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Effects of crystal fields on the ground state of a Ce atom
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The U~ ~ limit of the Anderson model of a magnetic impurity in a metal is considered in the
presence of crystalline fields. The Bethe-ansatz equations for the ground state are solved for a Ce
ion in a cubic environment; and the valence, the population of the levels, the resistivity, and the

magnetic susceptibility are obtained. The quenching of the SU(6) Kondo state to an effective SU(2)
or SU(4) Kondo state, as well as the universality of the Coqblin-Schrieffer limit, is discussed.

I. INTRODUCTION

The orbitally degenerate Anderson model in the U —+ m

limit (singly occupied 4f level) has been the subject of
many recent theoretical papers. In particular, the impuri-
ty model has been solved by means of Bethe's ansatz' and
explicit expressions for the ground-state properties, as
well as the thermodynamic Bethe-ansatz equations, have
been obtained. The only SU(Ã)-symmetry-breaking
mechanism treated so far is a magnetic field in the
Coqblin-Schrieffer limit.

It is the purpose of this letter to discuss the effect of
crystal fields on ground-state properties of the model.
Our starting point is the results of Refs. 2—4, which are
briefly summarized and discussed in the context of an ar-

bitrary breaking of the SU(N) symmetry. The case of a
Ce ion (j = —,) in a cubic environment is then solved expli-
citly. Crystal fields are usually comparable to the f-level
width and sometimes much larger than the Kondo tem-
perature. They are hence an essential feature in a realistic
description of Ce systems. Finally, we discuss the Wilson
number, which characterizes the universality of the
Coqblin-Schrieffer limit.

The model' consists of a localized f level of degenera-
cy N =2j +1 and energy e, which may be empty or singly
occupied, and is hybridized with the conduction electron
states through a contact potential V. For a linear disper-
sion of the conduction states the model is integrable' and
the Bethe ansatz leads to the following set of integral
equations [Eq. (V.8) of Ref. 3]:
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Here j is the total angular momentum of the f electron, L
is the length of the box, and V =2I = 1, I being the res-
onance width. o'"(g) are density functions of complexes
of (l+ 1) bound (paired) electrons. They consist of an im-

purity and a host part, o' '=ah'o„+(1/L)o 'p. We label
the occupation numbers of the levels in decreasing order
np & n ~ ) - . & n2j, such that n p corresPonds to the
lowest-lying level and n21 is the least populated. o.h,'„(g)
is then the density in the electron gas associated with all

nq for q (l occupied and q & l empty. The relative occu-
pation of the levels is then given by

nt nt+1 dgt7Imp(g)s npj+i
(l)

In the ground state the density function ot(g) for occu-

pied states vanishes identically for g&Bt. It is usual to
introduce "hole" density functions which are nonvanish-
ing only in the interval [Bt,ao]. The hole functions are
denoted cr' '(g) and are also given by Eqs. (1) and (2).
Q=Bzj plays the role of the Fermi level. The ex-
plicit form of the kernel Ktj is given by (V.9) of Ref. 3

lq
and is not needed here. The first term on the right hand
side of (1) is the mixed-valence driving term which is re-
sponsible for the charge fluctuations. They are suppressed
for Q~ao and the remaining (second) driving term is the
one of the Coqblin-Schrieffer Hamiltonian.

The Bt (including Q) are a set of X =2j+1 constants
to be determined according to the external conditions im-
posed on the impurity. They determine the number of
electrons of each "color" in the host and, hence, valence
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and relative population of the f-level states of the impuri-

ty. The splitting of an N-fold multiplet can be expressed
as a linear combination of Stevens operators O~, where
1 & I & 2j. In the ionic Hamiltonian there are then
(N 1)—-independent coefficients which uniquely deter-
mine the 8) for a fixed Q. The Zeeman splitting, for in-

stance, can be characterized by an O~ Stevens operator
and is the only possible splitting for j=—,. A triplet can
in addition be split by an axial crystal field, i.e., an 02
Stevens operator, etc.

We diagonalize the ionic f-level Hamiltonian and new
eigenstates (colors} replace the spin eigenstates. The num-
ber of electrons of each color is a conserved quantity of
the system (host with impurity) and Eqs. (1)—(3} remain
unchanged when reinterpreted in terms of colors. Hence,
the splitting schetne of the isolated ion completely deter-
mines the one of the interacting system. As a conse-
quence, the Lea, Leask, and Wolf scheme for the level
splitting in a cubic environment is valid also in the pres-
ence of the Kondo effect. For definiteness, we limit most
of our discussion to j=—', , which corresponds to a Ce im-

purity.

Hamiltonian consists of only one fourth-order Stevens
operator. We denote the splitting with 6b4, b4 &0 ( &0),
indicating that the I 7 (I s) is the lower-lying level. If
b4&0, B~ and Q are finite, all other BI———ac. If b4&0,
only 83 and Q are finite. Equations (1) and (2) then
reduce to two coupled integral equations, which for small

~
b4

~
[8, (83 ) && Q] can be solved explicitly, yielding

0 h,'„=X'; Xh„, , 4

where X' is the zero magnetic field susceptibility in the ab-
sence of crystal fields [Eq. (V.19) of Ref. 3; note that a
factor (N/2)' " is missing in that expression]. A
similar expression holds for b4&0. Hence, the linear
response to a magnetic and a crystal field is the same.
The response of a free-electron gas to a crystal field is
used to relate B~ (83) to b4..

6
~
b4

~

/I"=(2' 9/en. )ex p[(n/6I }(8—Q)] .

If 6
~
b4

~
/I is not small, the two coupled integral equa-

tions require a numerical solution. The valence, the popu-
lation difference between I 7 and I s, and the resistivity as
a function of crystal field splitting are shown in Fig. 1 for

II. ZEEMAN SPLITTING (REF. 6)

We consider a magnetic field and no other symmetry-
breaking potentials. The magnetization is given by the su-
perposition of the one induced by the mixed-valence and
Kondo driving terms in Eq. (1). Since the resonance
width I is much larger than any laboratory field, the
mixed-valence contribution " is always linear in H. For
the Kondo part, H/Tx is not necessarily a small parame-
ter and a numerical solution of the integral equations is re-
quired for j&1. The parameters Bt, l &2j, are deter-
mined such that for small fields nt nt+, in—Eq. (3) is
proportional to H and independent of I. Only one 81,
e.g. , Bp, is independent and parametrizes the field; all oth-
er Bt differ from Bp by a constant. Note that from the
symmetries of the kernel Kl~ and the driving terms at
small fields one has 81 =Biz
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III. AXIAL CRYSTAL FIELD

Let us consider a half-integer j. In the absence of a
magnetic field the axial crystalline field splits the N-fold
multiplet into N/2 Kramers doublets. The two states
forming a Kramers doublet are degenerate, i.e., nt =n1+~
or Bt = —ao for I even. We are then left with N/2 cou-
pled integral equations, which yield the N/2 occupation
numbers of the doublets, i.e., the valence and the j——,

'

relative populations. The relative populations are deter-
mined by the ionic Hamiltonian, e.g., for Ce, j——, =2,
there is a second- and a fourth-order Stevens operator, for
Yb, j = —,, there is in addition a sixth-order Stevens opera-
tor. A super-imposed cubic crystal field does not qualita-
tively change the results.

IV. CUBIC CRYSTAL FIELD

The sixfold multiplet of a Ce ion in a cubic environ-
ment splits into a I 7 doublet and a I 8 quartet. The ionic

I

-2 0
6 bt, I I"

FIG. 1. Mixed-valence Ce ion in a cubic crystal field. The
splitting between the I 7 and I 8 multiplets is 6b~. I is the reso-
nance width, n~ is the valence, nr -nr the difference in level

7 8

population, p/po the resistivity normalized to its zero-field
value, and J, /P, the spin susceptibility normalized to its value
for b4 ——0. The curves correspond to (a) e—Q = —12I /~, (b)
e=Q, and (c}e—Q=12I /m. The relation to e of Refs. 2 and 3
is e=(m. /21 )(e—Q) —[j—

2 1n2 —
z N1n z N)].
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three f le-vel positions. Note that the valence grows with
the splitting, the growth being proportional to b4 for
small fields. (There is no linear change in b4, since the
trace of Stevens operators vanishes. ) As expected from
Eq. (4), the relevant energy scale for variations of
nr nr—is the Kondo temperature of the j=—,

'
sixtuplet,

7 8

unless the f level is far above the Fermi energy (strong
mixed-valence regime). For large fields, either nr or nr
gets small and reduces the scattering phase shift, such
that the resistivity decreases.

V. CUBIC CRYSTAL FIELD AND SMALL
MAGNETIC FIELD

We restrict the discussion to b4 &0; the case b4 &0 fol-
lows analogously. If the magnetic field is small compared
with all other energies in the system, it can be treated as a
perturbation. This means that Bp B2 B3 B4 «e,Bi,Q
All Bi are finite since all the degeneracies are released.
We eliminate cr"'(g) in Eq. (1) and express it in terms of

I

its "hole" function cr'"(g). The feedback of the magnetic
field on cr'"(g) and o' '(g) is of higher order than linear
response and is neglected. The equations for o'"(g) and
cr' '(g) then decouple from the other four and the results
of Sec. IV can be used. The driving terms of the remain-
ing four equations depend now on cr'"(g) and o' '(g).
Note that the elimination of o'" in (1) has modified the
kernel of the integral equations. The new kernel com-
pletely decouples cr' '(g) from o' '(g), l =2, 3,4. The ker-
nel for the o' ' equation is the one of a spin- —,

' and this
equation describes the Zeeman splitting of the I 7. The
kernel of the other three integral equations corresponds to
a j= —, and is identified with the I s multiplet.

In a small magnetic field the system behaves like a Fer-
mi liquid, such that the solutions for the impurity and the
host are proportional. Since the susceptibilities in the
free-electron gas are known, it is not necessary to actually
solve the equations. The impurity spin susceptibility is
given by X, =X~ +Xp +X», the latter term being the van

Vleck susceptibility:

Xr = exp (Bi —e) +2no; ~(iver)
25 -(1)

36m 2I
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where cr denotes the Fourier transform of cr.
~(1)

For small crystal fields only the o contributions are
relevant and one recovers the susceptibility of the isotro-

~(1)
pic SU(6) impurity. For large b4, cr plays a secondary
role, and the main contribution comes from the exponen-
tial in (6). This term represents the Kondo susceptibility

~(1)
of the I 7 doublet. Note that o.h„, is essentially linear in
b4, such that the Kondo temperature depends on b4 like

Tlc'-(ez/b4)exp[(n. /2I )(e eF)] . —
This result has also been obtained through
renormalization-group arguments. If b4&0, the Kondo
term appears in g~ and the Kondo temperature has,

8

asymptotically for Tk «
~
b4

~
&&I, the form

Tx'-ez(ez/
~
b4

~

)' exp[(m/41 )(e—eF)] .

The susceptibility as a function of b4, normalized to its
b4 ——0 value, is shown in Fig. 1.

functions of H/Tx and b4/Tlc, respectively. The univer-
sality is characterized by the Wilson number that relates
the low- and high-temperature response to a small field.
The Wilson number is independent of the mechanism lift-
ing the N-fold degeneracy, e.g., crystal or magnetic field,

W =2Py exp ——1+—3 1

2
1 + 1

iV
(9)

where y is Euler's constant and p=1.93890. Expression
(9) contains the known cases N =2 (Ref. 9) and N =3
(Ref. 10) and agrees with the numerical values" for j& 1.
The Wilson numbers obtained in Ref. 12 are not correct.

In summary, we solved the Bethe-ansatz equations for
the ground state of a Ce ion in a cubic crystal field and
showed the quenching of the SU(6) Kondo ground state
with growing field into an effective SU(2) or SU(4) Kondo
state. Extensions to other systems and symmetries are
now straightforward. In view of the experimental impor-
tance of crystal fields, we believe this result is a relevant
step toward a realistic description of impurity systems.

VI. UNIVERSALITY OF THE
COQBLIN-SCHRIEFFER LIMIT

In the Kondo limit the magnetization and the popula-
tion difference between the I 7 and I 8 levels are universal
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