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The hyperfine-field distribution in amorphous speromagnetic Y3FesO; (yttrium iron garnet, YIG)
is shown to result dominantly from local spin disorder via its supertransferred component Hgr.
Since this same spin disorder determines local exchange fields H.y, the hyperfine-field distribution
indirectly contains much information concerning the distribution of H,, in the “spin-glass” environ-
ment. A theory is presented which relates Hgr and H,, through local spin disorder and in terms of
which both the distributions of hyperfine and exchange fields can be represented in terms of a few
common parameters. The theory, which should be directly applicable to a whole range of ferric
amorphous insulators, is applied here to amorphous YIG and provides an excellent interpretation of
the details of the observed hyperfine spectrum. From this fit we derive, via the theory, the predicted
distribution of exchange fields in amorphous YIG. We find, in particular, that the mean exchange
field (H. ) is only some 6% of its equivalent in crystalline YIG in accord with the ~ 15-fold differ-
ence in spin-ordering temperatures between the crystalline amorphous phases.

J I. INTRODUCTION

In spite of a wealth of experimental information now
available concerning hyperfine-field distributions in amor-
phous magnetic materials, little progress has been made in
the way of theoretical understanding. This is primarily
because the hyperfine field H,¢, even in a well-defined
crystalline environment, is in general the sum of several
physically distinct contributions of comparable magni-
tudes each intimately related to separate aspects of the
electronic structure.! In light of this complexity it seems
appropriate to make initial efforts in the amorphous con-
text for systems in which not all of these contributions are
of comparable importance.

In this respect the amorphous ferric oxide and
fluoride-based speromagnetic insulators are good candi-
dates since experimental hyperfine distributions p (Hy¢) of
excellent quality are now becoming available and, for
these, contributions to Hy¢ from orbital angular momen-
tum and conduction-electron polarization are rigorously
absent, while those from dipolar sources (H;,) are small.
This leaves only the “contact” field, proportional to the
polarization of s-electron density at the nucleus in ques-
tion, as relevant for these systems.

The contact field is the vector sum of a local part ﬁloo
and a supertransferred part ﬁsr- The former is propor-
tional to the local 3d spin §0 on the ion under considera-
tion (with spin quantum number S =3 for the case of
ferric ions) while the latter is the resultant of contribu-
tions from all single-ligand-bridged ferric nearest neigh-
bors n, each proportional to the electronic spin §,, on the
neighbor site,>* i.e.,

(1.1
(1.2)

I—'ihf= ﬁloc+ﬁST+ ﬁdip ’
Hie=—C(So/8), Hsr= 3 B,(S,/S),
n

30

in which C and B, are positive scalar field parameters
and |ﬁdip[ << 'I_'ihfl . Of particular significance is the
fact that an association with the geometry of coordination
can be made through the known form which B, takes as a
function of the iron-ligand-iron bond angle ¢,, namely*3

B,=H,sin’¢, + H,cos’¢, =H,,+(H,—H, )cos’4, .
(1.3)

In this equation the fields H, and H, arise physically
from overlap distortions of the “central” cation s orbitals
caused by the ligand p orbitals which have been unpaired
by spin transfer via 7 and o bonds into unoccupied 3d or-
bitals on the neighboring cations 7.

In this paper we first demonstrate (Secs. II and III)
that, although the mean value of Hy¢ in amorphous yttri-
um iron garnet (a-YIG) is dominated by H,, the fluctua-
tions AHy¢ which generate the distribution of Hys about
its average are almost exclusively due to fluctuations in
the supertransferred field component HST=ﬁ5T~(§0/S).
These fluctuations are primarily caused by the local spin
disorder of the spin-glass (or speromagnetic) arrangement
of frozen spins at low temperatures. Since this same spin
disorder determines the local exchange fields H.,, it fol-
lows that Hgy and H,, are intimately related and that the
hyperfine-field distribution indirectly contains a wealth of
information concerning the distribution of exchange fields
as well as the supertransferred hyperfine fields.

A theory is presented (Secs. IV and V) which relates
H,., and Hgr through the common local spin disorder.
Starting from a zeroth-order approximation of a fully
frustrated spin model in which H,., =0 at every iron site,
small self-consistent angular spin perturbations are intro-
duced to simulate the magnetically stable spin-glass order
with ﬁexl|§0 at each site. In particular, we postulate a
functional relationship H., ~f(Hgr) between these fields
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and establish that the hyperfine-field distribution can be
cast in terms of this function f. Qualitative physical ar-
guments dictate that f should be a single-peaked sym-
metric function centered at Hgr=0 and a simple trial
Gaussian is found, via the associated theory, to provide an
excellent interpretation of the details of the observed
hyperfine-field distribution in a-YIG at 4.2 K (Sec. VI).
Using this fit, we are then able to extract from the for-
malism the actual distribution of exchange fields present
in the spin-glass phase of a-YIG (Sec. VI). In particular,
we calculate the mean exchange field (H,, ) and find it to
be only about 6% of its equivalent in ferrimagnetic crys-
talline YIG. This estimate conforms nicely with the ob-
served ~ 15-fold difference in spin-ordering temperature
between crystalline and amorphous YIG. The analytic
form of the theory is set out in some generality and
should be directly applicable to other amorphous
speromagnetic insulators such as FeF;, KFeF,, etc., which
undergo spin-freezing transitions at low temperatures.

II. CRYSTALLINE YIG (c-YIG)

The first really quantitative study of bond-length and
bond-angle dependence of hyperfine fields was carried out
for Fe** in octahedral coordination using the rare-earth
orthoferrites.>*> Not only was the validity of the angular
dependence of Eq. (1.3) confirmed,>* but a calculation
was also presented (using certain proportionality constants
obtained from the series of orthoferrite measurements)
which related both H),. and isomer shift § at temperature
T =0 to the octahedral (iron-oxygen) ligand bond length
L. When plotted as H;,. versus 8, the essentially linear
relationship shown in Fig. 1 is obtained, where the open
triangle is the evaluation for L =2.00 A which is the
bond length appropriate for the octahedral iron site in c-
YIG. The linearity of this plot is anticipated on rather
general grounds,’ but its quantitative relevance in the YIG
context can be supported on other wholly independent
grounds.

Crystalline YIG has two crystallographically ine-
quivalent Fe’* sites with tetrahedral (d site) and octahe-
dral (a site) oxygen-ligand coordination, respectively.®
Below the magnetic ordering temperature T¢=559 K
each ferric S = spin at a d site (a site) is bridged to four
(six) antiparallel nearest-neighbor spins via identical
Fe—O—Fe ligand bridges with bond angle ¢ ~126°. How-
ever, the bond length L =1.88 A at the d sites is shorter
than that (~2.00 A) at the a sites reflecting the greater
covalence of the tetrahedral bonding geometry.

Thus, for both sites Hgr enhances the local field H locs
both being antiparallel to the electronic spin at the site in
question. The dipolar fields Hg;, are small compared to
Hgr and Hj,. but are also collinear with them. At very
low temperatures the total hyperfine fields at the two sites
are directly measurable as [see Ref. 7 and the results of
our own MGdssbauer measurements as set out in Table I

and Fig. 2(a)]
H{@ =_473(1) kOe, H{¥=—552(2) kOe, (2.1)

where positive fields are (arbitrarily) measured parallel to
the electronic spin at the site in question. Relevant dipo-
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FIG. 1. Estimates and measurements of saturated local con-
tributions Hy, (open symbols) and total hyperfine field Hys
(solid symbols) as functions of isomer shift § in YIG. The linear
plot is taken from estimates (Ref. 2) made for octahedral oxygen
coordinations of varying bond lengths L. The open triangle on
this line is for L =2.00 A the bond length for the octahedral a
site in ¢-YIG. The open square and circle at the same value of §
(where the isomer shifts are all arbitrarily measured with respect
to iron metal at room temperature) are, respectively, indepen-
dent experimental (Ref. 9) and theoretical (Ref. 8) estimates for
the a site in ¢-YIG taken from the literature. The open circle at
8=0.27 mm/s is a corresponding theoretical estimate (Ref. 8)
for the tetrahedral d site in ¢c-YIG, while the solid circles (trian-
gles) are measured NMR (Mdssbauer) values at T=4.2 K for
total Hyy (corrected for small dipolar fields, see text) at these
same two c¢-YIG sites, taken from Table I. Finally, the solid
square is the measured low-temperature mean value of isomer
shift and total Hy; in amorphous YIG (Ref. 10 and Table I).

lar contributions H E{,’; ~+2 kOe and H E{f{, ~ —8 kOe can

be directly? computed from the known spin structure
making [from Eq (1.1)]

=—475(1) kOe , (2.2)
= —544(2) kOe , (2.3)

which are plotted in Fig. 1 as solid circles (from Ref. 7) or
solid triangles (from Table I).

For the a sxte a direct measure of H is available from
measurements’ on garnets in which diamagnetic V>*+ can
substitute for iron in from zero to six of the d sites sur-
rounding an octahedrally coordinated Fe’* in a random
fashion. Experiments performed at T'=410, 300, and 120
K, when extrapolated to T =0, give H{ ~ —70 kOe for
the sum contribution from all six antiparallel nearest-
nelghbor (NN) spins. The inference, from (2.3), is that
H{% ~ —475 kOe. This point is also plotted on Fig. 1
(open square) and is in excellent accord with the estimate
from the orthoferrite work.?

Further confirmation can also be found in the literature
from the very recent ab-initio molecular-orbital calcula-

loc +H
H(a)+H



1418

M. E. LINES AND M. EIBSCHUTZ 30

TABLE I. Modssbauer hyperfine fields Hyy, isomer shifts 8, and linewidths (half width at half max-
imum, HWHM) for crystalline YIG at 4.2 and 300 K are compared with their equivalents for amor-
phous YIG at 4.2 K taken from Ref. 10. Also given for comparison are the 4.2 K hyperfine fields for
crystalline YIG as measured by NMR (Ref. 7). Crystalline HWHM approximate the value 0.20 mm/s
expected for natural linewidth while the amorphous HWHM, which include site-to-site variations of all
Mgssbauer variables, are much larger. All isomer shifts were measured with respect to iron metal at

room temperature.

iron site Hys(kOe) 8(mm/s) HWHM(mm/s)
4.2 K Mossbauer a site 550 0.51 0.18
c-YIG d site 472 0.27 0.21
300 K Mossbauer a site 488 0.38 0.23
c-YIG d site 395 0.16 0.23
4.2 K Mossbauer site- 450 0.45 0.5-0.7
a-YIG averaged
42 K NMR a site 554
c-YIG d site 473

tions® performed on c-YIG itself, using clusters of up to
62 ions. They provide estimates for the ratio Hgy /Ho, of
0.233 (d sites) and 0.174 (a sites) which, when scaled to
the total measured values of Egs. (2.2) and (2.3), give

H{® ~ —385 kOe, H~—90 kOe,
H{% ~—463 kOe H{ ~—81kOe,

(2.4)
2.5)

the local components being shown as open circles in Fig.
1. The fact that the supertransferred component per anti-
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FIG. 2. 5'Fe Mdssbauer absorption spectra for (a) crystalline
and (b) amorphous YIG obtained at T'=4.2 K in standard
transmission geometry with a conventional constant acceleration
spectrometer using a *’Co in Pd source. The solid lines are the
best fits to the data using a three-site Lorentzian-line interpreta-
tion for (a) and a symmetric Gaussian distribution of natural
Lorentzians for (b). The small difference between the two
(rigorously inequivalent) octahedral sites in (a) has been ignored
in the text of this paper and in Table 1.

parallel NN spin is significantly larger ( ~23 kOe) for the
tetrahedral d site than that (=13 kOe) for the octrahedral
a site is anticipated, and results from the larger covalenc‘?'
of the d sites. What is surprising is the fact that the H{%)
value also falls close to the linear H,,. versus & relation-
ship which was derived for octahedral coordination (see
Fig. 1). It suggests that this line may be approximately
relevant for more general iron-oxygen local coordinations
of high symmetry.

III. AMORPHOUS YIG(a-YIG)

In its amorphous form, Y;FesO,, exhibits only a single
broad distribution of isomer shifts and hyperfine fields
below the spin-freezing temperature [Fig. 2(b)]. Thus, al-
though we shall refer to it as a-YIG, no memory of the
garnet crystalline structure (with its two very different
inequivalent iron sites) is retained. At liquid-helium tem-
perature the broad amorphous-phase distributions are cen-
tered closely on the mean values!®

(Hys)=—450 kOe, {(8)=0.446 mm/s , 3.1)

the isomer shift here (and elsewhere in this paper) being
measured with respect to that of iron metal at room tem-
perature.

By virtue of the amorphous matrix and ‘“‘spin-glass”
disorder of magnetic moments, mean dipolar contribu-
tions (H dip) to total mean hyperfine field are almost cer-
tainly smaller than their already small crystalline
equivalents. They are correspondingly neglected. It then
follows from Eq. (3.1) that

(Hoo)+(Hgr )= —450 kOe ,

and this value is shown in Fig. 1 by the solid square. It is
immediately apparent from Fig. 1 that the mean super-
transferred field (Hgr) in a-YIG must be very close to
zero. Thus, while the (solid circle or triangle) values of
H,,.+Hgr for each crystalline site are ~80—90 kOe
above the Hj, versus 8 line, the equivalent point (solid
square) for a-YIG is right on this line.

Physically this can only mean that the spin-glass disor-
der of speromagnetic a-YIG is such that spins are almost
fully orientationally disordered even on a local (NN) scale,

(3.2)
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this in spite of the very dominant antiferromagnetic ex-
change present (as evidenced by the large negative mag-
netic Curie-Weiss temperature seen in the higher-
temperature paramagnetic phase!!). We conclude that

(Hgr) =0 ,{H,,)=—450 kOe, a-YIG, (3.3)

where scalar values of hyperfine field are measured along
the direction of local spin §0, ie., Hgr =ﬁsr'(§o/S ).

Also determined from our earlier Mossbauer-Zeeman
analysis'® of ¢-YIG at 4.2 K were the standard deviation
o(x)={(Ax)*)1"%, Ax=x —(x) for x =6 and x =H ¢ as
follows:

0(8)=0.21 mm/s, o(Hy)=29 kOe , (3.4)
and the correlation

<A8Ath>=0.180'(8)0'(th) . (3.5)

Now the fluctuations Aﬁhfz Aﬁloc+Aﬁ3T are composed
of two components of quite different character. At or
near spin saturation |§0[ =S, AH,,. results dominantly
from variations of d-electron population via overlap and
spin transfer with ligand p orbitals at the iron site in ques-
tion.2? These same overlap and transfer terms also dom-
inate the isomer shift fluctuations A8, leading to antici-
pated strong correlations between AH/,, and AS. In con-
trast, fluctuation AﬁsT is the vector sum of components
from all NN spins §,,, each component being parallel to
that spin. These NN “frozen” spins §,, are pseudoran-
domly oriented on a local scale in a-YIG, and this orien-
tational randomness will therefore give rise to large fluc-
tuations AHgy which are largely independent of isomer
shift or local hyperfine field. We therefore anticipate the
relationships

o( Hyg) =[0%(Ho.)+0*(Hgr)]'?~29 kOe , (3.6)
(AHgA8) =0, (3.7)
(AH,,.,A8) =bo(H\,)o(8) , (3.8)

where b <1, b=1 corresponding to full linear correla-
tions between the variables involved.'? Equation (3.6) as-
sumes the statistical independence of AH,, and AHgr,
and Eq. (3.7) assumes the statistical independence of
AH ST and AS.

If we set b =1 in Eq. (3.8) and utilize (3.5) and (3.7), we
find

(AHA8) = ( AH o, A8) =0(H o, )o(8) =0.180(Hys)o(8) ,

(3.9)

leading to o(H,.)/o(Hye)=0.18 or, via Eq. (3.6),
o(Hsy)/o(Hpe)=[1—(0.18)*]'2~0.98 . (3.10)
|

Even if b is as small as 0.3 (representing only minor corre-
lations between AH,,. and A8) the overwhelming domi-
nance of supertransferred hyperfine field is maintained
with o(Hgr) then making up about 80% of o(Hy).

Such a dominance can be independently established
from an evaluation of o(Hgr) directly for a-YIG via the
spherical random-packing model'® which has been suc-
cessful in other predictions concerning local structure in
this material.’* Thus, from Egs. (1.2), (1.3), and (3.3) we
have

<(AHST)2)z(H§T)

=< {2 [H,+(H,—H_,)cos’p, ]cosE,

)
(3.11)

in which the sum Y,
bridge- angle ¢,) nearest nelghbors S of a representative
iron spin So, and cosé, —(So )/S 2 measures the normal-
ized angular projection of S upon S

From the experlmental measurements of Freund
et al.’s it is known that H, ~6H, for Fe**—0?~ coordi-
nation. Also, from (2.4) and (2.5) we know that Hgr per
antiparallel NN spin in ¢-YIG (with ¢, ~ 126°)% is about
23 kOe for d sites and 13 kOe for a sites. Interpolating
linearly between these points on Fig. 1 as a function of §,
we anticipate that a value of about 16 kOe should be ap-
proximately valid for the evaluation of Hgr per anti-
parallel NN spin with ¢ ~126° at a value of 8 correspond-
ing to a-YIG. In other words, the relationship

H,+(H,—H,)cos*(126°)=16 kOe ,

together with H,=6H,, should provide values of H, and
H_, appropriate for use in the context of a-YIG. Solving
these equations, we obtain

H,~35%k0e, H,~6kOe. (3.13)

Now within the model of Ref. 13, the probability distri-
bution for ¢, approximates sing, with 7/2<¢, <,
while the mean (and most probable) number of NN spins
n is five [see Figs. 12 and 14(a) of Ref. 13]. Therefore, us-
ing (3.11) in a random spin orientation approximation, we
can directly derive

is over all single-bridged (with

(3.12)

((AHg1)*) =(H,,—H,,)2< 3 [(cos’d, +t)cos§,,]2> ,

(3.14)
where t =H,/(H,—H,)=0.2, as

5(H,—H,)? foﬂ f:/z (cos*p +2t cos’p+t?)cos*E sing sinE dp d &

UZ(HST)=

=3(H,—H,)Xt*+2t/3++)=0.6222(H,—H,)* .

fO" f:/z sing sinfd¢ d§

(3.15)
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With the use of (3.13) this produces the estimate
o(Hgr)~23 kOe for a-YIG to be compared with the total
hyperfine width o(Hy¢) of 29 kOe.

Thus, the conclusions from Secs. II and III for a-YIG
are that the average value of Hy in a-YIG is essentially
that of Hj, while the distribution AHy¢ about this aver-
age is dominated by AHgy.

IV. INFLUENCE OF THE EXCHANGE FIELD

An arbitrary ferric ion in a-YIG is subject to two
separate magnetic fields. In addition to Hy,¢ which acts on
the nuclear spin, an exchange field ﬁex acts on the elec-
tronic spin _§0. The latter, which by definition determines
the direction of §0, is parallel to §0 and is composed of an
antiferromagnetic kinetic'® contribution’

Hey 3 [2H,+(H,—2H,)c0s’$,1(S,/S),  (4.1)
n

and a ferromagnetic (potential)'® one. The former, Eq.

(4.1), dominates in a-YIG at all bond angles ¢, except
possibly those close to ¢, = /2 for which the situation is
uncertain.

In spite of the similarity in form of their individual
components (1.3) and (4.1), the resultant I_-ihf and ﬁex are
by no means trivially related in the amorphous context.
In particular, since (Hgr)=~0 in a-YIG [Eq. (3.3)], ﬁex
and f:IST must be approximately randomly oriented rela-
tive to each other in the glass. The situation is depicted
schematically in Fig. 3. More precisely, however, this
randomness cannot be exact since it would result in an ex-
actly symmetric distribution of hyperfine fields. Nor can
the spins themselves be exactly randomly oriented since
such a configuration would not produce an exchange field
parallel to §0 except in rare fortuitous instances.

A useful starting approximation in describing the actu-
al spin-glass order is that of a completely frustrated!” net-
work defined by the condition

€n

] ‘{ \\§
(n)
SN HsT 3 HY

é, @‘T &
!
(a)

FIG. 3. (a) Schematic for a ferric iron-oxygen-iron ligand
bridge (of bond angle ¢,) between a central cation with electron-
ic spin So and one of its cation nearest neighbors S, in the spin-
glass (or speromagnetic) phase of a-YIG. (b) The directions of
the resulting local H), and supertransferred H w components of
hyperfine field experienced by the nucleus of the central cation.
(c) The corresponding directions of the exchange field H" and

total vector resultant exchange Hex=2n H ‘;’. The latter, for

(b) (c)

self-consistency, must be parallel to central spin So.

—0 —
gﬂBHex: EZJnS91=O ’ 4.2)
n

in which J, is an exchange parameter defined by the NN
exchange Hamiltonian

H=— 2 2Jn_S’O'_S:t = _gﬂBﬁex'go 4.3)

and the zeroth-order approximation in (4.2) is symbolized
by the zero superscript. This configuration evidently has
no exchange stability and must therefore be perturbed in a
manner which produces stability in a self-consistent
manner. Let us consider the situation in more detail.

Using Egs. (1.2), (1.3), and (4.1), with H, <<H,, we
adopt the notation

Hy= 3 27,8, , 4.4)

Hyp=4 320, +€,)8, =4 |Hoy+ 3 26,8, |, 4.5)
n n

in which €, <<J,, 4 is a numerical constant, and J, is ex-
pressed in field units. In zeroth order, using (4.2), we find

Hy=4320,+€,)80=4 3 2¢,S) . (4.6)
n n

Also, assuming hyperfine-field fluctuations to be dom-
inated by supertransferred contributions, as established in
Sec. III,

AHY=H3(So/S)= | Hir | cosé @7

in which £ is the angle between ﬁgT and §o-

As a first-order correction to the fully frustrated spin
network we perturb the NN spins of each central site §o
in the fashion

S,=8%-4,S,, (4.8)

such that each acquires an additional small component
(d, << 1) antiparallel to §0. These small perturbations re-
sult in small stabilizing exchange fields parallel to §0 and
simulate local spin-glass ordering in a highly frustrated
system dominated by antiferromagnetic (J, negative) ex-
change. After the perturbation we find, by direct substi-
tution into (4.4) and (4.5),

ﬁexz - 2 2Jndn_s’o s 4.9
n

Hyr=4 3 (2¢,80—27,d,80)=H¥Y+ 4H,, 4.10
n

where we work to first order of smallness in d, and
€,/J,. The resulting contribution to hyperfine distribu-
tion is

Hgy=Hgr(So/S)=AH  + | HYy | cosé . (4.11)

Taking the angle £ between ﬁgT and §0 to be closely a
random variable leads directly to a most important find-
ing, namely

<HST)=A<Hex> . (4.12)
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In other words, the mean value of the supertransferred
component of hyperfine field, when averaged over all iron
sites, provides a direct measure of the mean exchange
field averaged over the same sites.

V. HYPERFINE LINE SHAPE (THEORY)

In the fully frustrated zeroth-order limit of Sec. IV
with H., =0 we have, from Eq. (4.11),

Hr=|Hr | cosé , (5.1)

with £ a closely random variable. The resulting probabili-
ty distribution po(H 1) is symmetric and will be assumed
Gaussian, viz,

po(H3r)=expl —(Hr /wo)’] , (5.2)

in which wy is a width parameter. From Eq. (4.11) we see
that exchange perturbations of the zeroth order configura-
tion increase the magnitude of HY, at every iron site.
However, the magnitude of this increment AH,, is by no
means independent of the angle £. For example, if all NN
spins at a particular site are quasiparallel or antiparallel to
§0 in zeroth order (cosé =~ + 1) small angular perturbations
cannot enhance H,, in first order. At the opposite ex-
treme of all NN spins quasiperpendicular to Sp (cosé ~0)
small angular perturbations produce their maximum
first-order exchange-field enhancements. More generally,
a significant inverse correlation is antlclpated between
H., and the magnitude of the projection of HST on SO
Let us suppose that it can be at least approximately cast
in a simple functional form. Accordingly we write the in-
crement AH,, in the form

AHex=Cf(H3T) N (5.3)

where c is a constant and f is a symmetric function single
peaked at Hg1 =0, and (arbitrarily) normalized to unity at
its peak.

From (4.11), (5.1), and (5.3) we now have

Hgr=Hr+cf (Hsr) .

The resulting hyperfine line shape, to the extent that it is
dominated by supertransferred fluctuations, follows from
Egs. (5.2) and (5.4) as

~[Hsr—cf (Hst)*/w5} - (5.5)

Assuming ¢ <<wg, and working to first order in ¢ /w,, we
can now derive by direct integration the mean values of
Hgr and Hp over this distribution. They are

(Hgr)=2c/wd){h%f(h)),, (5.6)
(Hi)Y=wi/2, (5.7)

in which {(h2f(h)), refers to an average over the distribu-
tion po(h)=exp(—h?%/w}) of Eq. (5.2).

Experimentally p(h), h =AH¢~Hgr, is deduced from
the shapes of the outside lines L; and Lg of the *'Fe
Méssbauer spectrum, and its form has been detailed!®!®
by using a minimum least-squares fit to a symmetric
Gaussian pg(h) and recording the residual r(h). This
residual is therefore of the form

(5.4)

p (Hgr)=expf{

r(h)=p(h)—exp[ —(h —d)*/w}] . (5.8)

Using Eq. (5.5 with h =Hgr, this can be recast in the
form

—hz/w(z)
’

r(h)=2h /wd)cf(h)—d]e (5.9)

to first order in ¢/wy and d/wy, and is an odd function
of h which passes through zero at 2 =0.

A fit of r(h) to the measured residual should therefore
furnish us with the single-peaked (about 4 =0) symmetric
function f(h) together with the constants wy, ¢, and d.
An obvious, and as it turns out quite realistic, guess for
f(h) is a symmetric Gaussian form

202 2
flhy=e "0, (5.10)
in terms of which the residual 7 (%) of (5.9) becomes
12702 o2k 2
F(B)=2he /wd)e ™" e T _(dse)] . (5.11)

This is now an odd function of A which passes through
zero three times, at — hg, 0, and + hg, where

2p2 2
—a*h§/w

d/c=e

The substitution of (5.12) into (5.11) provides us with our
final form for the residual, viz,

(5.12)

2 —a?h?
—e 0) ,

r(h)=(2hc /wo)e ~" (e~ (5.13)

in which A4 and A, are now and henceforth to be measured
in units of wy. It follows that the reduced residual
(wq/c)r(h) is a function of the two parameters ko and a.
However, in the present context even these are necessarily
related since the least-mean-squares minimization pro-
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FIG. 4. Reduced residual (wg/c)r(h), representing the
predicted deviation of hyperfine line shape from the best least-
squares symmetric Gaussian fit, from Eq. (5.17) of the text. A
family of residuals is shown for different values of the single ad-
justable parameter a involved, and the arrows mark the half
width at half height of the associated “best-fit” parent sym-
metric Gaussian.
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cedure essentially adjusts (k) to have closely equal in-

tegrated positive and negative areas, i.e.,
[° riwdn=0, (5.14)

from which, directly integrating (5.13), we derive the con-
dition

a’hi=In(1+a?), (5.15)
or, equivalently,
ho=t(wo/a)[In(1+a?)]?. (5.16)

Our final form for the reduced residual, based solely on
the presumed Gaussian distribution f of exchange fields
via the Eq. (5.3), is therefore

(wo/c)r(h)=2he " [e=*""* _1/(14+aY)] . (5.17)

It involves only the single parameter a and is plotted for
several values of « in Fig. 4.

VI. HYPERFINE LINE SHAPE (FIT FOR a-YIG)

The experimental line shape p (k) for a-YIG [Ref. 10
and Fig. 2(b)] resolved into its best-fit symmetric Gauss-
ian pg(h) and residual r(h) components,'® is shown in
Fig. 5. The experimental residual obviously bears a strong
resemblance to the family of theoretical residuals of Fig.
4. It is closely antisymmetric about its center 4 =0 and
has h( equal to about 1.1 times the half width at half
height of pg(h), i.e., ho~1.1(In2)""wy~0.9w,. From
(5.16) we conclude that a~0.7 is appropriate for a-YIG.
The corresponding fit of the theoretical residual (5.17) to
the experimental 7 (4) is shown in Fig. 5(b). From its am-
plitude we find

c/won.ZO ’ (6‘1)

and, in combination with Eq. (5.12), d /wy~0.13. These
small values justify our working to only first order in
these parameters when calculating the functional form of
the residual.

The quantitative deviations between theory and experi-
ment seen in Fig. 5(b) are thought to involve the existence
of “tail” states!’ in the hyperfine distribution at 4.2 K
which should disappear as T—0. These effects will be
discussed in some detail, both in the context of a-YIG
and other amorphous speromagnetic insulators, in a fu-
ture publication. Neglecting this additional complexity,
which does not seriously affect the conclusion (6.1), we
can now, via Egs. (5.3) and (5.10), proceed to calculate the
mean exchange energy in the form
AHY=c(f Y= [° ce=Wean [ [° e~Wan

=c/(14a?)!?
=0.2wy/(14+a?)!2 . (6.2)

Since from (5.7) wo=V20(Hgr), and o(Hgr)~23 kOe
from Sec. III, we conclude from (6.2) with @=0.7 that

wo~33 kOe and A (H,.,)~5.3 kOe, (6.3)
in a-YIG.

10 r

P (Hpg)

1 (Hpg)

-16 -08 (o} +08 +16
VELOCITY (mm/s)

FIG. 5. Measured hyperfine-field distribution P(Hys), solid
line, and its best-fit symmetric Gaussian approximation
Pe(Hye), dashed line, as deduced from the combined outside line
shapes of the 4.2 K >’Fe Méssbauer-Zeeman spectrum of a-YIG
(Ref. 18). (b) The actual Mdssbauer data per channel (solid cir-
cles) for the experimental residual r(Hyp)=p (Hys)—p(Hpe)
and the theoretical curve (solid line) from Eq. (5.17) of the text
for @=0.7. The abscissa is given in Mdssbauer velocity units.

The parameter A4, which relates supertransferred and
exchange fields via Egs. (4.4) and (4.5), can be adequately
estimated in the present context from the ratio
| Hsr/He | in ¢-YIG. We have already estimated
| Hgt | =~(85+5) kOe in Sec. II [Egs. (2.4) and (2.5)] and
H,, follows from Wojtowicz’s?® value of J~ —33 K for
¢-YIG as

H =—2JzS/gup~6.1 MOe, c-YIG (6.4)

where g =2, S =3 and the average number of NN z ~5.
It follows that 4 ~0.014 and that, consequently, from
(6.3)

(H,,)~380 kOe, a-YIG . (6.5)

Comparing (6.4) and (6.5) we see that the mean ex-
change field stabilizing the speromagnetic order in a-YIG
is only about 6.2% of that which stabilizes the ferrimag-
netic order in ¢-YIG. With this evidence one might there-
fore perhaps anticipate a spin-glass ordering temperature
Tsg in a-YIG of order 0.062 times the Curie temperature
T¢=559 K of ¢-YIG, which is about 35 K. Experimen-
tally,'"! Tsg is not precisely known but is thought to be in
the region of 40 K.
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AHgy/C

FIG. 6. The unnormalized distribution p.,(H.) of exchange
fields in an amorphous ferric speromagnetic insulator as T—0
from the theory of the present paper, i.e., Eq. (6.8) of the text.
A family of distributions is shown as a function of the single ad-
justable parameter a involved and includes that (a=0.7)
relevant for a-YIG.

We can now proceed further to calculate the predicted
analytic form of the distribution function pe(H,,) of ex-
change field in a-YIG. From Egs. (5.3) and (5.10) we
have
—alhz/w(z)

H,=(c/de (6.6)

while, in zeroth order, the distribution of supertransferred
field components is

, h =HST

—h2/w}

, h=Hgr . 6.7

From these equations the exchange distribution function

Po(h)=e

follows directly as

dh
dH

Pex(Hex)=polh)—— =NH\~%*[In(c /AH ;)] ™'/

(6.8)

in which N is merely a normalizing constant. If a <1 this
distribution goes to zero as H,.—0 and diverges in the
limit H,,—c/A (which is 470 kOe for a-YIG). The de-
tailed function p.(H.) from Eq. (6.8) is plotted for
several values of a, including that (¢=0.7) relevant for
a-YIG, in Fig. 6,

VII. SUMMARY

We have established that for amorphous YIG at 4.2 K,
the mean value of hyperfine field is closely that of the lo-
cal contact component alone while fluctuations about this
mean are dominantly produced by supertransferred com-
ponents via the speromagnetic disorder of the frozen
spins. We postulate that this situation is common to all
ferric speromagnets. We then formulate a theory which
relates exchange fields and supertransferred hyperfine
fields via the common spin disorder which generates
them. Within this formalism both the shape of the distri-
bution of hyperfine fields and the distribution of exchange
fields are expressed in terms of a single variable (Figs. 4
and 6). The theory is successfully compared with experi-
ment for the shape of the hyperfine-field distribution in
amorphous YIG. The corresponding exchange field dis-
tribution exhibits the “exchange hole” for small fields
familiar from the computer simulations®! of more conven-
tional spin glasses.

13, Chappert, Hyperfine Interact. 13, 25 (1983).

2G. A. Sawatzky and F. Van der Woude, J. Phys. (Paris) Collog.
35, C6-47 (1974).

3B. C. Tofield, J. Phys. (Paris) Collog. 37, C6-539 (1976).

4C. Boukema, F. Van der Woude, and G. A. Sawatzky, Int. J.
Magn. 3, 341 (1972).

5SM. Eibschiitz, S. Shtrikman, and D. Treves, Phys. Rev. 156,
562 (1967).

6S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957).

7J. D. Lister and G. B. Benedek, J. Appl. Phys. 37, 1320 (1966).

8H. Winkler, R. Eisberg, E. Alp, R. Ruffer, E. Gerdau, S.
Lauer, A. Trautwein, M. Grodzicki, and A. Vera, Z. Phys. B
49, 331 (1983).

9V. A. Bokov, S. I. Jushchuk, and G. V. Popov, Solid State
Commun. 7, 373 (1969).

10M. Eibschiitz and M. E. Lines, Phys. Rev. B 26, 2288 (1982).

I1E. M. Gyorgy, K. Nassau, M. Eibschiitz, J. V. Waszczak, C.

A. Wang, and J. C. Shelton, J. Appl. Phys. 50, 2883 (1979).

12M, E. Lines and M. Eibschiitz, Solid State Commun. 45, 435
(1983).

13M. E. Lines, Phys. Rev. B 20, 3729 (1979).

14M. E. Lines and M. Eibschiitz, Phys. Rev. B 25, 6042 (1982).

I5P, Freund, J. Owen, and B. F. Hann, J. Phys. C 6, L139
(1973).

16p, W. Anderson, Solid State Phys. 14, 99 (1963).

17G. Toulouse, Commun. Phys. 2, 115 (1977).

18M. E. Lines, in Essays in Theoretical Physics, edited by W. E.
Parry (Pergamon, Oxford, 1984).

I9E. Eibschiitz, M. E. Lines, L. G. van Uitert, H. J. Gug-
genheim, and G. J. Zydzik, Phys. Rev. B 29, 3843 (1984).

20p, J. Wojtowicz, Phys. Lett. 11, 18 (1964).

211, R. Walker and R. E. Walstedt, Phys. Rev. B 22, 3816
(1980).



