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We propose a simple mean-field description of solid solutions in the presence of irradiation-
induced atomic mixing. The equilibrium configuration of the system is described by a concentration
profile which is a steady-state solution of the appropriate diffusion equation. For clustering solid
solutions, we show that a Lyapunov functional may be built, the minimum of which yields the
equilibrium configuration. In a simple case (regular solution in the Bragg-Williams approximation
together with simplifying assumptions on the concentration dependence of the diffusion coeffi-
cients), a law of corresponding states is found: The equilibrium configuration of the solid under ir-
radiation flux P and temperature T is identical to the configuration at /=0 and T =T(1+6)
where 5 has a simple expression in terms of the irradiation parameters and of material characteris-
tics. As a prototype of ordering solid solutions, the Bragg-Williams approximation of the B2 struc-
ture is treated. A Lyapunov function is found; the above law of corresponding configurations is
checked numerically and found to be obeyed fairly precisely. With the above law taken as a guide,
interesting features are anticipated. In particular, we speculate on the possibility for obtaining
equilibrium between an amorphous and a crystalline phase, the latter being a long-range-ordered or
random solid solution.

I. INTRODUCTION

Phase stability under irradiation is a fascinating prob-
lem which has received long-standing attention, motivat-
ed both by its intrinsic interest and its relevance in several
technological problems such as the integrity of structural
materials of the core components of nuclear reactors, the
long-term integrity of nuclear-waste confinement materi-
als, and alloy preparation by ion implantation or ion-beam
mixing. It was recognized very early that, apart from ion-
ization processes which may be neglected in metallic sys-
tems, irradiation may destroy precipitates, disorder long-
range-ordered compounds, amorphize crystalline solids,
or accelerate sluggish phase transformations. More re-
cently, it was discovered that irradiation may additionally
induce precipitation in undersaturated solid solutions. "
The latter effect has stimulated a large body of experi-
mental and theoretical work during the last decade. '"'

As far as theory is concerned, we are faced with many
models which lack universality. Surprisingly enough, the
theory of irradiation-induced precipitation (IIP) is the
least ad hoc one; indeed, it has been recognized that IIP
corresponds to a specific branch of solutions of the gen-
eral equations of the chemical-rate theory of alloys under
irradiation. For specific cases, the above equations (of
the diffusion-reaction type) may be written under various
forms: ' They all describe, with various levels of sophis-
tication, the coupled diffusion of defects and solute atoms,
and the elimination of defects either by mutual recorn-
bination or at point-defect sinks.

In contrast, the theories of irradiation-induced —preci-
itate dissolution, or irradiation-induced disordering, ' '

or amorphization" lack universality. Indeed, they all rest
on the idea that the steady-state configuration of the sys-

tern under irradiation is such that the disordering effects
of irradiation (hereafter called ballistic effects) are equili-
brated by irradiation-enhanced diffusion back to the
equilibrium state. This idea, however, is applied locally,
e.g., on a precipitate (which shrinks due to solute ejection
toward the matrix and grows because of
rapid diffusion of the solute back to the precipitate) or on
an amorphous zone (which is assumed to be produced at
the core of a displacement spike and to anneal by
amorphous-crystal —interface migration). More sophisti-
cated models' consider the equilibrium between a precipi-
tate, the degree of long-range order of which is altered by
irradiation, and the matrix: irradiation-sustained disorder
in the precipitate would induce precipitate resolution in
the supersaturated solid solution.

The striking feature of this set of models is their lack of
generality: their common basic idea has been applied so
locally (precipitate, ainorphous zone, etc.) that no general
behavior of an alloy under irradiation may be anticipated.

The purpose of this paper is to reformulate the theory
of ballistic effects on phase stability in a more universal
way and therefore allow for some general predictions.

The leading idea of the paper is that the competition
between irradiation-induced mixing and irradiation-
enhanced diffusion back to low-energy configurations
should be modeled for the configuration of the alloy as a
whole and not locally as just mentioned. The technique
we use is to describe the equilibrium configuration under
irradiation as a solute concentration profile which is a
steady-state solution of the appropriate solute diffusion
equation. The search for such a solution rests on various
techniques. In the case of unmixing systems we will be
able to build a Liapunov functional for the problem and
find the equilibrium solution in terms of the extremals of
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this functional. ' In the case of ordering systems, we in-

stead directly solve a simple model. The remarkable fact
is that, in both cases, under not too restrictive conditions,
ballistic effects result in a law of corresponding states:
The equilibrium configuration of a solid-solution inodel
under irradiation at temperature T and flux P is the con-
figuration the system would have outside irradiation

(P =0) at a temperature T' =T ( 1+5), the dilatation b be-
ing a function of the irradiation flux and temperature as
well as of materials parameters. Other results are found,
such as the possibility of stabilizing exotic phases by irra-
diation.

In the following, we first describe the phenoinenological
model we use to describe the contribution of ballistic ef-
fects to interdiffusion {Sec.II), then study mixing and un-

mixing in the presence of such effects (Sec. III},and later
ordering and disordering (Sec. IV). Finally (Sec. V), we
extend the results of Secs. III and IV in a more specula-
tive way to other phase transformations, e.g., equilibrium
between ordered and disordered phases, or between amor-
phous and crystalline phases.

II. PHENOMENOLOGICAL MODEL
FOR BALLISTIC DIFFUSION

Since we are going to look for steady-state solutions of
the diffusion equation in the presence of ballistic dif-
fusion, let us first derive a balance equation for the num-
ber density n;(x) of the ith component (i =1,2} when
ballistic jumps only occur. For the sake of simplicity we
restrict ourselves to a one-dimensional problem. Follow-
ing Collins, ' we write

Bn;(x)
a(yt)

= dz[n; (x z)F; (x —z,z—) —n;(x)F;(x,z)],

where F;(x,z) is the probability density that an atom i can
be ejected from x to a site located between x+z and
x+z+dz per incident particle, and P is the irradiation
fiux. Performing a Taylor expansion of the right-hand
side (rhs) of Eq. (1) yields

respect to the lattice. If the ballistic diffusion coefficients
of species 1 and 2 (& i and &2) are not equal, matter will
accuinulate at certain points of the lattice; this will result,
we assume, in dislocation climb, i.e., in a movement of the
lattice with respect to the laboratory frame of reference.
If we assuine dislocation climb to be isotropic, no void to
nucleate, and equal atomic volumes for species 1 and 2,
the flux of say, species 2 in the laboratory, is

J =J2 —nzN„(Ji+J2), (Sa)

J~= [c&i+ (1—c)&z] N„—
Bx

(5b)

where c is the atoinic fraction of species 2 and N„is the
number of atoms per unit volume. Equations (5) have the
structure of a chemical-diffusion equation, ' and we de-

fine, by analogy, the "ballistic chemical-diffusion coeffi-
cleilt Wii by

Bc;(p)
Bt

=y;$[b;{p p' p)c;(p—p'} b;{pp—p'—)c {p}],—

where p labels the lattice sites, y; is the ballistic jump fre-
quency of species i, c;(p) is the atomic fraction of species
i on site p, and b; (p —p',p) is the a priori probability that
a jump starting from site p —p' will stop at site p. In
writing Eq. (7), y; was assumed to be independent of local
composition. Assuming, as before, that b; is neither
dependent on local composition nor on the direction of
the jumps, Eq. (7) becomes

J = &~N„— ,&ii ——c&i+(1 c)&z—.
X

The above phenomenology rests on a continuum
description of the solid. It therefore does not correctly
describe the evolution of concentration profiles which
vary rapidly with distance, such as concentration modula-
tions in an ordered structure. For such cases, we propose
a discrete version of Eq. (1),

Bn;(x)
Bt

82

Bx
(2)

Bc;(p)
Bt o

= $ y;b;(m)[ —Zc;(p)+c;{p+m)+c;(p —m)] .

where &I ' is the second moment of PF; (x,z), i.e.,

&,' '= —,'P Jz~F;(x,z)dz . (3)

Bn;(x) Bn;(x)
1& I

= —divJ, J.= —9'. (4)

where M; is the ballistic diffusion coefficient of species i
defined by Eq. (3) with F;(x,z) =F; (z).

Equation (4) describes the ballistic flux of species i with

In Eq. (2) we retained only even inoments of F;, which
implies that irradiation is assumed to be isotropic, a
reasonable assumption for cascade-producing irradiations.
Stopping the expansion to second order implies short-
range replacements.

In the particular case where the probability for an atom
to be ejected a distance z away is independent of the local
environment (composition and atomic structure}, F; is a
function of z only, and Eq. (2) reduces to the simple form

(8)

Equation (8) is written in the lattice frame of reference.
We show, in Appendix A, that in the case of an almost
uniform concentration c (e.g., initial stage of ordering),
Eq. (8) may be written in the laboratory frame of refer-
ence as

& (p)

O

= g I ii(m)[ —Zc(p)+c{p+m)+c(p —m)], (9a)

where c (p) is the concentration of species 1 on site p, with

I'ii(m) =(1—c)y2b2(m)+cyibi(m) . (9b)

I ii(m) may be called a partial ballistic jump frequency
for chemical mixing. The meaning of I ii(m) appears if
we Fourier-transform Eq. (9a). Setting

c (k)= g e'"i'c (p) (10a)
p = —oo
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yields

=—c (k) g I 2I s (m )[1—cos(mk) ]I . (10b)

In the long-wavelength limits of the concentration waves
(k —+0), the summation on the rhs of Eq. (10b) reduces to

k g I s(m)m
m=0

i.e., k 9's/a, according to Eqs. (3) and (6), a being the
lattice parameter. Equation (10b) is reminiscent of the
diffusion equation used by Cook et a/. ' for describing
the early stages of ordering outside irradiation, with the
complication in Eq. (10b) resulting from the spectrum of
ballistic jump distances. As an example, simple numerical
evaluation of the rhs of Eqs. (10) shows that Pick's law
[Eq. (4)] fails to describe the time evolution of harmonics
with wavelengths shorter than 15 lattice parameters when
ballistic jumps occur to third-nearest neighbors. As will
be seen in Sec. IV, the structure of the rhs of Eq. (10b) has
far-reaching consequences on the stability of ordered com-
pounds under irradiation.

AT"'=f"+
M

=f"+
c 1 —c

(14)

It is shown in Appendix 8 that the functional FIc(x)I,
defined by

F[c(x) I =N„f p(c)+a dc
(15)

is a Liapunov functional for the diffusion equation

BJ
ax

(16)

where Eq. (6) has been used for J . Indeed, Eq. (6) is the
continuum description of ballistic effects and is consistent
with the continuum description of thermal diffusion [Eq.
(11)].

The equilibrium configuration of the solid solution
under irradiation is the concentration profile c(x) which
yields no flux of matter: J=O in Eq. (13b). It ]vill now be
argued that such a concentration profile may be found
from an extremum principle.

Indeed, let us define an effective free-energy density
y(c) such that

III. SOLUBILITY LIMIT IN THE PRESENCE
OF BALLISTIC EFFECTS

In this section we first present the method to be used,
then discuss the specific case of the regular solid-solution
model, and finally discuss general features of the results.

A. General method

In Eq. (11),f" is the second derivative, with respect to
concentration, of the free energy per atom, in a system of
uniform concentration c, a is the gradient energy (positive
for an unmixing systein), and M is the atomic mobility'
given by

c(l —c)
[ D, (1 ),]

c(1—c)
(12)

where D ~, D2, and D are, respectively, the tracer-
diffusion coefficients of species 1 and 2 and the
chemical-diffusion coefficient. ' As in Sec. II, c is the
atomic fraction of species 2.

The total diffusion flux can be written as

gth+ gB (13a)

J=—MX„ f"+ ~B Bc Bc—2K
M Bx ()xi

(13b)

We want to build a diffusion equation which describes
atomic interdiffusion under the influence of two driving
forces: atomic collisions and thermodynamic forces. For
the sake of simplicity we assume that the interdiffusion
flux is simply the sum of the ballistic flux [Eq. (6}] and
the diffusion flux driven by the gradient of chemical po-
tential. Following Cahn, ' we write the latter flux as

Js —— MN„ f" —21~'—„Bc Bc
Bx

where J is given by Eq. (13b} together with the condition
of matter conservation in the solid (closed system). The
demonstration in Appendix 8 parallels that given by
Cahn and Hilliard for the case of thermal diffusion. '

Indeed, F in Eq. (15}has the following properties.
(a) Under steady-state conditions in a closed system

[J=O; Eq. (13)], the functional derivative of F, 5F/5c, is
uniform through the system,5F, ac

tp —2K =P
5c ()x

(b) The condition 5F/5c =p is the condition for F [Eq.
(15)] to be an extremum with the constraint of conserved
matter in the system.

(c) F in Eq. (15) is a decreasing function of time when-
ever the flux J [Eq. (13b)] is nonzero.

(d) Under steady-state conditions, the compositions of
the coexisting phases are given by the rule of the common
tangent applied to the function qr(c).

The above four properties demonstrate that the func-
tion p(c) plays, under irradiation, exactly the same role asf(c) plays outside irradiation in defining the equilibrium
configuration. We shall take advantage of this property
throughout this paper. We thus justify the denomination
of p as an effective free energy. Of course, g(c) is defined
to within a linear term (ac +b) to be determined by some
physical conditions at specific concentrations (see below).
It should be noticed that the abscissas of the contact
points of the common tangents to p(c) are not affected by
the above linear term.

As shown by Eq. (13), irradiation affects the solute
fluxes in two ways: (i) via the ballistic effects on one hand
[9's in Eq. (13)], and (ii) via the irradiation-sustained
point-defect supersaturation which increases the mobility
M on the other. Indeed, M is proportional to the tracer-
diffusion coefficients in the alloy [Eq. (12)]: It is expected
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to be proportional to the vacancy supersaturation,

M(P, T)ocM(0, T)c„(P,T)/c, (0, T), (18)

T'= T(1+5),
with

(21)

where c„(P,T) is the vacancy atomic fraction at irradia-
tion flux and temperature, equal to P and T, respectively.
More precisely, Eq. (14) reveals the following conse-
quences of ballistic effects.

(1) The critical temperature (as predicted by this mean-
field theory) is depressed. Indeed, at the critical point
outside irradiation, f"(c)=0, but y"(c) is positive accord-
ing to Eq. (14), i.e., the solution is supercritical under irra-
diation. At the critical point under irradiation (p"=0),
f" is negative according to Eq. (14), i.e., the temperature
is lower than the critical temperature outside irradiation.

(2) The same argument applies to the spinodal curve,
which is a well-defined curve in the simple theories we use
here: The spinodal is shifted to lower temperatures by
ballistic effects.

(3) The lower the temperature, the smaller M is in Eq.—E/k~ T
(14), since & in Eq. (12) decreases as e and the de-

fect concentration saturates in Eq. (18). The second term
on the rhs of Eq. (14) may become so large at sufficiently
low temperatures that ballistic effects will stabilize the
single-phase solid solution (irradiation-induced —precipi-
tate dissolution).

In order to reach more precise conclusions, we need

specific expressions for f(c) and D(c). We examine a
very simple model in more detail in the next subsection.

(22)

It should be kept in mind that b, is a function of the irra-
diation flux and temperature.

The relative temperature shift 6 may be estimated very
simply. The balance equations for irradiation-induced va-
cancies and interstitials are, at low temperature,

a 2

dt
=G —Rcc —k D cV a a ~ (23)

where a=i or v, G is the Frenkel-pair production rate, R
is the recombination factor

R =4m.r, (D;+D„)N„, (24)

G'"—N4. D

i /2

(25)

The irradiation-enhanced chemical-diffusion coefficient
may be approximated by

k is the sink strength, and D is the a defect diffusion
coefficient. In Eq. (24), r, is the recombination radius.
Under steady-state conditions (D;c; =D„c„)and at suffi-
ciently low temperatures, for mutual recombination to be
the dominant defect-recovery mechanism, the vacancy
concentration is such that

and

f(c)=roc (1 c)+kti T[c l—nc+(1 —c)ln(1 —c)] (19a)

f"(c)= 2co+kti T/c —(1—c), (19b)

B. Regular solution with constant 9'e /D

The simplest model we can think of is a regular solu-
tion model for which

D; =D(c, /c„),
and b, [Eq. (22)] may be approximated by

Po'„b o 4m r,D„N„C„0—
D(T, /=0)

0c„(T)
)

1 j2g
D(T, /=0)

(26)

(27)

(28)

where co is the ordering energy. Let us also assume that
&ti/D [Eq. (14)] is independent of c in the range of in-
terest (0&c & 1).

The effective free energy per atom ip(c) is obtained by
integrating Eq. (14) twice with respect to c. As boundary
conditions, we impose qr=f for c =0 and 1 since no
chemical mixing can occur in the pure matrices. We ob-
tain

q&(c)=toe(1 —c)+ ksT 1+
D

&([cinc+(1 —c)ln(1 —c)] . (20)

The interpretation of Eq. (20) is straightforward: ballistic
effects increase the configurational entropy; they are
equivalent to a rise in temperature.

Equation (20) gives the following law of corresponding
states: The equilibrium configuration of the solid solution
at temperature T under an irradiation flux which fixes the
value of &ti/D to 6 is the configuration that the same
solid solution mould have outside irradiation at a tempera-
ture

with the geometric factor g given by

4mr, &„ 1/2

g =o.,b

In Eqs. (27) and (29), o„is the replacement cross sec-
tion, i.e., the number of atoms which change position per
unit dose; o~ is the displacement cross section, i.e., the
nuinber of vacancies generated per unit dose; b is the
average length of ballistic jumps; and P is the irradiation
flux. If we assume D to be thermally activated (which
holds in a limited temperature interval ), then b, has the
following temperature dependence:

(30a)

Et, E~ EF E~ /2=——E /—2, — (30b)

where E-, EF, and E are, respectively, the activation

energies for chemical diffusion, vacancy formation, and
vacancy migration. Since E- is of the order of Ez+E
Ea is positive in Eq. (30b) and b, is a decreasing function
of temperature as expected: Indeed, the higher the tem-
perature, the higher the configurational entropy and the



1428 G. MARTIN 30

weaker the contribution of ballistic jumps to the disorder
of the solid solution.

Figure 1 represents typical variations of T' as a func-
tion of T for reasonable parameter values: At high tem-

peratures, T'=T, while at low temperature, T' increases
abruptly. The v shape of the curve T'(T) has a very im-
portant practical consequence: thermal-equilibrium con-
figuration at temperatures T lower than T', the
minimum value of T', cannot be reached under irradia-
tion. The steady-state configurations to be reached under
irradiation correspond to the equilibrium configurations
at temperatures larger than T~ (cf. Fig. 1). Moreover, at
ower and lower temperatures, T' increases and may over-

of
come t e thermal-solvus temperature at the concentratia ion
o the solid solution. This simple model therefore ac-
counts for irradiation-increased solubility. Figure 2 is a
schematic representation of the solvus under irradiation as
deduced from the thermal solvus using Eq. (21),

07-

0.6-

0.5
0

!, ~ v J.
0.2 0 4 0.6 0.8 } 0 T/Tc

C= [1+exp[{2—4C)T, jT']I

FIG. 2. Solubility limit C under irradiation in the Bragg-

tion
o e imp icit equa-Wi iams approximation. C is the solution of th

'
l

(31) where T' is given by
values of Ao (

T, =1250 K.

Eq. (21) with Eq ——0.7 eV and various
10; ———,10; ———., 10 ).

C. More general cases

VtK)
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1(K)

1200-
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I

400
I

800
I

1200 T(K)

The above procedure may be applied to less restrictive
cases, i.e., nonregular f(c)- and c-dependent & /D

'

q. ( 4). Each case, however, must be dealt with
separately, and such an exercise is beyond the sco e of
this paper.

e scope o

One should, however, notice that, due to the similarity

(11) reci it
of the diffusion equation (13b) with th t d d f

, precipitates under irradiation should behave much in
the same way as outside irradiation, namely, precipitates
should grow in supersaturated solid solutions or shrink in
undersaturated solid solutions The solubility limit is sim-
ply shifted by irradiation. The ballistic effects, as

escribed here, provide no mechanism by h hy w ic a precipi-
tate should reach a steady-state size under irradiation.

is conclusion is at variance with existing models of
ballistic effects on precipitate size. We think that the
latter models omitted the contribution of ballistic jumps
to solute diffusion in the matrix. As far as we are aware,
experimental evidence for the occurrence of such a stable
size is rare. ' A stable size might result from effects not
taken into account here, such as a strong concentration
dependence of ballistic diffusion coefficients, or inhomo-
geneity of the defect recombination process (e.g., at a
precipitate-matrix interface), or strong solute-defect fluxes
coupling. Such effects deserve further study.

IV. ORDER-DISORDER REACTION
UNDER IRRADIATION

0
ip

I

400
I

800 ~200 1(K)

FIG. 1. Equivalent temperature T' as a function of irradia-
tion temperature for (a) a fixed value of E~ (0.7 eV) and various

7

and {b) for Ao ——10 and various values of E~ (,0.3 eV;———,0.5 eV; ———,0.7 eV; —.—- —., 0.9 V).

The results obtained in the preceding section may be ex-
tended to the order-disorder reaction under irradiation,
and it is to be expected that, at least for model systems
described in the Bragg-%'illiams approximation, the
steady-state value of the long-range-order parameter
under irradiation as a function of temperature has the
same shape as the solubility limit depicted in Fig. 2. In
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this section, however, we treat two different problems in
some detail: the steady-state value of the long-range-order
parameter under irradiation, for an initially-ordered solid
solution, and the spinodal ordering kinetics under irradia-
tion, for an initially fully disordered solid solution.

jump frequency I (T,P) as

r( T,y) =I'(T,o)c„/c„', (39)

and I z/I' in Eq. (37) is written as b, in Eqs. (27) and (28)
with I b instead of D in the denominator,

A. Steady-state value of the long-range-order parameter
1.,/I =g'(c„'/I )(yD„)'", (40)

c~+cp= 1

S =2c —1=1—2cp . (32b)

Outside irradiation, we may write the following balance
equation for, say, c:

S~~~+S~P i3 ~ (33)

while under irradiation, a ballistic term should be added,

dc~
dt

~=gI ii( —c +cia) . (34)

Indeed, Eq. (34) simply states that ballistic mixing
tends to make the composition between the two sublattices
uniform. g in Eqs. (33) and (34) is the number of nearest
neighbors.

In Eq. (33), I and I ii are obviously functions of the
degree of long-range order. As shown in Appendix C,

r&/r =e (35)

where co is the ordering energy: co =2k~ T, where T, is
the critical temperature.

The equilibrium value of the long-range-order parame-
ter is given by the solution of the implicit equation (Ap-
pendix C)

Several kinetic treatments of the problem are
available. ' ' Here we present a simple new treatment
which parallels that for unmixing. For the sake of sim-
plicity, we deal with the 82 crystal structure in the
Bragg-%illiams approximation.

I.et us call I (I p) the frequency at which 8 atoms
leave the a sublattice towards the P one (the P sublattice
towards a), I ii the frequency of ballistic jumps between
sublattices a and P, and c and cp the atomic fraction of
8 atoms on sublattices a and p. With the above nota-
tions, S being the long-range-order parameter, the follow-
ing relations hold:

with

g =r
' 1/2

4mr,

Qod
(41)

0.8-

0.6-

Unlike in the simplified unmixing problem dealt with
in the preceding section, we cannot reduce ballistic effects
to a temperature dilatation with a simple expression for
the dilatation coefficient. However, Eqs. (36) and (37)
have been solved numerically. The result is shown in Fig.
4 for various values of I ii/I including I ii/I'=0. From
Fig. 3, a law of corresponding states similar to that estab-
lished for the unmixing case (Sec. III) may be constructed
numerically, i.e., the long-range-order —parameter value at
temperature T and irradiation flux P equals that at a tem-

perature T' uiider zero irradiation flux. The relationship
T'(T) deduced from Fig. 3 is depicted in Fig. 4. As can
be seen, Eq. (21) gives the correct form for this law.
However, b, in Eq. (21) is not equal to I'ii/I. For
I'ii/I =10 e, for instance, we find, from Figs. 3—6 +0.7/ BT

+0.61/k~ T
and 4, 6=5.3 & 10 e . Conversely, setting
5= I'ii /I' and computing S from Eq. (36) with
T'=(1+6,)T instead of T on the rhs of Eq. (36) gives an
S-versus-T curve which is very close to the correct one
(Fig. 3). Indeed, the two curves superimpose except in the
narrow temperature range where the almost vertical part
of S(T) at low T connects to the thermal-equilibrium
curve S(T). Even in this region, the deviation is small, as
depicted in Fig. 3. Therefore the law of corresponding
configurations as stated for the unmixing case is approxi-
mately followed.

There is still a difference in the degree of sophistication

S=tanh(ST, /T) . (36)
,4

S=sinh(ST, /T)/[cosh(ST, /T)+ I ~/I'], (37)

where I is defined as an average thermal jump frequency,

Under irradiation, the same procedure now gives S as
the solution of the implicit equation (cf. Appendix C) 0.2-

0.0
0.0 0.2 0.4

I

0.8 1.0 T/Tc

r =(r.r~)'" . (38)

Since the S dependence of the jump frequencies is only
specified by Eq. (35), i.e., as a constraint on the ratio
I ~/I, I in Eq. (38) may be chosen as S independent.
As in the preceding section, for the chemical-diffusion
coefficient D, we write the irradiation-enhanced average

FIG. 3. Steady-state long-range-order —parameter values for
E /k~ T

various yo and E~ in I &/I =y~ ",and T, =1250 K, com-
puted either from Eq. (37) or (36) with T' instead of T, where
T' is given by Eq. (21) with K=I &/I. yo ——10 and E=0.7
eV, ———[Eq. (37)] and . . [Eqs. (36) and (21)]. yo ——10
and E=0.7eV, — — — [Eq. (37)] and . . [Eqs. (36) and
(21)].
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(T-T }/ T waves with a wavelength not much larger than the lattice
parameter.

Ballistic effects will add a negative contribution to the
rhs of Eq. (42). In order to be consistent with Eqs. (42)
and (43), ballistic diffusion must be described by Eq. (9a).

As shown in Eq. (10b}, the decay rate of concentration
waves due to ballistic effects is

a~(k) = —QI ~ ~I 2[1—cos(km)] I . (44)

Combining Eqs. (42) and (44), the growth (or decay) rate
of concentration waves under irradiation is

ia lo'7 (K }

FIG. 4. Temperature dilatation A=(T' —T)/T vs 1/T as
—6 0'7/kB T

measured in Fig. 4 for I B/I =10 e and 5 computed
—6 061lkB T

from Eq. (37). Least-squares fit yields 6=5.3&(10 e

a„,(k) = MK —(q),"+2aK~),

with

QI (m)[1 —cos(km)]
ATm;"=f;"+

c(1—c) I"(1—cosk)

(45)

(46)

for the descriptions we just gave of unmixing and order-
ing systems. In the general unmixing problem (Sec.
IIIA), we have proposed a Lyapunov functional for the
problem, I' [Eq. (15)], which plays the role that the free-
energy functional plays outside irradiation. In Appendix
D we propose a Lyapunov function p(S) for the ordering
problem, i.e., we give the expression of y(S) such that p
decreases with time if S is not a steady-state solution of
the balance equation under irradiation [Eqs. (Dl) and
(D2)] and p is minimum for S values which are stable
steady-state solutions of the latter (and respectively max-
imum for unstable steady states). Unlike in the unmixing
case, however, the function g(S) does not reduce to the
free energy when ballistic effects are suppressed. The
function y(S) may, however, be useful in discussing the
relative stability of various ordered structures under irra-
diation.

B. Spinodal ordering under irradiation

We now consider the kinetics of ordering of a fully
disordered solid solution, under conditions where the or-
dered structure develops homogeneously rather than by
domain growth. ' We follow the phenomenology by
Cook, de Fontaine, and Hilliard, ' according to whom the
rate of growth (or decay) of the amplitude of a concentra-
tion wave of wave vector k is given by

where the notation I =D/a has been used.
In Eqs. (45) and (46), M and I are to be understood as

the radiation-enhanced mobility and jump frequency, as in
Sec. III.

Simple examination of Eqs. (45) and (46) reveals the
following features.

(i) Ballistic effects oppose spinodal ordering: Indeed, in
ordering systems, f,")0, and as s-hown by Eqs. (45) and
(46), qj is larger than f,". The driving force for the
growth of concentration waves is decreased. For ap-
propriate parameter values, it may be cancelled
(qj'+2aK =0).

(ii) The above effect is wave-vector dependent as soon
as ballistic jumps are not restricted to nearest-neighbor
sites. As shown in Fig. 5, second-nearest-neighbor ballis-
tic jumps contribute weakly to the erosion of short-
wavelength harmonics ( k )0.8); third-nearest-neighbor
ballistic jumps have no effect at all on k =—', harmonics,
etc. The above mechanism may contribute to the higher
resistance to ballistic effects of the short-range-ordered

R
10

a(k) = —M[K(k)] If,"+2~[K(k)]21 . (42)

In Eq. (42), f,-" is the second derivative of the free-energy
density with respect to concentration, evaluated at the
average alloy concentration, M is the atomic mobility as
defined by Eq. (12), ~ is the gradient energy (negative for
an ordering system), and K is given by

2

0.2 O.~ 0.6 0.8 I.O

K(k) =[2(1—cosk)]' /a, (43)

with a the lattice parameter and k =2m.a/A, with A, the
wavelength of the concentration wave. The presence of
K instead of k in Eq. (42) comes from the fact that here
we are dealing with the time evolution of concentration

FIG. 5. Wave-number dependence of the relative ballistic
contributions to the decay rate of concentration waves, for vari-
ous ballistic jump distances: ———,first-nearest neighbor
(NN); —- —~ —-, second NN' —~ ~ — ~ —~, third NN, The
short-dashed curve I,

'———) corresponds to the amplification
rate resulting from the gradient-energy term ~.
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FIG. 6. Typical alloy behaviors to be anticipated under the action of ballistic effects. (a) Precipitate dissolution. (b) T', unmixing
in the ordered compound; T", complete disordering. (c) T', coexistence between an amorphous and a crystalline phase of different
composition; T", complete amorphization. (d) T', precipitate dissolution, higher T', as in (c). (e) T', coexistence of amorphous zones
and an ordered compound; T", complete amorphization.
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structure with respect to the long-range one in Ni4Mo as
observed by Banerjee, Urban, and Wilkens. Indeed, the
short-range-ordered (SRO) structure has a shorter wave-

length compared to the long-range-ordered (LRO) struc-
ture.

(iii) The growth rate of those harmonics which are
weakly affected by ballistic effects is indeed enhanced by
irradiation. Indeed, atomic mobility [M in Eq. (45)] is
enhanced by the point-defect supersaturation sustained by
irradiation.

In conclusion, in ordering solid solutions with fixed
concentration, ballistic effects decrease the LRO-
parameter values according to a law of corresponding
states (Fig. 4); they affect the relative growth rates of vari-
ous harmonics of concentration: It is to be expected that
certain harmonics which only appear as rapid transients
outside irradiation may become a dominant feature of the
decomposition path under irradiation. Since we have seen
that the "strength" with which concentration harmonics
are destroyed by ballistic effects depends on the wave vec-

tor, it may be speculated that ordered structures mith ap-
propriate wave vectors would be stable under irradiation
and unstable outside irradiation. The occurrence of the
SRQ structure in Ni4.Mo under 1ow-temperature irradia-
tion where the long-range-ordered structure is unstable,
may be an example of such a behavior. A detailed ap-
plication of the present technique to Ni4Mo is in progress.

V. DISCUSSION AND CONCLUSIONS

In the preceding sections we have proposed a technique
for computing steady stat-e configurations of solid solu-
tions in the presence of ballistic effects.

For unmixing as well as ordering simple model systems,
the following rule of corresponding configurations could
be stated, as a first approximation. The configuration of
a solid solution under irradiation at temperature T and
flux P is the equilibrium configuration that this solution
mould have outside irradiation at a temperature
T'= T[1 +b,( TP)]; in the limit of high irradiation flux P
and low defect mobility, the scaling factor 5 varies as

E/k& TP'~ e . The lower the point-defect mobility, the
larger the scaling factor [Eq. (30)].

All of the models that we have dealt with are extremely
simple in many respects. More realistic cases are now
under study. Nevertheless, it is tempting to explore the
possible consequences of the rule of corresponding config-
urations and check if it reveals any interesting behaviors
of solid solutions under irradiation.

Figure 6 is a schematic representation of typical por-
tions of phase diagrams. On each portion a vertical line is
drawn showing the concentration of the solution. Along
this line several points labeled T, T' and T" represent,
respectively, the irradiation temperature and the homolo-
gous temperature under m.oderate and high irradiation
fluxes ( T'= T[I+5( T,P )] iand T"=T [I+ 6 (T,Pq)],
pg&pi).

Figure 6(a) shows an example of irradiation-
induced —precipitate dissolution, as discussed in Sec. III.
Figure 6(b) shows a case of an ordering reaction of the
first kind. At higher flux (Pi) the homologous tempera-

ture T" is in the disordered one-phase field: one expects
irradiation-induced disordering. At lower flux (Pi) the
homologous temperature T' is in the two-phase field: one
expects a coexistence of ordered and disordered domains
of different composition. This situation is reminiscent of
the observations of Potter et al. in Ni&Al. There, the y
phase was observed to nucleate inside the ordered y' phase
under heavy-ion, high-dose irradiation.

Figure 6(c) is a case of a two-phase alloy which amor-
phizes under high flux irradiation: Indeed, under high
flux irradiation, the corresponding state (T"} has the
structure of a liquid. We notice an interesting feature
which appears at moderate flux (T'), namely that the
structure would be an equilibrium between an amorphous
and a crystalline solid solution of different compositions.

Figure 6(d) shows a case where a two-phase alloy would
first transform to a single-phase one (T ). This is the situ-
ation which has been studied in Ref. 25. At higher fluxes
we would recover the situations depicted in Fig. 6(c).

Finally, Fig. 6(e) depicts the case of an ordered com-
pound which experiences congruent melting. For suffi-
ciently high fluxes one might expect amorphization of
such a compound, without prior disordering (T"). We are
aware of one such example, namely ¹iTi under 1-Mev-
electron irradiation. It is noticeable that amorphization
started along the dislocation lines; it is precisely a region
of higher atomic displacement efficiency, and where the
point defects would have a short lifetime due to elimina-
tion at the dislocation core. As a consequence, 5 in Eq.
(21}should be large.

We are quite aware of the speculative nature of the
above arguments. %e believe, however, that the possible
typical behaviors just revealed are sufficiently interesting
to deserve a systematic experimental study.

Finally, it is clear that in this paper we have concentrat-
ed on ballistic effects, and that the description of solute
diffusion by defect jumps has been oversimplified. In par-
ticular, solute drag by defect fluxes has not been con-
sidered, so that the model just presented cannot account
for irradiation-induced precipitation. We believe that the
applicability of the present model is restricted to low tem-
perature, while solute-defect-flux coupling is relevant at
higher temperature. Elaborating a model for phase stabil-
ity under irradiation valid for the entire range of tempera-
ture is still an open question.
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APPENDIX A: DISCRETE BALLISTIC
DIFFUSION EQUATION

The ballistic flux of atoms of species i across the plane
located between sites p and @+1is
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J;(p+ —,
'

) =y;
p oo

g S~S CI. S
s =—ao s =p+ 1

b;(s,s ')c;(s) (Al}

where y' is obtained by integrating qr" [Eq. (14}] once
with respect to c, with the appropriate boundary condi-
tion. For a closed system, the steady-state concentration
profile c(x) ensures that J=0 or

s= —oos =p+1

with the following change of notation:

S =P+Q, S =P+V, V —Q=Ptl

and noting that

(A3}

s =p+ ls'= —oo

y; is the ballistic jump frequency of species i, b;(s,s ) is
the a priori probability that a ballistic jump that originat-
ed at site s will end at site s', and c;(s) is the atomic frac-
tion of species i at site s. Assuming as before that
b;(s,s') =b;(s', s), we obtain

p oo

J;(p+ —,
' )=y; g g Ib;(s,s')[n;(s) —n;(s')]), (A2)

8 c
|P —2K =P

X
(82)

Equation (82) is simply the condition for the functional
2'

F tc (x) I =N„f y(c)+ll
dX

dx (83)

f c(x)dx =cf dx . (84)

Indeed, Eq. (82) is the Euler equation for the latter prob-
lem,

to be the extremum with the constraint of matter conser-
vation,

b (s, s') =b(s' —s), =p
c

(85}

Eq. (A2) can be written as

J;(p+ —,
' )=y; g g b(m)[n;(p+v —m) —n;(p+v)].

u =1m =v (A5)

The flux J; is evaluated in the lattice frame of reference.
With the same restrictions as stated for establishing the
continuum description [Eq. (5a)], the flux of species 2 in
the laboratory frame of reference is

where 5/5c means the functional derivative with respect
to c(x).

Property (c) in Sec. IIIA may be demonstrated as fol-
lows. Let us compute, for a closed system bounded by the
surface S, enclosing a volume V, the following integral:

(86)

J=J2 —C2(Jl+J2),
i.e., according to Eq. (A5),

J= g g I (m)[c2(p+u —m) —c2(p+u)],
U =1m =u

where the following notation has been used:

I'(m) =[1—c2(p)]y2b2(m)+c2(p)ylbl(m) .

(A6)

(A7)

(A8) and with Eq. (81), gives

where n is the unit vector normal to the surface pointing
to the exterior. Since the system does not exchange solute
with the exterior, the lhs of Eq. (86) is zero and the diver-
gence theorem together with the continuity equation

c = —div J,

As can be seen, I"(m) is a function of the local concentra-
tion. The continuity equation

5FBcd f iJi
v 5c dt l' M

(88)

Bc2(P) =J(p+-,')-J(p--,'), (A9)
The lhs of Eq. (88) is nothing but dF/dt. Since M is a
positive quantity, Eq. (88) simply means

together with the assumption that I (m) is not concentra-
tion dependent (valid for the early stages of ordering
where c2-c2, the average concentration), yields Eq. (9a}
in the text,

C2

dt y [(1 c2}y2b2(m}+c2ylbl(m}]

X[c2(p —m) —2c2(p)+c2(p+m)] . (A10)

APPENDIX B: LYAPUNOV FUNCTIONAL
FOR THE DIFFUSION PROBLEM (REF. 19)

dF (0,
dt

where the equality holds when J J
i
=0 everywhere, i.e.,

under steady-state conditions. F is therefore a Liapunov
functional for the diffusion problem. '

Property (d) in Sec. III A is based on the following argu-
ment: ' Under steady-state condition J=0, i.e., accord-
ing to Eqs. (81) and (82),

Bg p 2
BC (810)

Bc

The diffusion equation (13b) may be written as
r8, 8 CJ= —MX„y'—2x

BX
(81)

With the following interpretation of the variables, c~ po-
sitions, x~ time, Eq. (810) describes the movement of a
particle of mass 2a in the potential V= —qr p+c N/, .
Two-phase equilibrium exists when the common tangent
to Vis horizontal (Fig. 7).
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y )L

(a. i4
The steady-state solution of the kinetic equation (33), Sec.
IV A, may be written as

c /cp=(1+S)/(1 —S)=(l p/I ) . (C7)

The dependence of I'p/I ~ is obtained by equating Eqs.
(C6) and (C7),

ruslks r
(Cs)

which is Eq. (35).
The steady-state solution of the kinetic equation in the

presence of ballistic effects results from
c c c' c(t.)

FIG. 7. Common tangent to V is horizontal.
or

0= —(I ~+I g)c~+(I"p+I s)cp, (C9)

The positions of the contact points (c,c') give the com-
positions of the coexisting phases. Indeed, the particle
may stay at c an infinite time, i.e., the phase of composi-
tion c may have infinite extension. The same is true for
c'. If the average position of the particle (composition of
the system) is constrained to the value c, the only solution
compatible with the value V of the potential is the particle
leaving c at zero velocity, and reaching c' at zero velocity,
after a rapid excursion between c and c', or, in alloy
language, the composition c extending to x = —00, and c'
extending to x =+ ca with a narrow region (interfacial
region) with a composition intermediate between c and c'.

APPENDIX C: STATIONARY DEGREE
OF LONG-RANGE ORDER

We briefly recall the Bragg-Williams treatment of the
82 structure.

The internal energy per atom is

(1+s)/(1 —s)=(r,+r, )/(r. +r, ) .
Defining I by

a)S/2k~ T —AS/2k~ T
p— 8 ) ~— 8

and defining 5 by

5=I p/I

simple manipulation of Eq. (C10) leads to

(C10)

(Cl 1)

(C12)

APPENDIX D: LYAPUNOV FUNCTION
FOR THE TIME EVOLUTION

OF THE LONG-RANGE-ORDER —PARAMETER VALUE

S=sinh(tos/2k& T) /[cosh(cos/2kti T)+5], (C13)

which is simply Eq. (37) in Sec. IV A.
Outside irradiation (I p =0), Eqs. (C13) and (C4) reduce

to Eq. (36) in the text.

Q =C+CpCO, (Cl)

where c and cp are the B-atom fraction on sites of the a
and P sublattices, respectively; co is the ordering energy
defined as

Equations (33) and (34) give, under irradiation,

=g[(I p+1 p)cp —(I +I p)c ], (Dl)

~=@(e~~+esp 2e~a)—, (C2)
or, with Eq. (32b),

where g is the coordination number and the e,j are the
pair interaction energies.

The entropy per atom is taken as that of an ideal mix-
ture on each sublattice,

s = —kii(c inc +cplncp),

S =&[(rp+r, )(1—s)—(r.+rp)(1+s)],

S
Ides

= —S(I +I p+2rii)+I p
—I

(D2)

(D3)

Tc ——a)/2k@ . (C4)

Remembering Eqs. (32a) and (32b) of Sec. IVA, and
minimizing the free energy u —Ts with respect to e,
yields the equilibrium value of c~ as the solution of

c /(1 —c )=e (CS)

where kii is Boltzmann's constant.
With the above approximations, the ordering reaction is

found to be of the second kind with the critical tempera-
ture given by

Taking advantage of Eq. (Cl 1), we obtain

dS
d7

= —2S[cosh(tos/2kii T) +5]+2 sinh(cps/2kp T),

(D4)

where v is a reduced time given by r=grt; I is defined
by Eq. (Cl 1).

If Eq. (D4) can be written as

dS Bqr (D5)
dv BS '

which Inay be written as

(1+S)/(1—S)=e (C6)

g is a Lyapunov function for the problem. Indeed, if S'
is an extremum of y, dS/de =0; S is a steady-state solu-
tion of (D5). Moreover, if S is not a steady-state solution,
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dy Bq& dS
dr t)S dr

Bg
BS

'2

&0. (D6)
where the notation T, =to/2kti has been used. Integrat-
ing Eq. (D8) yields

Therefore, y is a decreasing function of time whenever
S is not a steady-state solution of Eq. (D5).

Finally, if (p(S*) is a minimum, S' is a (locally) stable
steady-state solution, while if y(S ) is a maximum, S* is
an unstable steady-state solution. Indeed, we let s be the
small departure from S*; expanding Eq. (D5) to first or-
der in s yields

p(S)= p(0)+S 5

ST,+ S sinh
C T

T

T ST,
1 + cosh

Tc T
(D9)

ds 5 tp

dt BS~
(D7)

tglP =2S[cosh(ST, /T) +5j —2 sinh(ST, /T), (D8)

From Eq. (D7), we see that if y(S") is a minimum
(8 g/BS &0), then ds/dt is negative if s is positive and
vice versa; S* is a stable steady-state solution. The re-
verse is true if y(S*) is a maximum.

The function tp(S) for Eq. (D4) is a primitive of the rhs.
We write

We see from Eq. (D8) that S =0 is a steady-state solution
that is stable (d tpldS &0) if (1+5)T& T, or T'& T„
where T' is given by Eq. (21) with b, =5. The latter con-
dition is fulfilled for two different values of T according
to the shape of T'(T) (cf. Fig. 1), one close to the critical
point T, and one at a lower temperature. The law of cor-
responding states given in the text is thus strictly valid for
the shift of the critical point and for defining the low-
temperature threshold for complete disordering.
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