function of magnetic field is con-
sidered. We find good agreement with the theoretial pre-
dictions with a still moderate computing effort; it is also
not difficult to distinguish the behavior from the finite-
size rounding at the second-order transition at T, in this
case. Thus we think that the present considerations
should be useful for the analysis of finite-size effects at
other first-order transitions, seen in either computer simu-
lations or experiments.

ACKNOWLEDGMENT

This research was supported in part by National Sci-
ence Foundation Grant No. DMR-83-00754 and by North
Atlantic Treaty Organization Grant No. 064.82 and by
the Simulations Program of the University of Georgia.



30 FINITE-SIZE SCALING AT FIRST-ORDER PHASE TRANSITIONS 1485

'Present and permanent address.

Permanent address.
M. E. Fisher, in Critical Phenomena, edited by M. S. Green

(Academic, New York, 1971),p. 1.
M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516

(1972).
M. P. Nightingale, J. Appl. Phys. 53, 7927 (1982).
M. N. Barber, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz (Academic, New York,
1983), Vol. 8, p. 145; see also K. Binder, ibid, Vol. 8, p. 1.

5Y. Imry, Phys. Rev. B 21, 2042 (1980).
6M. E. Fisher and A. N. Berker, Phys. Rev. B 26, 2507 (1982).
H. W. J. Blote and M. N. Nightingale, Physica 112A, 405

(1982).
~P. Kleban and C.-K. Hu (unpublished).
J. L. Cardy and M. P. Nightingale, Phys. Rev. B 27, 4251

(1983).
V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 (1983).

' K. Binder, Thin Solid Films 20, 637 (1974).
K. Binder, in Phase Transitions and Critical Phenomena, edit-

ed by C. Domb and M. S. Green (Academic, New York,
1976), Vol. 5B, p. 1.

D. P. Landau, Phys. Rev. B 13, 2997 (1976); 14, 225 (1976).
~4K. Binder and D. P. Landau, Phys. Rev. B 21, 1941 (1980);D.

P. Landau and K. Binder (unpublished).
K. Binder, Phys. Rev. Lett. 47, 693 (1981);Z. Phys. B 43, 119
(1981).
For reviews see, D. P. Landau, in Monte Carlo Methods in
Statistical Physics, edited by K. Binder (Springer, Berlin,
1979); p. 121; K. Binder, ibid, p. 1; D. P. Landau, in Applica-
tions of Monte Carlo Methods in Statistical Physics, edited by

K. Binder (Springer, Berlin, 1984), p. 93; K. Binder and D.
Stauffer, ibid, p. 1.
D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 (1978).

8K. Binder, Z. Phys. B 45, 61 (1981); T. L. Polgreen, Phys.
Rev. B 29, 1468 (1984).

K. Binder, J. Stat. Phys. 24, 54 (1981); H. J. Herrmann, Z.
Phys. B 35, 171 (1979).
D. P. Landau and R. J. Swendsen, Phys. Rev. Lett. 46, 1437
(1981).

A preliminary account of this discussion has already been re-
viewed by K. Binder and D. Stauffer in Ref. 16.
R. J. Glauber, J. Math. Phys. 4, 263 (1963).
J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Tran-
sitions and Critical Phenomena, Ref. 4, Vol. 8, p. 269.
For somewhat related work, see also L. S. Schulman, J. Phys.
A 13, 237 (1980); A. D. Bruce, T. Schneider, and E. Stoll,
Phys. Rev. Lett. 43, 1284 (1979);A. D. Bruce, J. Phys. C 14,
3667 (1981);and Refs. 5 and 10.
J. M. J. van Leeuwen, Phys. Rev. Lett. 34, 1956 (1975); B.
Nienhuis and M. Nauenberg, ibid. 35, 477 (1975).
M. N. Barber, R. B. Pearson, D. Toussaint, and J. L. Richard-
son (unpublished).
L. Jacobs and C. Rebbi, J. Comput. Phys. 41, 203 (1981); R.
Zorn, H. J. Herrmann, and C. Rebbi, Comput. Phys. Com-
~un. 23, 337 (1981).

8R. B. Pearson, J. L. Richardson, and D. Toussaint, J. Comput.
Phys. 51, 243 (1983); A. Hooghland, J. Spaa, B. Selman, and
A. Compagner, ibid. 51, 250 (1983).
C. N. Yang, Phys. Rev. 87, 410 (1952).
L. Onsager, Phys. Rev. 65, 117 (1944).
R. Marx and E. F. Wassermann, Surf. Sci. 117, 267 (1982).


