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Phase diagram of hydrogen adsorbed on Ni(111)
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The phase diagram for the H/Ni(111) system is calculated by treating a lattice gas on a honey-
comb lattice through the position-space renormalization-group theory with prefacing transforma-
tion. The following interparticle interactions are considered: (A) nearest-neighbor exclusion,
second-neighbor repulsion, and third-neighbor attraction, which was previously proposed by
Domany et al. ; (B) nearest-neighbor exclusion, second- and third-neighbor repulsions, and further-
neighbor interactions up to the sixth-neighbor one. When the interaction parameters involved are
suitably adjusted, both the interactions (A) and (B) lead to the phase diagrams in good agreement
with the experimental one by Christmann et al. The change of the isosteric heat of hydrogen ad-

sorption with the adsorbed amount is also calculated. The result obtained from interaction (B) is

consistent with experiment, whereas that from interaction (A) is not.

I. INTRODUCTION

Varieties of long-period superstructures of adsorbates
on metal surfaces have been reported. ' Among them the
H/Ni(111) system is a typical example; its phase diagram
for the order-disorder transition has been obtained by
Behm and Christmann and co-workers ' from the tem-
perature variation of the low-energy electron-diffraction
(LEED) half-order spot intensity. The diagram shows a
clear phase boundary but it is not symmetric about
0=0.5, contrary to the expectation from the hole-particle
symmetry on the triangular lattice, where 0 is the ratio of
the number of adsorbed particles to that of surface Ni
atoms.

Afterwards, Domany, Schick, and Walker (DSW) con-
sidered that this ordered phase is a (2X2} superstructure
on a honeycomb lattice, and the phase diagram should
therefore be symmetric about n =0.5, rather than about
8=0.5, where n is the density defined as the ratio of the
number of adsorbed particles to that of adsorption sites;
i.e., n =8/2. Further, they obtained a phase diagram for
a lattice gas (LG) on the honeycomb lattice through a
renormalization-group (RG) calculation, in which infinite
first-nearest-neighbor (1NN} and finite second-nearest-
neighbor (2NN) repulsions are assumed. The phase dia-
gram so obtained has a narrower width compared with
that which is experimental [see Fig. 6(b)]. They predicted
that this discrepancy is possibly solved by introducing an
attractive third-nearest-neighbor (3NN) interaction and
thus allowing for the appearance of a phase coexistence
region on the lower density side.

Ostlund and Berker (OB) devised a position-space RG
method which can in principle include up to the 20NN in-
teractions for a triangular LG. The main approximations
in their method exist in a prefacing transformation which
maps a LG Hamiltonian having first- and further-
neighbor interactions onto a Hamiltonian with somewhat
more complicated local degrees of freedom coupled by
1NN interactions only. They analyzed the phase dia-
grams of (2X2) and (W3X~3) structures on the triangu-

lar LG system.
In the present paper, an alternative explanation to the

above discrepancy encountered by DSW is proposed,
where the 3NN repulsion rather than DSW's 3NN attrac-
tion is assumed. On this basis, a position-space RG calcu-
lation similar to OB is carried out to result in an appear-
ance of a p (2X 2) ordered phase centered at n = —,', in ad-

dition to the (2X2) one at n = —,'. The calculated tem-

perature versus density phase diagram well resembles the
experimental one, and the calculated isosteric heat of ad-
sorption shows a trend which supports the present propo-
sal.

II. HAMILTONIAN AND SYMMETRY

Adsorption of the hydrogren atoms on the Ni(111) sur-
face is believed to take place at the threefold hollow sites
provided by the first-layer Ni atoms. ' These hollow sites
constitute a honeycomb lattice. Since theories indicate the
existence of the long-range interactions between chem-
isorbed particles on metal surfaces via conduction elec-
trons in the substrate, a LG model on the honeycomb lat-
tice with up to the sixth-nearest-neighbor (6NN) pairwise
interaction is treated in the present work. Note that the
6NN distance, about 5 A, is merely twice the lattice con-
stant of the Ni surface layer, 2.49 A.

The reduced (divided by —ktiT) Hamiltonian of the
LG model is given as

[~]
HLo= ~LG/ktiT= g J g n;n —p+n;, (1)

m = I (g', J') g'

where Hi ~, J, and p are the Hamiltonian, the mth NN
interaction, and chemical potential, respectively, all being
reduced quantities; n; = 1 (0) when site i is occupied
(empty), the first sum ranges from the 1NN to the 6NN,
and the second sum over the (i j) pairs of -sites at the mth
NN distance apart. The diameter of the hydrogen in the
chemisorbed state presumably does not exceed about 1.5
A; thus the 1NN interaction (at 1.44 A apart) is taken to
be the infinite repulsion.
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The main high-symmetry-ordered structures expected
to occur within 6NN interactions are p (2 X 2),
(V'7/3Xv'7/3), (V 3XW3), (2X2), and (1X1) (Fig. 1).
They have eightfold, sevenfold, sixfold, fourfold, and two-
fold degeneracies of sublattices, and include only the
6NN, 5NN, 4NN, 3NN, and 2NN interactions, respec-
tively. There would occur many ordered structures other
than those listed here depending on the choice of the pa-
rarneters J 's. However, since the experimental phase di-
agram has been obtained at relatively high temperatures
(150—300 K), we concentrate on the phases having (2X 2)
translational symmetry, which are expected to be stable in
the above high-temperature range. This point is discussed
in Sec. V in connection with the determination of the pa-
rameters J .

Let us investigate the symmetry relations between
structures which include at least (2X2) translations. Let
Gp denote the group of symmetry operations which leaves
the honeycomb lattice invariant; that is the group of sym-
metry of the disordered state (gas) or state at full coverage
(n =1). Further, the symmetry group of p(2X2), (2X2),

and (IX1) ordered structures are denoted by Gz(2&&2),

G(2x2), and G(~x~), respectively. Then the relations be-
tween these G's are

T

(2x2)
+Gp(2x2) ~GpD ~

G(1x1)
(2)

where G(2x2) and G(&x&) have no inclusion relation. It is
easily seen that the factor group Go/T(2„2) is
homomorphic with the cubic point group O~, where

T(2X2) is the (2X2} translation group. This 0), is also
equal to the symmetry of the spins in the site-diluted
corner-cubic anisotropy classical Heisenberg (dCH) Ham-
iltonian defined in Sec. III. As seen from Eq. (2), G~(2X2)
is a subgroup of G(2X2). Therefore, according to the Lan-
dau theory, ' the phase transition between p(2X2) and
(2X2) can be continuous. Since these two ordered struc-
tures have the same translational symmetry and cannot be
distinguished by the diffraction experiments such as
LEED without measuring, e.g., the spot intensities, they
connect smoothly and are expected to form a wide (2X2)
translational symmetry phase, i.e., p(2X2) plus (2X2),
which is the experimentally observed one [see Fig. 6(b)].

More precisely, the threefold adsorption sites on the
H/Ni(111} surface are classified into two groups, accord-
ing to whether or not there exists a second-layer Ni atom
below the site in question. Thus the honeycomb lattice
(whose space-group symmetry is p6mm) is divided into
two interpenetrating triangular lattices (space group
@3m 1) '" the p(2X2) phase reduces to the (2X2) and
the situation is described by adding a staggered field act-
ing upon A, 8, C, and D superlattices shown in Fig 1(a).
to Eq. (1). However, according to the idea of the cross-
over effect, if this staggered field is sufficiently weak, the
results obtained for the p6mm-symmetry lattice describe
well the real behavior except in the extreme vicinity of the
critical points. "

Et is known that the order-disorder phase transition the

p (2 X 2) phase undergoes belongs to the Ising universality
class, and that of the (2X2) belongs to the four-state
Potts-model class, ' but either can be first order as
described in Sec. V A. If the space-group symmetry of the
substrate is p6mm, then the p(2X2) phase can appear
and if it is continuous transition the critical exponent of
the Ising universality class will be observed. The recent
experimental results on the 0/Ni(111) system by Roelofs
and co-workers' ' seem to suggest that this is the case. '

III. METHOD

FIG. 1. Possible superstructures on the honeycomb lattice.
(a) Unit cells are indicated with dashed lines and the eight
p(2X2) sublattices are denoted b A, 8, C, D, a, P, y, and 5,
respectively. (b)—(e) (2X2), ( 3XV 3), (V7/3X&7/3), and
(1&(1) occupations on the honeycomb lattice. The density and
the interaction operative at the phase completion of each occu-
pation are also shown.

The calculational method used in this work follows the
prescription given by OB (Ref. 5) and is briefly described
in the following. The calculation starts with a LG Hamil-
tonian on a honeycomb lattice. Through a prefacing
transformation, this LG Hamiltonian is converted into a
dCH Hamiltonian"' where spins on a triangular lattice
are coupled by the 1NN interaction and each spin directs
only to one of the eight corners of a cube. The prefacing
transformation maps many further NN interactions in the
LG Harniltonian onto the more complicated local degrees
of freedom coupled by the 1NN interaction in the dCH
Hamiltonian. It also preserves the main symmetries of
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the LG, i.e., p(2X2), (2X2), and (1X1). The dCH
Hamiltonian is analyzed using a simple Migdal-
Kadanoff —type RG method.

A. Prefacing transformation

Consider unit cells of (2X2) translational symmetry on
the honeycomb LG, as shown with dashed lines in Fig.
1(a). The unit cell in the LG system becomes a supersite
in the dCH system through the prefacing transformation
as shown in Fig. 2, and the assembly of the supersites
forms a triangular lattice. The reduced dCH Hamiltonian
is expressed in spin representation as

+ +

Hqc~ —g trtr[K)Sr Sr+K3(Sr Sr)

+K3(Sr SJ ) +K4]+g(K5tr +K6),

(3)

exp(Hdc~)= Tr +Pr(tr, Sr, I+ I'r)exp(HLo), (4)

where I labels the unit cells in LG or supersites in the
dCH, and In]r is the assembly of occupation numbers,

I nq, nz, nc, nD, n~, nor, nr, ns Jr, in unit cell I.
The prefacing transformation cannot be performed ex-

actly. Therefore, the two-cell approximation is used
which is the quasiperiodic boundary condition, realized by
surrounding one unit cell by six replicas of the other,

adatoms is equally shared by the eight occupied supersite
states each with a corresponding spin direction. The pro-
jection operator has the value of 1/(number of recipient
supersite states).

With the use of the projection operator, Pr(tr, Sr; I n Ir)
for unit cell I, the prefacing transformation from the LG
system to the dCH system is written as

where I and J label supersites, and tl and SI are the dilu-
tion operator (tr ——0 or 1) and spin variable with corner
cubic anisotropy, Sr ——(+1,+1,+1), on supersite I, respec-
tively. The spin variables appear in a inner-product form
only, i.e., no field terms occur in Eq. (3). The first sum
counts the 1NN pairs on the triangular lattice of super-
sites, and K s are reduced interaction parameters.

In the LG system, there are 2 configurations of parti-
cle occupation within a unit cell, but they reduce to 52
due to the INN exclusion, and the maximum number of
occupation is 4. These 52 states in the LG unit cell are
associated with nine states on a supersite in the dCH sys-
tem as shown in Fig. 2. The nine states consist of a state
for empty supersite (t =0), and eight states for occupied
supersite and also with the spin pointing to one of the

eight cubic corners [t =1 and S=(+1,+1,+1)], which
are associated with the eight sublattices in the (2X2)
translational symmetry.

The prefacing transformation, distributing 52 states
into the nine states, obeys the equidistribution rule and is
made precise with a projection operator. A configuration
having no adatom in the unit cell is assigned to the empty
supersite state, and that having one adatom is assigned to
one of eight occupied supersite states with a correspond-
ing spin direction. A configuration having two or more

&ss z
D

exp[6Hace(I»)] = Tr PrPr exp QHLo(I, J)
Injr I"I av

T

where the r sum runs over the six possible connections of
the replicas, and ( ),„means the average over the 48 dis-
tinct ways of constructing unit cells on the honeycomb
lattice. Each of these 48 ways corresponds to an element
of the Q~ group. Only in this averaging process the
present calculation departs from the prescriptions by OB.
The precise reasoning for this departure is discussed in the
Appendix.

A dCH bond Hamiltonian denoted with a tilde is used
in Eq. (5):

Hdc~(I, J)=rr&J[ K]Sr'Sj+K2(Sr Sr)

+K3(Sr SJ)3+K4]

+ (K, /3)(tr + tJ ) +K6/3, (6)

in which the potential energy on a supersite are shared by
the 1NN bonds pointing out of the supersite; the keypoint
in the position-space RG treatment of keeping the ratio of
the number of single-site energy to that of the pair-
interaction energy on each site. ' It should be noted that
in the unit-cell pair Hamiltonian HLG(I, J) given in Eq.
(5), the intra-unit-cell interactions and chemical potential
are grouped into the single-supersite energy, and the
inter-unit-cell interaction into the pair-interaction energy.

Sx B

unit cell su persite

FIG. 2. Unit cell in LG and the supersite in dCH. An exam-
ple of a case where the A site is occupied in the LG unit cell,
which corresponds to t =0, and the spin at the dCH supersite
directing to the A corner, is illustrated.

B. Recursion equation

The dCH bond Hamiltonian on the triangular lattice is
iterated through the simple Migdal-Kadanoff —type recur-
sion equation. It is convenient to use the variables, which
are the reduced pair energies E;, between sites I and J,
given by
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E3

3 9 27

—1 1 —1

—3 9 —27 1

1 1

3 3

1 1

3 3

1 1

3 3

(SI Sg ——3, tt tg——1)——

(St SJ ———1, tt tg ——1)——
(St SJ———3, tt t——j= 1)

E4 1 1
1 1

3 3 (SI Sg ——1, tt tJ =——1)
(7)

E5 0 0 0 0

0 0 0 0

1 1

6 3

0 —, E6

(tt ——O, tj ——1 or tt ——l, tq
——0)

(tt tq ——0)——

X=exp(E3 E i ), —
Y=exp(E2 Ei ), —
Z =exp(E4 E, ), —

S=exp(E5 E i ), —

T=exp(Es E, ), —

(8)

the recursion equation for the dCH model Eq. (5) can be
expressed simply as

where the states of supersites I and J are assigned by the

values of the St Sq, and tt, and tz in the parentheses.
Then, using another group of parameters, '

They are left out of consideration (see Sec. V). The re-
gions for S,T variables are 0 &S, T. The limit S=p =0
indicates that E~ &~E5,E6, and corresponds to the undi-
luted limit ((t)=1, where ( ) means thermodynamic
average), where the spin order parameters discriminate the
further division between solid and liquid. The limit
T~00 means E5,E6~&E&, . . . , E4, and corresponds to
the gas or diluted limit ((t ) =0).

C. Physical quantities

The first derivatives of the free energy, such as density
n or reduced internal energy E;„„areobtained as

X'=(2X'+ 6Y'Z'+S')/D,
Y'=(2Y +2Y +2Z +2Z X +S )/D,
Z'= (2X'Y'+4Y'Z'+2Z'+S')/D,
S'=(1+X'+3Y'+ 3Z'+ T')S'/D,
T'=(8S +T )/D,

6
n = ——,

' g P, (N/8),
a=i

are.
E;„,=-,' g g '

y. (N/8),
a=1 b b

where

(10)

where D= 1+X"+3Y+3Z +S and the transformed
variables are denoted with a prime.

The range of variables X, Y,Z is 0 &X,Y,Z & 1, showing
that E&, the reduced pair energy with spins parallel, is the
largest of E s (i = 1, . . . , 4), which in turn means a fer-
romagnetic regime (see also Table I). The region outside
the ferromagnetic regime is an antiferromagnetic regime,
which includes phases having translations disjoint with
the (2X2), such as (v 3XV3) or (v'7/3X&7/3), etc.

~ (N/8)
1 B ln=(N/8)

N/8 BE,

and N is the number of the sites in the LG system and —,
'

appears as the rate of coarse graining in the prefacing
transformation. The P, is the derivative of the logarithm
of the grand canonical partition function =(N/8) having
N/8 supersites, and is calculated via the chain rule
through iteration equation as

TABLE I. Five completely stable sink fixed points of dCH and their locations. The third and fourth
columns provide the character of the phases, which are the domains of attraction of the fixed points. In-
terrelations between E; s at the fixed points are listed in the fifth column, which also give the character
of the phases. Ferro. indicates a ferromagnetic phase, PO Ferro. is the partially ordered ferromagnetic
phase.

Sink
points

4P

2P

Li

Gas

Location
(x, z,z,s, r)

(0,0,0,0,0)

(1,0,0,0,0)

(0, 1,0,0,0)

(1,1, 1,0,0)

(0,0,0, oo, 00)

Phases
in LQ

p(2X2) solid

(2X2) solid

(1X1) solid

liquid

gas

Phases
in dCH

Ferro. , (t) =1
8P solid
PO Ferro. , (t) =1
4P solid
PO Ferro. , (t) =1
2P solid
Spins disordered
(t) =1, liquid
(t ) =0, gas

Relations
between E s

E1 »E
E1——E3 »E2)E4). . . , E6

E1——E2»E3, . . . , E6

E1——E2 ——E3——E4 »Es~E

Es,E6»E1, . . . , E4
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fixed points) which separate the five-dimensional space
into five domains. '" Each domain is assigned to one of
the sink points into which the iteration starting from any
point in the domain flows. The sink fixed points are list-
ed in Table I. From the third and fourth columns, the re-
lation between the phases in the LG and dCH systems can
be found. The partially ordered phases of the 4P and 2P
fixed points are distinguished by the equivalence of the
two and four spin directions, respectively, as seen from
the relations between E s given in the fifth column. The
occurrence of the three phases, i.e., gas, liquid, and solid,
follows from the introduction of the dilute variables in
dCH. ' The discussion of the remaining 40 fixed points
and the global phase diagram of dCH will be given else-

where.

V. RESULTS

FIG. 3. Cluster consisting of nine supersites in dCH with a
periodic boundary condition.

N/8 BE, BE,

1

4"
b

8Kb

aK.
n

BE'"'
bn

K(n —1)
bn —1

X
Bin=(N/8 && 4")

BE'"'
bn

IV. FIXED POINTS AND PHASE
CORRESPONDENCE

When the iteration of recursion converges, which is
judged by the attainment of the stationary values in

(BE,'/BEb)'s, the derivatives of the grand partition func-
tion Bin=/BE, is calculated for the cluster consisting of
nine supersites with the periodic boundary condition
shown in Fig. 3. Then the value of P, is obtained via Eq.
(11).

Since our treatment includes interactions up to that
which is 6NN, the values of five interaction parameters
J (I =2, . . . , 6) in Eq. (1) must be determined. .(Ji
corresponds to the infinite repulsion mentioned in Sec. II.)
There have been a few theoretical studies on the interac-
tion between chemisorbed atoms on metallic surfaces. '
According to these studies, the interaction seems to be
much more complicated than that between rare-gas atoms
physisorbed on solid surfaces; ' for example, Muscat and
Newns' have shown complicated variation of the interac-
tion with interparticle distance. Although these theories
are interesting, they are based on rather simplified models
and the results do not seem to be conclusive. In our cal-
culation, therefore, the relative inagnitudes of J 's are
suitably varied so that the experimental phase diagram
may be well reproduced.

Four sets of parameters to be considered in our work
are hsted in Table II. Note that our special concern here
is how the sign of J3 affects qualitatively the width of the
(2&&2) translational phases, as discussed at the ends of
Secs. I and II. Set I is identical to that used by DSW,
and in set II the 3NN attractive interaction is added to set
I according to DSW's suggestion. Set III represents the
explanation set forward in this work, and set IV is a vari-
ant of set III with attractive 3NN interaction.

A. Phase diagrams

There are a total of 45 fixed points in the five-
dimensional interaction parameter space (X, Y,Z,S,T ) of
the dCH Hamiltonian. Among them, there are only five
five-dimensional sink fixed points (or completely stable

The temperature versus chemical potential or density
phase diagrams have been obtained for parameter set I
and are shown in Fig. 4. In Fig. 4(b) the result by DSW,
who used the same parameter set, is also shown and com-

TABLE II. Parameter sets considered. Note that positive J implies an attractive interaction. The
1NN interaction is always taken to be infinite repulsion and Jq to be finite repulsion. Attr. is the attrac-
tive interaction, and NNI is the nearest-neighbor interaction.

Set
Interaction parameter ratio

Js/I J21 Remark

I
II
III
IV

0
0.2

—0.4
0.05

0
0

—0.8
—0.8

0
0

—0.1
—0.1

0
0
0.02
0.02

up to 2NNI
attr. 3NNI
attr. 6NNI
attr. 3NNI and 6NNI
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the (2X2) translational symmetry do not occur within the
two-cell approximation described in Eq. (5). The result
for set III so obtained is shown in Fig. 6. We observe that
a p (2 X 2) phase appears and is in contact with the (2X2)
phase, a portion of the boundary being a continuous tran-
sition. Therefore, the (2X2) translational symmetry re-
gion, p(2X2)+(2X2), extends considerably wider than
the case with the (2X2) phase only shown in Fig. 4 of set
I. It has been found that if the weak 6NN attraction is
converted to the repulsion with the same magnitude, the
p(2X2) and the gas plus p(2X2) coexistence regions
shrink to some extent although the qualitative features of
the diagrams remain the same. In Fig. 7, the result for set
IV (attractive 3NN case) is illustrated, where a gas plus
(2 X 2) coexistence region appears as in Fig. 5.

From the exact result, ' it is known that the q-state
Potts model exhibits the first-order transition for q &4
and the continuous one for q &4. Furthermore, it is con-
jectured that the cubic ¹ectormodel or O(N) model ex-
hibits the first-order transition for N )2 and the continu-
ous one for N&2. ' The cubic model included in the
dCH model is the N =4 case; hence the first-order transi-
tion is expected. On the other side, in the context of the
diluted model, it is known that the phase transitions be-
tween an ordered solid and liquid is continuous and that
between an ordered solid and gas is first order. ' From
the above information and the consideration of phase dia-
grams of the CH and dCH model planned to be published
elsewhere, the following characterization of the phase
boundaries in Fig. 6 can be given: The transition between
liquid and (2X2) belongs to the four-state Potts criticali-
ty; both that between liquid and p(2X2), which does not
occur in Fig. 6, and that between (2X2) and p(2X2) to
the Ising criticality; that at the point where the gas,
(2X2), and p(2X2) meet belongs to the cubic criticality,
but it is a first-order transition, and all the other transi-
tions appearing in Fig. 6 are of the first order.

It should be noted that the order-disorder transition of
the p(2X2) phase [i.e., that between p(2X2) and the
gas/solid] belongs to the Ising universality class. More
precisely, that between p(2X2) and the liquid that does
not occur in Fig. 6 is the Ising continuous transition, and
that between p(2X2) and gas occurring in Fig. 6 is first
order. Although the result, Fig. 6, indicates that the latter
is the case, we cannot rule out the possibility of the form-
er case of the continuous transition.

(b)(a)
CV

0.3

E
~ 0.2

liquid

liquid

0.2—
gas

gas
O. I—

, I

02 f 03
Density n

0 I 2

Reduced chemical potential p/) J2(

FIG. 4. Phase diagrams computed for parameter set I. (a)
Temperature vs chemical potential. (b) Temperature vs density.
Solid line: calculated continuous phase transitions; thin solid
line: continuous change between two fluids, i.e., gas and liquid;
dotted-dashed line: continuous transition obtained by DSW
(Ref. 4). The arrows indicate the locations of the densities
n =

8 and 4, at which the p(2)&2) and (2&&2) phases are com-

plete.

pared with the present result. The maximum temperature
of the (2X2) ordered phase obtained in our work is
1/

~
J2

~

=0.26, whereas that of DSW is 0.35. The width
of the (2X2) phase of the former is a little larger than
that of the latter. These differences seem to come from
the approximations used in our work, i.e., the prefacing
transformation and simple Migdal-Kadanoff procedure.

Figure 5 displays similar diagrams for set II. Introduc-
tion of the 3NN attraction produces a gas plus (2X2)
coexistence region on the lower-density side. Incidentally,
we have observed that as the 3NN interaction is made
more attractive, the gas plus (2X2) coexistence region be-
comes wider. It is seen that Fig. 5(b) is in good agreement
with the experimental phase diagram shown in Fig. 6(b),
and thus corroborates DSW's prediction.

Now we are interested in the repulsive J3 case. It is
found that unless rather strong repulsive J4 and J& are in-
troduced, the phases (W3X V 3), (&7/3X &7/3), etc. ap-
pear in the medium-density region of the phase diagram.
These phases have not been found experimentally, at least
in the experimental temperature range of 150—300 K.
Therefore, the parameter search of set III has been carried
out under the constraint that phases other than those with

(b)(a)

0.4— liquid0.4—

(b)
0.3—0,3—

J

0.2—
gas

O. 2—

ga
+

O. I—O. I—

0.30.2I 2

I // l&21

/
I

/
~goS

r+p (2 x 2) I

1

0. I $

0. I

I

I I I

0.2 7 0.3FICx. 5. Phase diagrams for the parameter set II. (a) Tem-
perature vs chemical potential. (b) Temperature vs density.
Solid line: calculated continuous phase transitions; thin solid
line: continuous change between two fluids, i.e., gas and liquid;
dashed lines: the first-order transition; open circles: multicriti-
cal points.

0 I 2 3 4

p /I Jzl

FIG. 6. Phase diagrams for parameter set III. (a) Tempera-
ture vs chemical potential. (b) Temperature vs density. Heavy
line with closed circles: experimentally obtained boundary of
(2&2) symmetry phase.
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FIG. 7. Phase diagrams for parameter set IV. (a) Tempera-
ture vs chemical potential. (b) Temperature vs density.

E, =h g —2(BE,„,/BN), (12)

where hg is the enthalpy per molecule of gaseous hydro-
gen which is taken to be an ideal gas, and A, X, and E;„,
are the area, number of hydrogen atoms, and the internal
energy, respectively, of the adsorbed LG system. The
derivative in Eq. (12) is calculated by numerical differen-
tiation of E;„, in Eq. (11). Only the derivative
—2(BE;„,/BN)z T, is compared to the experimental E,d
in the following, because hs is independent of n, and the
relative variation of E,d with the density n is of main in-
terest here.

In Fig. 8, experimental data of E,d versus work-
function change b,p are plotted. ' With the use of the b,II
versus n data, 3 the points at which n = —,

'
and —, are deter-

mined as shown with arrows in Fig. 8. Note that the loca-

28-

u 24-
E
CI
~~ 20-

n =1/8

i~~sry i

n= t/4

B. Isosteric heat of adsorption

The isosteric heat of adsorption shown in Fig. 8 has
been obtained for the H/Ni(111) system by Christmann
et a/. ' They determined it from a series of isotherms
ranging from 41 to 149'C. Note that the temperature
range is relatively high compared with T,„=270 K in
Fig. 6(b); in this range the adsorbed hydrogen is in the
disordered phase.

The isosteric heat of adsorption E,d is expressed ac-
cording to thermodynamics as

FIG. 9. —2(BE;„,/BN)~ T vs n diagrams. (a) That for pa-
rameter set I. (b) That for set II. The solid, dashed, and
dotted-dashed lines represent the results at lower, medium, and
higher temperatures, i.e., 41, 85, and 149'C, respectively. The
arrows indicate the point at which the recursion flow changes its
sink point.

O. I 0.2 0.3
I O. I

I

0.2
I

0.3

tion of the arrows should be taken approximate, since the
b,P versus n relation was obtained at T=150 K and the
E,d was determined from higher-temperature isotherms
(see above). The steplike decrease of E,s in Fig. 8 with
increasing density can be understood by considering the
way in which stronger repulsions between hydrogen atoms
at shorter distances become operative as the density in-
creases.

Figures 9 and 10 are 2(BE;„,/B—N)z T versus n dia-
grams computed by using parameter sets I—IV. The ener-

gy scales of the calculated —2(BE;„,/BN)z T for each pa-
rameter set are determined by fitting the calculated T,„
of the (2X2) phase to the experimental T» —270 K.3 4

Experimental E,d are obtained from the isotherms rang-
ing from 41 to 149'C, so that the three curves are calcu-
lated at lower (41'C), medium (85'C), and upper (149'C)
temperatures which are listed in each of the figures.
From these figures, about a 8—10 kcal/mol decrease of
—2(BE;„,/ BN)g T can be seen, in approximate agreement
with experiment. We observe further that the introduc-
tion of the 3NN attraction in Figs. 9(b) and 10(b) leads to
the increase of —2(BE;„,/BN)z z with n in the region
n (0.2, which is contrary to the trend of the experimental
E,d in Fig. 8. Thus the possibility of the 3NN attraction
suggested by DSW is excluded. Also, the introduction of
further-neighbor interactions other than 3NN leads to the
structure at around n =0.1 of the —2(BE;„,/BN)z z.
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FIG. S. Experimental isosteric heat of adsorption vs work-
function change by Christmann et a1. (Ref. 19) taken from a
series of isotherms ranging from 41 to 149'C. Arrows indicate
the densities estimated from the hP vs ndata at 1-50-K.

-20

(a) (b)

FIG. 10. —2(BE;„,/BN)~ T vs n diagrams. (a) That for pa-
rameter set III. (b) That for set IV.
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curves in Fig. 10(a). We think that the structure may be
related to the experimentally observed steplike drop of
E,d at around b,P = 100 mV in Fig. 8. The discontinuities
near n =0.2 marked with arrows in Figs. 9 and 10 are a
computational artifact, i.e., they come from the fact that
the sink point of the recursion iterations changes in going
from gas to liquid at this point. It is possible that the en-

tropy is counted differently in different phases in prefac-
ing transformation, as discussed by Berker.

VI. CONCI. UMNG REMARKS

I

0
I

a
Ip

FIG. 11. Neighboring unit-cell pairs, an A site being occu-
pied in one cell and a y site in the other cell. (a) One of the 48
ways of unit-cell choices, where the 3-y pair is at the 1NN dis-
tance. (b) Another choice, where the A-y pair is at the 4NN
distance.

In Sec. V, to interpret available experimental results for
the H/Ni(111) system, two possibilities, (A) the Ji attrac-
tive case and (B}the repulsive J& case, are examined in the
same calculational framework. Both cases (A) and (B)
reproduce well the main features of the experimental
phase diagram. However, the calculated results in case
(A) indicate that the isosteric heat of adsorption E,d in-

creases with the density n for n &0.2, which is incon-
sistent with experiment, whereas case (B) is satisfactory in
this respect. However, parameter set III determined as
the result of optimization in case (B} exhibits somewhat
unusual variation of the J~ s with distance. Especially,
the relatively large ratio of J4/Jq is intriguing. More
theoretical studies are certainly necessary to understand
the interactions between chemsorbed atoms.

The effect of the second-layer Ni atoms is considered to
be very small, but increasing its magnitude would give rise
to a crossover of the critical behaviors from that of
P6mm space-group symmetry to that of @3m 1 space-
group symmetry. The crossover effect could be treated
theoretically by adding the staggered field mentioned in
Sec. II to the LG Hamiltonian, Eq. (1). For the system
0/Ni(111), Roelofs et al. ' have experimentally obtained
the critical exponents, and shown that the critical
behavior is probably that of @6m' space-group symme-
try. For the case of the H/Ni(111) system, the experimen-
tally obtained critical exponent of the order-disorder tran-
sition of P (2X2) will be the Ising type for P 6mm space-

group symmetry or the four-state Potts type for @3m 1

space-group symmetry, if it is the continuous transition.
Experimental establishment of the phase diagram in
lower-temperature regions is highly desirable, although
such experiments might be difficult. As seen from the

comparison to OS%Ps result in Fig. 4 and as mentioned in
Sec. V A, the present results are approximate, but qualita-
tive features such as the phase connection or the charac-
terization of phases should be reproduced correctly.
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APPENMX

The averaging over 48 ways of constructing unit cells
on a honeycomb lattice is the crucial step in the prefacing
transformation. Actually, in the projection step from unit
cell to supersite, the symmetries in Go other than those in

Gp ( 2 )(2 ) once vanish, and they are restored later through
the averaging process. Also at the same time, various
further-neighbor interactions in LG are approximated to
yield the 1NN interaction in dCH.

The averaging used in this work is

exp[6HdcH(I, J)]= Tr PIPJexp g HLG(I, J)
I&II I& I J av

and the one by Ostlund and Berker is

6HrcH(II)=()n Tr Prprr"p QHLrr(II)
I n I I, I n IJ av

(A2)

the former corresponding to the average on the level of
partition function (or anneal-like average), and the latter
on the level of physical quantity (quenchlike average).

Let us consider, for instance, two neighboring unit-cell
pairs, each in the different unit-cell choices in the average
( )„,as shown in Figs. 11(a) and 11(b). In both cases, a
cell has the A site occupied and the other cdl has the y
site occupied, denoting one of the configurations in trace
in Eqs. (Al) and (A2). They are either of the 1NN or the
4NN pairs. These 1NN and 4NN interactions must be
averaged or approximated to give a single A-y pair in-
teraction of supersites. If Eq. (Al) is used, the resulting
A-y pair interaction stays finite; on the other hand, Eq.
(A2) brings about infinite repulsion resulting from the
1NN infinite repulsion of LG. The average ( ),„ is not
only the symmetry-restoring process, but also the approxi-
mating process of the 1NN and 4NN interactions to the
single interaction. Here we insist that the average must be
taken by means of Eq. (Al), since the two interactions will
be better averaged on the level of the partition function
than the physical quantity.

It should be noted here that the degrees of freedom of
the LG Hamiltonian is not identical to those of dCH.
Precisely, the possibilities of multiple occupation on a unit
cell in LG is suppressed on supersites in dCH.
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