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%e study variationally the circular-hyperbolic vortex-pair free energy. This bound pair yields a
free energy much lower than that from a pair of isolated analytic vortices. The satellite resonance

~ ~

frequency of the pure / vortex pair and that of the vortex pair with nonuniform d are analyzed. We

find that the pure I vortex pair gives the observed transverse satellite frequency as well as the ob-

served intensity of the satellite, while the vortex pair with nonuniform d gives a satellite frequency

that is somewhat lower than observed experimentally. It is puzzling why the pure I vortex with

higher free energy than that from the vortex with nonuniform d is more consistent with experiment.

I. INTRODUCTION

In a series of papers' (which will be referred as I and
II, respectively) we have studied the spatial conformation
of three types of analytic vortices and associated satellite
frequencies in rotating superfluid He-A, which can in

principle be compared with the experimental data by
Hakonen et al. ' %e found that the vortex lattice
formed by the circular and the hyperbolic vortices is most
stable, which is the generalization of the result obtained
by Fujita et al. However, such a vortex lattice has two
separate satellite resonances, in contradiction to the exper-
imental observation ' in rotating He- A. Furthermore,
the apparent agreement between the average satellite reso-
nance frequency and the observation is fortuitous. Better
variational solutions for the analytic vortices give the sa-
tellite frequencies much closer to the bulk resonance fre-

quency. The details of this analysis will be summarized in

Appendix A.
More recently the NMR experiment is performed in a

tilted magnetic field from the rotation axis. No apparent
change in the satellite frequency has been observed. This
experimental result eliminates the type of analytic vortices
studied in I and II as possibilities in the observations of
the rotating He-A experiment.

The only texture which is insensitive to the orientation
of the static magnetic field is mostly made of the l tex-
ture. A model which fulfills this constraint has been al-
ready proposed by Seppala and Volovik (SV). They
described this vortex as a variant of a 4nanalytic vo.rtex
of pure I texture. A more precise description of this tex-
ture, however, is the bound pair of two 2m analytic vor-
tices. The type of vortex studied by SV is the bound state
of a radial and hyperbolic vortex, while we shall show
that the bound state of the circular and hyperbolic vortex
gives a lower vortex free energy.

The spatial conformations of the l vector projected on
the x-y plane for these two types of vortices are sketched
in Figs. 1(a) and 1(b), respectively Since the circ.ular-
hyperbolic variety of the SV vortex has the lower energy,
we shall limit ourselves to this texture. In Sec. II we
analyze a pure l texture of the circular-hyperbolic SV vor-

tex. We find that the spatial conformation of the analytic
vortex depends weakly on ro, the cutoff distance. Then,
limiting ourselves to the parallel geometry where H~~Q
(H is the static magnetic field and 0 is the rotation vec-
tor of the cylinder containing superfluid He-A), we

analyze in Sec. III the effect of nonuniform d. We find
that introduction of nonuniform d produces a somewhat
extended texture with lower free energy than the pure I

(a)

(b2

FIG. 1. I textures associated with 2w vortex-pair configura-
tions projected in the x-y plane are sketched. The arrows indi-

cate the l direction: (a) the circular-hyperbolic pair and (bj the
radial-hyperbolic pair.
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vortex. Now the spatial conformations of I and d are in-
dependent of ro as long as ro ~ 5gz, where gz (=10pm) is
the dipole coherence length. We analyze the associated
satellite resonance frequencies in Sec. IV. The transverse

satellite frequency of the pure I texture agrees quite well
with the observed satellite frequency in the rotating He-
A extrapolated to T = T„although the observed satellite
frequency does not exhibit any appreciable ro dependence
(i.e., 0 dependence) contrary to this model. On the other

hand, the texture with nonuniform d vector gives the
transverse satellite frequency somewhat below the one ob-

served experimentally. At present it seems that the pure I
vortex is more consistent with the experimental results, al-

though it has a higher free energy than the nonuniform d

vortex, and further work is necessary to clarify this
discrepancy. By a similar analysis for the radial-
hyperbolic SV vortex in Appendix 8, we find that the cor-
responding transverse resonance frequency is much lower
than that of the circular-hyperbolic SV vortex.

II. PURE I VORTEX

The observed insensitivity of the satellite resonance fre-
quency to the magnetic field orientations suggests strong-
ly that the texture involved is the pure l texture. We shall
study in this section the pure l texture corresponding to
the circular-hyperbolic SV vortex within the Ginzburg-
Landau approximation. As in I we shall start with the
vortex free energy per unit length:

f=—fd &[4[V a+c os/3(V' y)] +3sin p(V'y)
2

—2sin pI [(cosy)a„—(siny)aY] +[(siny)y +(cosy)y~] I+( Vp) +2sin p[(cosy)p„—(siny)p~]

+4 sinp [(cosy)p„—(siny)/3~] [siny [a +(cosp)y„]+cosy[a~+(cosp)y~] I

+2((1+cos p)
~

VX
~

+sin p[(siny)X„+(cosy)X~]

+sin2X[(1+cos p)
~

V'p
~

+sin p[(siny)g„+(cosy)p~] ])

+4('z I 1 —[cosX cosp+sinXsinpcos(y —g)] ) ],

where a, p, and y are the Euler angles describing the
orientation of I and 6 as

a =bi+ 0» y = 4 i+0z+—
2 '

1 = sinp [—(cosy )x + (siny )y ]+(cosp)z,

5=e'
I cosp[(cosy)x —( siny)y ]+ (sinp)z

+ l [( slny )x + ( cosy )p ] I

(2)
y, =tan —'

P2 ——tan
X —C

y
X+C

while X and g describe the orientation of d,

d =sinX [—(cosg)x+(sing)y]+(cosX)z, (3)

corresponding to the circular vortex at (c,O) and the hy-
perbolic vortex at ( —c,O). On the other hand we deter-
mine p variationally, choosing

and gz is the dipole coherence length. We shall consider a
pure I texture with a uniform d vector. We shall take the
direction of d in the y direction, which gives

(4)

More generally when the static field H and the rotation
vector Q are not parallel to each other, the uniform d
direction can be taken to be parallel to Q &H. Since we
are interested in the circular and hyperbolic vortex pair, o.
and P are given by

cosP = = (cosv)f (u ),
where we have introduced hyperbolic coordinates by

x =Ccoshu cosU,

y =Csinhu sinu .

Substituting Eqs. (4), (5),and (7) into Eq. (1), we can re-
cast Eq. (1) as

f„=CA[I)(f)+I2(f)+4gq I4(f)],
where

Ii(f) =12uo —241n2 —2+32f du
1 —e "cosh uf " 1 —cosh uf 2—12 du . +fsinhu coshu o sinhu coshu

—f du (5—10e "+9e ""—8 tanhu)f (10)
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I2(f)= f du I [(1 f—') 'i' 1—]f„'f +1—(1—f')'i'I

+—f f du dv sin v(coshu —cosv ) X j [(coshu —cosv)coshu —2] cosvf„

+ [(coshu —cosv) cosv +2]sinhuf )

I4(f)= —,
' C f du(sinh u+ —„' )f +4(uo —21n2+ —,

'
) —f du e "f (12)

and

uo =in(2ro/C),

X =slnh u +sm v

(13)

l

is intuitively plausible since we know that in the case of
the isolated vortex the radial vortex has hight:r energy
than the circular vortex. ' The results for the radial-
hyperbolic pair are summarized in Appendix B.

The details of derivation are given in Appendix C.
Here we cut off the integral at a circle of radius ro,

where ro is the average intervortex distance defined by

ro ——(mn„) 'i = (h /2am Q) 'i (14)

This particular choice is suggested from our analysis of
the isolated analytic vortex as described in Appendix A.
This form of the variational function gives the best results
for the circular vortex. Then the free energy is minimized
for the parameters a and C. The best choices for a and C
for given ro are shown in Table I. From the table we see
that a and C as well as free energy depend weakly on ro.
In any case the vortex free energy thus determined is
much lower than that for the isolated vortex discussed in I
and II, simply because there is no extra logarithmic term
arising from the singularity in the d texture. Therefore,
the present texture is not only consistent with the experi-
ment in a tilted magnetic field, but also the present vortex
configuration is much more favored energetically than the
type of the vortex lattice considered in I and II.

A similar analysis is carried out for the radial-
hyperbolic vortex pair, which has higher energy than that
for the circular-hyperbolic vortex pair as expected. This

n, is the vortex densi:ty, m is the n1ass of He atom, and
0 is the rotation speed. The lnro divergence of I&(f) is
due to the circulation of the 4m vortex. Within the

present approximation (i.e., the uniform d vector), the di-

pole energy term I4(f) diverges also logarithmically with

ro, which leads to the extra logarithmic dependence of the

l texture. Finally f (u) is determined variationally assum-

ing
—a (coshu —1)J (uf=e

III. NONUNIFORM d TEXTURE

When H and Q are parallel to each other the d vector
is free to move around in the x-y plane. Then the d vec-

tor becomes asymptotically parallel to the I vector away
from the center of the vortex, which makes the dipolar en-

ergy nondivergent. We shall analyze the effect of the
nonuniform d as follows; we now take 7=m/2, but

sing=1 —2(sin v)Y (16)

with

Y=O +sin v . (17)

The variational function 8 has two constraints. First,
for large u, t9 must approach sinhu, so that d becomes
parallel to l asymptotically. Second, for u =0 [i.e., on the
straight line connecting (C,O) and ( —C, O)] d is parallel
to l, implying 0 diverges as u approaches 0. We shall
choose 0 as

(sinhb)O=sinhu+
sinhu

which satisfies the two constraints listed above. We have
also tried somewhat more general variational functions.
For example, the second term in Eq. (18) is replaced by
(si nbh)' ~+(/si hnu)t' with p as an additional variational
parameter. However, we discovered that by allowing p to
be 1.5 we can improve the free energy about a tenth of a
percent. Therefore, we do not think this complication is
very useful. With this parametrization of d, we write the
vortex free energy as follows:

f.=~~ [Ii(f)+I2(f)+I3(f»)+4ki 'I4(f»)]
where It and I2 are the same as given in Eqs. (10) and
(11),while I3 and I4 are given by

TABLE I. Circular-hyperbolic vortex size parameters a, c, free energy f= 12 ln(ro/2C)+b f, satel-

lite resonance frequencies and intensities, for different values of cutoff distance ro.

ro

5.0
10.0
20.0
30.0

0.59
0.51
0.47
0.45

0.699
0.542
0.466
0.435

17.615
16.590
16.175
16.011

0.803
0.868
0.898
0.910

(I,/Io)/Q

0.0387
0.0578
0.0679
0.0698

Rs

0.670
0.773
0.822
0.843

(II/Io)/0

0.0357
0.0468
0.0509
0.0509
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I3(f b) =4f du', [8„/(1+8 )+1]+28(e'+1)'"
g2+ 1 g2+ 1

g2 + g2 (g2+ 1)1/2 f2

g(g2+ 1)1/2 " g

+— du dv sin v (1—cos v)(coshu —cosv ) X F

X I [(coshu —cosv ) cosv +2]sinhu 8„+[(coshu —cosv )coshu —2) (cosv )8 j (20)

and

I4(f,b)= —C2 f du (slnh u + 4 )f'+ f—fdu dv sin v[1 —(cos v)f ]X 'I (8—sinhu) (esinhu+sin v)
0 7T

(21)

The vortex free energy is now minimized for three param-
eters a, b, and C. We find that

with

a =0.7, b =1.2, and C=1.11/i . (23)
f„=irA [121n(ro/2C)+18. 44],

with
Therefore, the radial-hyperbolic type definitely has higher
energy than that of the circular-hyperbolic vortex.

a =0.9, b =1.2, and C =1.18/i . (22) IV. MAGNETIC RESONANCES

The above free energy is substantially lower than the vor-

tex free energy with uniform d discussed in Sec. II, since
the present C is bigger by a factor of 2 than that of the

pure l vortex. Furthermore, the second term in Eq. (22) is
independent of the cutoff parameter ro as long as
rv) 5g,

Furthermore, the constant C is quite comparable with
the recent numerical result by Seppala on the same tex-
ture. On the other hand, his vortex free energy is dif-
ferent from ours, very likely because of the surface in-
tegral terms. .

The corresponding energy for the radial-hyperbolic vor-
tex pair is given by

f„' =n A [12ln(ro/2C)+22. 76],

As is the case for the isolated vortex, the present vortex
pair allows one spin-wave bound state for each of the
transverse and the longitudinal oscillations which couples
to the homogeneous magnetic field. There are other
modes with the incorrect parity, which do not couple to
the magnetic field. The satellite resonance frequencies are
determined by the eigenvalues A,g and A,f as

co',"= (t011+/(,s Q~ )
'

(24)
co',"=(A,f )'/ Q„,

where tati is the Larmor frequency and Qz is the Leggett
frequency. Here subscripts t and l indicate the transverse
and the longitudinal modes. The corresponding eigen-
values are determined from

Kit= f fdx dy( —,
' I(1+cos p) i Vg i

+sin p[(siny)g„+(cosy)g~]2I

—g I (1+cos P) i Vg i
+sin P[(siny)g„+(cosy)P„] I+(sin Psin y —cos P)g ) fdx dy

~ g i

(25)

where p, y, and tp are determined variationally in previous
sections. Both Eqs. (25) and (26) are analyzed variational-
ly by making use of the ansatz wave function,

A/ ——fdxdy( —,
' I(1+cos p) I Vf i

+sin p[(siny)f„+(cosy)fz] ],+sin p(1 —2sin y)f ) fdxdy
i f i, (26)

I

quency is in excellent agreement with that extrapolated to
T =T, from the observed satellite frequency in the rotat-
ing superfiuid He-A; A,s

——0.81. Similarly the intensity of
the resonance associated with a single pair of vortices is
given by

We study the eigenvalues for both the uniform d case
and the nonuniform d case. In the former case the eigen-
values, shown in Table I, depend weakly on ro. In partic-
ular for rv/gi 20 the calculated transverse satellite fre-

P 2

I,= fdx dygcosQ

2fdx dy g sing fdx dy i g i
(28)
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TABLE II. Size parameter g, free energy f, and satellite resonance frequencies R, and RI of radial
—( «)2

and circular vortices for variational functions cosP=e '""' and cosP=e

Vortex

2
cosp= e

Rr Ri
cosp=e

Radial
Circular

V 2/5
&2/3

5 lnrp+2. 435
3 lnrp+0. 847

0.702
0.935

0.943
0.997

5 lnrp+ 1.927
3 lnrp —0.431

0.865
0.971

0.970
0.999

fdx dyf
I

' fdx dy If I

'

for the transverse and the longitudinal modes. Again for
corresponding r0 the intensity is in good agreement with
observation, if we insert gz

——10 pm, where I,' ' is given

by I,' '/Ic ——0.0580, and Ic is the intensity of the main
peak in the absence of rotation. Now returning our atten-

tion to the case of nonuniform d texture, which is very
likely to be realized in the parallel geometry, we obtain

kg ——0.533 and Ay
——0.507. This A,g is much lower than

that corresponding to the experimental value, although
the results are somewhat better than those for the radial-
hyperbolic vortex pair, which gives A,g

=0.477 and

A~ ——0.483, respectively. Similarly, the calculated intensi-

ty for the transverse mode I, /I0 ——0.0710 is somewhat
larger than that observed experimentally. We do not
understand this discrepancy, since in the parallel geometry
the vortex pair with nonuniform d should be the equilibri-

. um configuration, although the present texture cannot be

the equilibrium texture when H is perpendicular to Q.
Perhaps the normal flow in the vortex flow may introduce
additional perturbation, which has not been considered in

the present analysis. Summing up the pure I texture ap-
pears to be more consistent with the experimental observa-
tion by Hakonen et al. 3 However, if it is the case the sa-
tellite frequency has a logarithmic dependence on 0; as 0
increases the satellite frequency becomes lower, although
this effect might be too small to be noticed. Furthermore,
the pure l texture is more consistent with the tilted-field
experiment, since the texture is unaffected by the field

orientation. On the other hand, if the pure l texture is the

case, it is quite puzzling why the nonuniform d texture is
not realized for the parallel geometry where the nonuni-

form d texture is certainly more favored energetically.
This clearly warrants further study on the vortex struc-
ture.

Note added in proof. (1) The sixth and eighth columns
in Table I must be multiplied by a factor of 2. Thus the

predicted I, for the uniform d texture is roughly a factor
of 2 larger than the observed value, while the nonuniform

d texture gives a better agreement. (2) We have now ex-
tended our anlaysis to lower temperatures by making use
of the generalized Ginzburg Landau free energy derived
by Cross [M.C. Cross, J. Low Temp. Phys. 21, 525
(1975)]. To our surprise we find that below T &0.8T, the
transverse satellite frequency associated with the circular
hyperbolic pair with nonuniform d agrees extremely well
with the observed satellite frequency. Furthermore, the
corresponding intensity is also fairly consistent with ex-

periment. On the other hand, those due to the vortex pair
with uniform d is far away from the observation. There-

fore, the agreement between the uniform d texture with
experiment found in this paper is fortuitous, perhaps due
to the misleading extrapolation of the experimental data
to T=T, .
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APPENDIX A: ANALYSIS OF ISOLATED
VORTICES

+ (1+2sin p)p„+4' cos p (Al)

«p

f,' =f rdr —(3—8cosp+5cos p)+p„+4/i cos p

(A2)

where f'=f /mA, and we have subtracted the contribution
from the d texture. We have studied (Al) and (A2) for
four types of variational functions cosp=e
(1+ar)e ", and sech(ar). For the first two variational
solutions the integrals are evaluated analytically. We find
that the radial vortex cosp=(1 ar)e ~", with a=1.342, —
gives the best result f,' =51n(ro/gj )+.1.921, compared to
the old value found in I with cosp=e '""', g=v'2/5,

We limit ourselves here to the two types of analytic vor-
tices, radial and circular. Since the vortex free energy is
quite insensitive to the variation function chosen for the d
vector for gH «gz, where gH is the magnetic coherence
length, we confine ourselves to the spatial dependence of
cosp only. In I and II we have chosen cosp=e '""' with

g as a variational parameter. The vortex free energy for
the radial and the circular vortex is given' as

«p

f„' = f r dr (5—8 cosp+3 cos p)
0 r 2
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and f,' =51n(ro/gq)+2. 435, and the exact numerical re-
sult f,'"=51n(ro/g~)+ 1.715. On the other hand, the cir-
cular vortex is best approximated by cosg=e "", with
g=V2/3 and f,' =3 1n(rv/gz) —0.4312, compared to the
old value' f,' =31n(ro/gz)+0. 8472. In both cases we
find that cosP=e ""gives much lower vortex free energy

—( r)than cosP=e '""' . We have recalculated the parameters
in the satellite resonance frequencies R, =(A,s)'~ and

(Af }'~, which are compared with the old results in Table
II. We see immediately that in terms of better variational
solutions, the circular-hyperbolic lattice is inconsistent
with the experimental results. The radial-hyperbolic lat-
tice may be more consistent with experiment, although
this lattice cannot represent a possibility for the reason

given in the text.

cosg=2(sin v}Y ' —1, (B2)

Y =0 +sin v, (B3)

which are compared with Eqs. (5) and (16) in the text.
Here we consider only the nonuniform d case for simpli-
city. Equations (Bl) and (B2) are obtained from y and g
corresponding to the circular-hyperbolic vortex pair by ro-
tating them by n /2 in the x-y plane so that asymptotical-

ly I and d are now in the x direction far from the origin.
We will not write the individual integrals here. But it is
easy to see that the corresponding I~(f) and Iz(f) are al-
ways larger than those for the circular-hyperbolic pair.
Making use of a' similar variation function for
cosP=(cosv)e ', and

a =0i+0z y = 4i+6— (Bl)

APPENDIX 8: ANALYSIS OF THE
RADIAL-HYPERBOLIC VORTEX PAIR

The radial-hyperbolic vortex is parametrized as follows:

and 0 given in Eq. (18), we find that

f„=mA [121n(ro/2C)+22. 76],
for a =0.7, b = 1.2, and C = l. 1 lgj.

(B4)

APPENDIX C: INTEGRALS IN THE
VORTEX FREE ENERGY

Substituting Eqs. (5), (7), and (17), where 8 depends only on u, we obtain

I~(f)= f fdx dy(4[ Va+(cosP) Vy] +3 sin P(Vy)2'
—2sin PI[(cosy)a, —(siny)ay] +[(siny)y„+(cosy)yy] ) )=I„+I,z, (Cl}

where

I~~ —— f f du dv(41[a„+(cosP)y„] +[a„(cosP)y, ] j+3sin P(y„+y„))
277

=—f fdu dv X 'I4[sinh u+cos v —2(cos v)(coshu)f +(cos v)f ]+3[1—(cos v)f ] I

=16f duItanhu+(cothu —1)[1—2(coshu)f+f ]I+12f . +f
0 sinhu coshu

(C2)

2
2

2(coshu cosv + 1) . z . z (coshu cosv + 1)
I&z ———— du dv(sin P X coshu cosv+2- +4 sin vsinh u

1T (coshu +cosv ) (coshu +cosv }

= ——f f du dv[1 —(cos v)f ]X ' 4+cosh u cos v—4(coshu cosv + 1)

(coshu +cosv )

Qp= —8 —,u + —,—ln2+ f du [1—(cosh u)f ]+(—", ——,'e "+—', e "—tanh)f
0 sinhu coshu

(C3)

Finally combining I» and I&z, we obtain I, (f) in Eq. (10) in the text. In the above analysis we made use of the follow-

ing relations:

sina=2sinhu coshu sinv cosv X ', cosa=2sinh u cos v X ' —1,
(C4)

siny=1 —2sin v X ', cosy=2sinhu sinvX

and
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u„=—2sinv cosv X ', a, =2sinhu coshu X

y„=2coshu sinv X ', y„=—2 sinhu cosvX

Similarly Iz(f) is obtained from

Iq(f) = f fdu du(P„+P, +2(sin u)(sinhu —cosu)~X
2%

(C5)

Substituting

P„=[1—(cos u)f ] '/ (cosu)f„

X [ [(coshu —cosu)coshu —2](cosu)f„+ [(coshu —cosu)cosu +2](sinhu }f) ) . (C6)

P„=—[1—(cos u)f ] '/ (sinu) f,
into (C6), the first two terms are easily integrated over u and we find Eq. (11) of the text. I3(f,b) can be rewritten as

I3(f b) = fdx—dy t ( 1 +cos'P)
~

Vt(
~

+ sin P[(siny )P„+(cosy )P» ] j

1=—fdu du[1+(cos u)f ](P„+P„)+4[1—(cos u)f ]X Y sin u(coshu cosu—)~

)& j [(coshu —cosu)cosu +2](sinhu )8„+[(coshu —cosu )coshu —2] (cosu)8] (C8)

Substituting

fg =2(gg SIIlu) Y, fq = —2(8 cosu) Y

where Y =8 +sin u, the first term in I3 is evaluated as

I3~ ——— u v 1 —cos v sin v 9„+cos v 0 Y

Finally,

(8'+ —, )
du & g—1(82+ 1)

—
I/2[82 (82+ 1)—1+1]+2 [(gz+ &

)g
—1(82+ 1)—1/2 1]g& + 82 (82+ 1)1/2 f2

0 Q 2 Q g

(C 10)

I4(f,b) = C f fdu duX 1 —[1—(cos u)f ] 1 — (8—sinhu ) (gsinhu +sin u )
2% X F

1
C f fdudujC(cos u)f +4(sin u)X 'Y (8—sinhu) (gsinhu+sin u) [1—(cos u)f ]j .

2m. (Cl 1)

The first term in (C11) is easily integrated over u, which yields Eq. (21) in the text. For the pure 1 texture with uniform

d, we can take the limit 8 tends to infinity. Then Eq. (21) reduces to Eq. (12}in the text.
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