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Modeling of magnetic and chemical ordering in binary alloys
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The equilibrium properties of a model fcc binary alloy with two magnetic components are investi-

gated using the tetrahedron approximation of the cluster-variation method. Temperature-
composition phase diagrams are calculated for ordering alloys with both ferromagnetic and antifer-

romagnetic nearest-neighbor interactions. The interplay between magnetic and chemical long-range
order is pronounced, affecting both the equilibrium phase diagram and the magnetic structure of the
ordered states. The effect of chemical short-range order on the magnetic transitions is also

analyzed.

I. INTRODUCTION II. ENERGY MODEL AND GROUND STATES

The interplay of magnetic and chemical ordering in al-
loys has been recognized for several years as an important
element in the control of bulk magnetic properties. The
available experimental evidence suggests that the effect of
magnetic interactions in alloys is not negligible and will in
general affect the equilibrium properties of the system. '
Similar conclusions may be drawn from the results of re-
cent theoretical studies which incorporate the effect of
coupling between magnetic and spatial ordering within
the mean-field or Bragg-Williams approximation. These
previous theoretical studies have demonstrated, for exam-
ple, that magnetic interactions can cause chemical order-
ing even in the absence of chemical interactions.

Theoretical models of magnetic and spatial ordering
based on the mean-field approximation are not, however,
generally applicable to fcc systems for which short-range
order plays a significant role. In fact, although the
Bragg-Williams approximation provides a relatively accu-
rate description of ferromagnetic systems and segregating
alloys, it fails to reproduce the correct topology of the
phase diagram for fcc antiferromagnets and ordering al-
loys. In addition, the mean-field approximation wrongly
predicts the antiferromagnetic and/or ordering transitions
at zero field to be second order.

The main objective of this work is to study the equili-
brium properties of a model fcc alloy with two magnetic
components and nearest-neighbor pair interactions using
the tetrahedron approximation of the cluster-variation
method (CVM). ' In contrast to previous Bragg-Williams
treatments, the tetrahedron approximation accurately de-
scribes the thermodynamic behavior of fcc systems with
nearest-neighbor interactions for both ferromagnetic
(segregating) and antiferromagnetic (ordering) systems. In
this paper the emphasis is placed on the determination of
the temperature-composition phase diagrams and on the
analysis of short-range-order effects on the magnetic and
ordering transition temperatures. Although the Hamil-
tonian used in our calculations is undoubtedly an oversim-
plification of the interactions present in real alloys, the
general features observed in the experimental ¹iFephase
diagram are closely reproduced by the model.

with J(i,j) the nearest-neighbor exchange integral be-
tween species i and j, and where the occupation number

y(i,p) equals 1 if lattice point p is occupied by an i atom
and 0 otherwise. Using the convention that i is equal to 1

for A and —1 for B atoms, we may write y(i,p) as

)'(t p)= 2 ll+i~(p)) .

The chemical contribution to the energy is given by

H,h,
———,Vg o(p)o(p'),

P~P

(4)

where the sum is over all nearest-neighbor pairs p and p',
and where the effective pair interaction Vis given by

V= —,( V~+ Vtut —2 V~~) (6)

with Vtt denoting the interaction energy for an ijpair.

We consider a binary fcc alloy with magnetic com-
ponents A and B. The atomic species and the magnetic
moment at a given lattice point p will be characterized,
respectively, by a chemical occupation operator o(p) and

by a spin operator S(p). The occupation operator t7(p)
equals 1 for A atoms and —1 for B atoms. Furthermore,
we will restrict our discussion to the case in which the
spin for both components is —,

' and define S(p) =+1.
For simplicity, we assume that the chemical and mag-

netic properties of the system are described by uncoupled
Ising-model Hamiltonians with only nearest-neighbor pair
interactions. Thus, the total configurational energy is
given by

Hmag +~chem

In the absence of external magnetic fields, the
magnetic-energy contribution is of the form

H,s= —, g J(p —p')S(p)S(p'),
PiP

where the exchange integral between lattice sites p and p'
is given by

J(P P')= y J(t,J)—r(t P)r V P')
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The two limiting cases for which either the magnetic
or the chemical interactions are identically zero have been
extensively investigated by high-temperature expansion
techniques, " cluster-variation-method calcula-
tions, ' ' ' and Monte Carlo simulations. ' ' For nega-
tive nearest-neighbor interactions, the stable state at T=O
K (ground state) is ferromagnetic for the magnetic system

(J&0, V=O) and completely segregated for the binary al-

loy case ( V&0, J=O). On the other hand, for positive
nearest-neighbor interactions the magnetic ground state at
zero field is a type-I antiferromagnet and the ground
states of the binary alloy are the L 10 and L iz ordered
structures occurring, respectively, at stoichiometries AB
and A&B (or AB3).

The determination of the ground states of the total
Hamiltonian can be formulated as a relatively straightfor-
ward problem in linear programming. ' Such ground
states are well known for the binary fcc lattice with up to
fourth neighbor pair and/or many-body interactions. If
only nearest-neighbor interactions are inc1uded, the
lowest-energy states may occur for the pure elements and
for ordered structures of stoichiometries A3B, AB, and

383 In this approximation the ordered ground states are
degenerate, with the highest symmetry structures corre-
sponding to the L 10 (CuAu) and L li (CuiAu) structures.

When both chemical and magnetic interactions are
present, each of the stoichiometric binary ground states
may adopt a ferromagnetic or antiferromagnetic structure
(of either type I or type II) depending on the values of the
exchange integrals J(i,j) Al.ist of all possible ground

states at stoichiometries A, 338, AB, 383, and 8 is given
in Table I. In the first column of Table I, the ground-

state structures are characterized by the chemical species
and magnetic moment at each of the four equivalent lat-

tice sites in the fcc unit cell. In the second column of
Table I the energy of the ground-state structures relative
to that of an ideal mixture (i.e., the energy of formation}
is given. The third column gives the range of magnetic
interactions for which the structure in question may be
expected to be stable at T=O K. The stability of the
structure will also depend on the value of the chemical in-

teraction V, the criterion for stability being that the ener-

gy of formation (second column of Table I) be lower than
the energy of a mixture with the saine overall concentra-
tion of any pair of ground states.

The finite-temperature behavior of the model is investi-

gated within the tetrahedron approximation of the
cluster-variation method. The CVM was first proposed

by Kikuchi in 1951 (Ref. 10) and, since then, has been ap-

plied to several binary and ternary alloy sys-

tems. ' ' ' ' In particular, the tetrahedron approxi-
mation applied to the fcc lattice with nearest-neighbor in-

teraction gives results in good agreement with Monte Car-
1o simulations. '" For example, the ordering temperatures
at the stoichiometric compositions obtained by the two
methods differ by approximately 5%, with the major
discrepancies taking place near an apparently singular

( T=O K} triple point.
For all cases investigated in this article, the states of

magnetic and spatial long-range order can be described by
introducing two sublattices, a and P, which reflect the
symmetry of the L lo or the L 12 ordered structures. The
chemical (g, } and antiferromagnetic (g ) long-range or-
der parameters may be defined in terms of the sublattice
averages of the occupation and spin operators as

= —,
' [(&(p ) ) —&&(pp) &]

TABLE I. Possible ground states of a binary fcc magnetic alloy with nearest-neighbor interactions.

Structure

ATATATAT
ATATAgAg

A TA TA TBT

ATATATB&

A TA TA&BT

ATATAgBg

~=0—(~„a„+ca )

—6 V —(3JAA+ 3J» —6J» )/2
—6 V+(»~+J»+6J»)/2
—6 V+(9J~—3J»+6J» )/2
—6 V —(3J~+3J»+6J»)/2
—6 V+(9J~+J» —6J»)/2
—6 V+(9J~—3J» —6J»)/2

6 V + ( 3JAA +3JBB+6J» ) /2
—6 V+(J~ —3J»+2J» )/2
—6 V+(J~+J» —2J»)/2
—6 V+(J~—3J» —2J» )/2

Stability range

J» &0
J» &0

Jm & 0 J» & O,J» &0
JAA & Ol JBB & 0~JAB & 2JAA

JAA & O~ JBB & 0~JAB & 2JAA

J~&o J»&0 J»&o
JAA & O~ JBB & O~ JAB & 2JAA

Jm &0~J» &O~J» &2'
J~ & O,J» & 0, —2J~ &J» & o
J~&O,Jgg &0, —2J~ &J» &0
J~ &0~J» &0~0&J» &2J~~
J~ &OJ» &0,0&J» &2J~

A TA TB&B&

A TA gBTB~
A gATBTBT

-8 V -(2J~+2J» —4J»)
-8 V+(2J~+2J»+4J»)
—8 V+(2J~ —2J»+4J»)
—8 V —(2J~+2J»+4J» )
—8 V+ (2J~+2J» —4J» )
—8 V+(2J~ —2J» —4J» )
—8V
—8 V —2J»

Jm &O,J» &0 J» &0
J~ &O,J» &O,J» & —(J~+J»)/2
J~ &O,J» &O,J» & —J~/2
JAA &07JBB&0/J» &0
J~ &O,J» &O,J» &(J~+J»)/2
J~ & O,J» & O,J» &J~/2
J~ &O,J» &0, —1 &2J»/(JAA+JBB) &1
J~ & O,J» & 0, —1 & 2J» /Jgg & 1
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FIG. 4. Total magnetization (m), chemical long-range order
(g, ), and antiferromagnetic long-range order (g ) parameters
as a function of temperature for the case depicted in Fig. 3
(J~——0.225V, J» ———0.470V, and J~~ ———0.230V) at chemi-
cal potentials equal to 8.4 (a) and —6 (b).

FIG. 3. Temperature-chemical potential (a) and
temperature-concentration (b) phase diagrams for V~ 0,
J~——0.225 V, J~~ ———0.470V, and J~~ ———0.230V. The disor-
dered phase is antiferromagnetic in the low-temperature and
low-concentration range. For concentrations above approxi-
mately 0.1, all phases are ferromagnetic at T=G K.

J(p —p')= g J(i,j)(y(i,p)y(j,p'))

= g J(i,j)y(i,j) (12)

with y(i,j) the probability of finding an i-j nearest-
neighbor pair.

Neglecting the temperature (or short-range order)
dependence of the average exchange interaction J, the
magnetic transition temperature for the Hamiltonian (11)
is given by

kg T =~J, (13)

J=Jp+ 2J i (cr(p) ) +J2 ( cr(p)cr(p') ),
where

(14)

where in the tetrahedron approximation the proportionali-

ty constant r is equal to 10.025 for ferromagnetic (J&0)
and 1.892 for antiferromagnetic systems (J& 0).

In general, the average exchange integral J will depend
on temperature and concentration in a complicated
manner. However, a simple dependence of J on average
concentration, or (o (p) ), and on the short-range order pa-
rameter (cr(p)o(p') ) can be made explicit by incorporat-
ing the definition of y(i,p) into Eq. (12):

Jp = '(J~+ Jaa+—2J~a»

Ji = —'(J~ —Jaa»
1J2= (J~+Jaa —2J~a—) .

If the paramagnetic-to-ferromagnetic transition occurs
at high temperatures relative to the ordering transition,
one expects the effect of short-range order on the Curie
temperature to be small. Specifically, the nearest-
neighbor correlation function (cr(p)o (p') ) will be approx-
imately given by (cr(p)) and the loci of T versus con-
centration will be parabolic with a maximum or minimum
occurring at (o(p)) = —Ji/J2 or ca ——(Ji+J2)/(2J2).
This nearly parabolic behavior of the Curie temperature is
apparent for the calculated phase diagrams shown in Figs.
1—3.

The effect of the ordering transition on the Curie tem-
perature near critical end points can also be understood in
terms of Eq. (13) and the changes induced by long-range
order on the effective exchange integral. Assuming the
same average concentration [or (o(p))] for the ordered
and disorderd phases, the change in J due to the onset of
long-range order is given by

b,J=Jpb, (o (p)cr(p') ), (15)

where the discontinuous change in the pair correlation,
h(cr(p)o(p')), is negative. Thus, for negative values of
J2 (and J) it follows that

I
J(ord)I (

I
J(dis)I and the Curie

temperature will decrease on ordering (see Fig. 1). The
opposite behavior, i.e., an increase in T on ordering, is
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seen in Figs. 2—3 for positive values of Ji. (Note that
J&0 for all cases investigated, except at low concentra-
tions in Fig. 3.)

Another important effect caused by the interplay of
chemical and magnetic interactions is the induced asym-
metry, absent in the nonmagnetic alloy, in the A3B and
AB3 transition temperatures. Averaging the total Hamil-
tonian over the spin configurations we obtain the follow-
ing effective Hamiltonian for the binary alloy:

state is ferromagnetic. The onset of antiferromagnetic
long-range order is discontinuous if the high-temperature
chemically disordered phase is ferromagnetic [Fig. 4(a)]
and continuous if the magnetic transition takes place in
the chemically ordered phase [Fig. 4(b)]. The antifer-
romagnetic long-range order parameter is seen to decrease
at low temperatures and according to the ground-state
analysis (Table I) it vanishes at T=O K.

(H).h, =Vga.(p)o(p'), (16)
IV. SUMMARY

with the effective chemical interaction given by

V= V+J2(S(p)S(p') ) . (17)

The transition temperatures for the A3B and AB3 or-
dering reactions are approximately given by

k~ To ——wV,

where in the tetrahedron approximation and for positive
V the constant r equals 1.892 for I. 10 and 1.925 for the
I. 1z transitions.

For all three cases investigated, the disordered phases
are paramagnetic at the A &B transition and ferromagnetic
at the AB3 transition. Thus, neglecting spin correlations
in the high-temperature paramagnetic phase and taking
(S(p)S(p')) =1 in the ferromagnetic state, we may ap-
proximate the ratio of transition temperatures by

To(AB3)/To(A3B) =( V+J2)/V . (18)

Figure 1 illustrates the case of negative Jz which results
in a higher ordering temperature for the A3B structure
relative to AB3. Two cases for which To ( AB3 )

& To(A3B), i.e., for positive J2, are shown in Fig. 2
(J2 ——0.075V) and Fig. 3 (J2 ——0.234V). Note that the
asymmetry is more pronounced in the phase diagram of
Fig. 3 for which the AB& transition takes place deeper
into the ferromagnetic phase.

As mentioned in the Introduction, magnetic interac-
tions play a significant role on the equilibrium properties
of alloys since they may induce spatial ordering even in
the absence of chemical interactions. Conversely, chemi-
cal long-range order may also significantly affect the
magnetic structure of the alloy as seen in the long-range
order parameters versus composition plots shown in Fig.
4. Specifically, the antiferromagnetic long-range order
parameter il is different from 0 for the magnetic ordered
alloy at finite temperatures, although the ordered ground

A simple nearest-neighbor pairwise model for a bjnaiy
magnetic alloy with fcc structure was investigated using
the tetrahedron approximation of the cluster-variation
method. Contrary to the Bragg-%illiams approximation
used previously for the simultaneous treatment of magnet-
ic and chemical interactions in the fcc lattice, the
tetrahedron approximation gives results that are qualita-
tively correct and which are expected to be accurate
within 5% near stoichiometric points. As suggested by
Monte Carlo simulations in nonmagnetic binary systems,
the error in the calculated phase diagrams may be larger
near the triple point where the disordered and the two or-
dered structures coexist.

As emphasized previously by several authors, the inter-
play between both types of interactions significantly af-
fects the equilibrium properties of the system. In particu-
lar, magnetic interactions will generally induce an asym-
metry in the equilibrium phase diagram that is absent in
the pairwise model for nonmagnetic systems. Our calcu-
lations also indicate that chemical long-range order will
result in the onset of antiferromagnetic long-range order
even when the lowest-energy ordered state at T=O K is
ferromagnetic.

Although the Hamiltonian used in our model is not ex-
pected to be applicable to real alloys, the equilibrium
phase diagram shown in Fig. 3 closely resembles the Ni-
rich portion (fcc) of the experimental Ni-Fe phase dia-
gram. A detailed investigation of this system is currently
under way and the results will be reported in a forthcom-
ing publication.
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