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A formulation of the position-space renormalization-group (RG} technique is used to analyze the

singular behavior of solutions to a number of integral equations used in the theory of the liquid

state. In particular, we examine the truncated Kirkwood-Salsburg equation, the Ornstein-Zernike

equation, and a simple nonlinear equation used in the mean-field theory of liquids. We discuss the

differences in applying the position-space RG to lattice systems and to fluids, and the need for an

explicit free-energy rescaling assumption in our formulation of the RG for integral equations. Our

analysis provides one natural way to define a "fractal" dimension at a phase transition.

I. INTRODUCTION

The renormalization group' (RG) is one of the most
powerful methods employed in the theoretical study of
phase transitions. Recently, the RG technique has led to
a deeper understanding of critical phenomena ' and has
contributed to our understanding of first-order transi-
tions. ' In the study of first-order transitions in lattice
spin systems the position-space renormalization group
(PSRG) has been particularly effective.

In the study of fluids, however, the RG techniques have
not been of much utility away from the critical point. In
particular, there are severe difficulties in applying PSRG
techniques to fluids where, in contrast to most lattice sys-
tems, a given particle can interact with all other particles
in the system. The PSRG generates a similar long-range
interaction even in simple systems such as nearest-
neighbor Ising models; however, the short-range interac-
tions in the nonrenormalized Ising models make possible
the various approximation schemes used with the PSRG.

In a previous paper a PSRG technique was presented
which can be employed to obtain the singular behavior of
solutions of linear integral equations. Note that the renor-
malization procedure is applied directly to the integral
equation for the correlation function, rather than the par-
tition function, or the free energy. This technique was ap-
plied to an integral equation used in the study of fluids, '

and results were obtained that were consistent with the
numerical solution. In this paper we present a much
more detailed analysis of this method and apply it to oth-
er linear integral equations. The RG, together with ther-

modynamic consistency, imposes constraints on the solu-

tion, among them being, in certain cases, a particular spa-
tial dimension in which such consistent solutions can be
obtained.

In this paper we consider two types of phase transitions
from the liquid phase, to the solid in Secs. II and III, and
to the gas in Secs. IV and V. In the former type we iden-

tify the singular points of the integral equation, which

may correspond to the "spinodal point" or the equilibri-
um freezing-melting transition, depending on the integral
equation and the approximations involved. In the latter
type we are considering the gas-liquid critical point.

The remainder of this paper is structured as follows. In
Sec. II we briefly review the linear-integral-equation re-
normalization group (LIRG). In Sec. III we reanalyze the
LIRG and reinterpret the results. General principles for
the application of the LIRG are formulated and applied
to other linear equations in Sec. IV. In Sec. V we adapt
this method to treat a simple nonlinear equation. Finally,
in Sec. VI we summarize our results.

II. TRUNCATED KIRKWOOD-SALSBURG EQUATION

For the sake of completeness we briefly review the nu-
rnerical (Ref. 9) and RG (Ref. 6) identification of a
spinodal-like transition in hard-core particles from an ap-
proximate integral equation obtained by truncation ' of
the Kirkwood-Salsburg (KS) hierarchy. '

For systems with pairwise additive pair potentials, the
n-particle distribution functions p„( I x„ I ) satisfy the
Kirkwood-Salsburg equation,

N n+1
p( )= I++ p( )Qf"

n=1 n! j=2

m N m+n
pm(IxmI)=z g (I+f[J) pm [(x2 ~ xm)+ g, J pmn +—1(x2 ' ' xnm) +g flj ~J

j=2 n=1 j=m+1
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where the Mayer function is

f;, =exp[ —Pu (
i
x; —x, i )]—1,

the activity is z =A, e '", g=Q (2irmkT)
P '=kT, and the excess chemical potential is given by

N

e '"=1+ g (1/Vn!) f p„(x2, . . . , x„+1)
n=1

where z„p„and P, are the values of the activity, density,
and pressure, respectively, at the singular point.

These exponents, as well as others, can also be obtained
from a RG solution of Eq. (2.3). The RG is generated by
iteration of Eq. (2.3) to obtain

p2(x12)=p(xiz, z)+z f f k(xi, x2, x3px4)

Xp2(x 34 )d x 3d x4, (2.7)
n+1

X II fijd"J (2.2) where

BP p
az =Pz (2.4)

If p2(x12) were exact, these two methods for obtaining
the density would give the same results. In Ref. 9 the
latter method was used. As we will see below, these two
methods lead, in general, to different exponents when ap-
proxirnate distribution functions are used.

With the above considerations the following "critical"
exponents were obtained:

J =2

For pair potentials u(X,J ) of strictly finite range and with
a hard core, the upper limit N of the summations is finite
(approximately 13 for hard spheres in three dimensions).

Little use has been made of the KS hierarchy in numer-
ical work. However, Chung and Espenscheid" found
that, under the superposition approximation, the above
equation for hard spheres leads to exact virial coefficients
up to the fourth order, and a good approximation to the
fifth order.

A truncated version of the equation, studied by Sabry,
Klein, and Swendsen and Klein, is

~'

p2(X12) —Z[1+f(X12)] Z+ f p2(X23)f(+13)dx3

(2.3)

which correctly predicts the first three virial coefficients.
An infinite series solution (in powers of the activity z) of
Eq. (2.3) is obtained by iteration.

The methods of series analysis and Pade approxima-
tion indicate that p2( x12) is an analytic function of z in a
neighborhood of the interval [—1, 11.6048] on the real
line. The physical singularity at z=11.0468 is character-
ized by a set of "critical exponents" which specify the
behavior of the thermodynamic functions at the singulari-
ty. It is important to note that in this and the next sec-
tion, by critical exponents we mean "spinodal" exponents
which are found in mean-field theories of freezing. ' The
thermodynamic functions are obtained from the distribu-
tion function in the standard way. ' One very important
point, however, must be noted. In the limit x12~ao,
p2(X12)~p, where p is the density. It is easy to see that
the solution of Eq. (2.3) has this property, which we will
call the "product property. " We can also relate p2( x12) to
the density by first obtaining' the pressure P from

p2( x12) using the virial equation and then the relation

k ( x ii x2i x3i x4) = [1 +f(x 12 )][1 +f (x23 )]f(+24 )f(x 13 )

(2.8)

and 1'(x 12,Z) is an analytic function of z.
If we iterate Eq. (2.7), we obtain

P2(X 12 )= it (X 12,Z)

+Z X1,X2, X3p X4, X5, X6

Xp2(x34)d x 3d x4d x3d x6,

(2.9)

where it(x12,Z) is also analytic in z. The kernel is given
by

k( x 1, x2, X3, x4, x5, x6)=f(x13)f(x26)f(x33)f(x46)

X [1+f( 2 )][1+f( 56)]

X [1+f(X34)][1+f(x 12)] .

(2.10)

If a partial trace is performed over particles 5 and 6 in
Eq. (2.10), we obtain

p2(x12)=g(x12, z)+z ff k(x»X2, x3ix4)

Xp2(x34)d x3d x4 (2.11)

Since 1((x12,z) is analytic in z, the singular part of p2(x12)
must satisfy

p2s(x12)=z f f k(xi, x2, x3, x4)p2s(x34)dx3dx4 .

(2.12)

Now consider the pair distribution function constructed
with a renormalized Hamiltonian by analogy with Eq.
(2.7). We expect

p2(X12) 1i (X 12Z )+(Z ) f f k (X 1X2X 3ix 4)

Xpz(x34)dx 3dx 4 .

(2.13)

For the singular part,

p~(x12)=(z') f f k (x i, x 2, x 3, X 4)p2, (x34)dx 3dx 4

P P, ~(1—z/z, )—
and

(2.5) (2.14)

In order to preserve the singular behavior, we must have

p —p, cc (1—z/z, )' (2.6) P2. (x12)=P2, (xl2) . (2.15)
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Equations (2.7)—(2.15), together with length rescaling (i.e.,
dx'=dx /b"), give

and the susceptibility X~ diverges as

Jz. ~ (z —z, )
' =(z —z, ) (2.24)

Q'(x i2,z') =Q(x i2,z) (2.16)
The singular parts of the pressure and density,

[(z')'/b "]k '( ' ' ' ')

=z f f dx5dx6k(xi, x2, x3, x4, x5, x6) . (2.17)

z'f'(x')/b =z f f(
~

x —y ~
)f(

~
y ~

)dy . (2.18)

Taking the Fourier transform of Eq. (2.18) and then the
logarithm gives

ln[z'f '(k')]=2ln[zf(k)] . (2.19)

The unstable fixed point of Eq. (2.19) is at z,f(ko) =1,
where ko is the value of k for which f(k) has a max-
imum. If we restrict our considerations to hard spheres in

d=3 and choose units for which f(0)= —1, we find that
z, =11.0648, in agreement with the numerical re-
sults.

In order to calculate "critical exponents" we must
determine the rescaling length. If we fix z=z, in Eq.
(2.19) and expand in k about ko, we find

(k' —ko) =2(k —ko)2 . (2.20)

Since k is expressed in units of inverse length, Eq. (2.20)
implies that the rescaling length

b=vZ. (2.21)

Note also that if k is fixed at ko, Eqs. (2.18) and (2.21)
lead to

(z' —z, )=b {z—z, ) . {2.22)

Equations (2.18), (2.21), and the usual scaling relations '

lead to the following critical exponents.
The correlation length g diverges as

Z —Zc = Z —Zc (2.23)

Equation (2.17) is our fundamental RG transformation.
Note that due to the structure of the kernel in Eq. (2.1),
the integration of particles 5 and 6 is restricted to a
volume determined by the range of the potential and,
therefore, in our RG procedure we do not integrate over
all length scales. It is the range of the potential that
determines the nature of the cutoff in the RG procedure.
For the potentials we consider here (i.e.,

x dx & 00, the cuto is mite. The RG trans or-

mation of Eq. (2.17) generates many-body interactions in

an analogous way to the standard position-space RG for-
mulations. In order to avoid this complication we can
investigate the RG in the limit x ~2

—+ ao. Since the singu-

lar behavior of the distribution function is contained in
this limit, and for realistic potentials u (x;J )

lim u (x,j ) =0,
ZIJ OO

we obtain significant simplification.
With the above considerations and Eqs. (2.8), (2.12),

(2.14), (2.16), and (2.17), the RG transformation becomes

P —P, oc(z —z, ) ~ =(z —z, )

p —p, cc (z —z, )
' = (z —z, )
1/2 P

(2.25)

(2.26)

m. I.INEAR-INTEGRAI. -EQUATION
RENORMAI. IZATION-GROUP REVISITED

The fact that the product property was not used in the
analysis in the preceding section leads to thermodynamic
inconsistencies. For example, the correlation exponent g
is not the same when calculated from scaling laws and
from the structure factor. To see this we define

c(xi2) =zf(x i2) z+ f p2(x23)f (xi3)d x3 (3.1)

where p2(x23) is the solution of Eq. (2.3). From Eqs. (24)
and (3.1) we obtain

P2{Xi2)=Z'+«Xi2)+ f p2(X23)fi2 X3. (3.2)

If we adopt the product property, then, from Eq. (2.3),

p =z /[1 —zf (0)], (3.3)

where

f(0)= f f(xi2)dx12.

Defining

{X12) P2{X12) P

Eq. (3.2) becomes

h (xi2)=c(xi2)+z f h (xi3)f(x23)dx3 .

(3.4)

(3.5)

(3.6)

Taking the Fourier transform of Eq. (3.6) with respect to
the x &2 gives

h (k) =c(k) /[1 zf (k)] . — (3.7)

Since c(xi2) is the finite range for hard spheres, c(k) is
an analytic function of k. For hard spheres of unit radius
1n 8=3,

f( k) = (4n./k ) cosk-
k

(3.8)

It can easily be shown from Eqs. (3.7) and (3.8) and the

are in agreement with the numerical solution. The RG
calculation gives the same exponents as the numerical
solution and, in addition, gives values for exponents which
were not calculated numerically.

As mentioned above, the numerical solution was ob-

tained by relating the pressure to p2(xi2) via the virial
equation. This led to a density which was different from
that obtained from using the product property. This is a
common occurrence when approximate equations for dis-

tribution functions are used. '

The RG outlined above provides an interesting insight
to this problem. %e discuss this in the next section.
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is zero.
The exponent ri was not calculated in either Ref. 9 or 6;

however, it can be inferred from the scaling law'

y/v=2 —ri . (3.11)

With the values of y and v both equal to —,', we have

q= l. We justify the use of the scaling law (3.11) by not-
ing that if scaling does not hold then we have no justific-
atio for applying a RG. We will return to this point
below.

To recapitulate, different paths to thermodynamic ex-
ponents lead to different values. This is not unusual when
approximate hierarchies or integral equations are used. '

The RG technique outlined above can be used to inves-
tigate this inconsistency. Application of the RG will lead
to a necessary but insufficient condition for approximate
equations to have consistent thermodynamics.

We begin the investigation with the standard relation-
ship between the unrenormalized and renormalized free-
energy density, '

f(Iu„j)=g(Iu„j)+b f'(tu„' j), (3.12)

where f is any free-energy density, I u„j is the set of scal-
ing fields, g is an analytic function of I u„j, b is the re-
scaling length of the RG transformation, and primes
denote renormalized quantities.

As we have seen above, the linearized scaling field for
the critical phenomena associated with Eq. (2.3) is propor-
tional to z —z, . Writing z =e, it is straightforward to
see that z —z, is proportional to p —p, =hp where p is
the cheinical potential and Po is fixed. The RG which we
used imposed the restriction that the singular part of the
distribution function pz, (xi2) remains invariant under the
RG transformation. The product property would then
imply that the singular part of the density also remains
invariant under the RG. However,

analyticity of c(k) that h(k) will be finite for all k and
positive z up to z0 ——11.6048. . . . At this value of z,
k =ko&0. It can also be shown, ' in the neighborhood of
ko, that 1 —zf (k) is quadratic in k —ko. Since the struc-

ture factor S(k) is proportional to h(k), we have

S(k) o:(k —ko) (3.9)

This implies that the critical exponent t) defined by

S(k) (k —k, )-"-&' (3.10)

af,' b' af,
Bp gp2 3p

(3.16)

Therefore, for consistency d=2. We return to this point
below. Since the eigenvalues and rescaling length associ-
ated with the RG transformation applied to Eq. (2.3) are
independent of dimension, it is straightforward to obtain

y= 1, v= —,', g=0, P=O . (3.17)

df ——d —p/v, (3.20)

where P and v are now the order parameter and correla-
tion length exponents, respectively, of the Ising transition.
A fractal dimension can also be defined from our RG as
follows.

We have seen above that z —z, is proportional to
p —p, . This, together with Eqs. (2.19) and (2.21), implies
that

4p'=b Ap. (3.21)

Now, the singular part of the free energy F [as opposed to
the free-energy density in Eq. (3.12)] is invariant under
the RG, i.e.,

The exponent g is now in agreement with the exact calcu-
lation. The exponent v can also readily be obtained from
the inverse Fourier transform of Eq. (3.7) and is —,', which
is also in agreement with the value in Eq. (3.17). No one
has, to our knowledge, solved Eq. (2.3) in d=2 with the
Swendsen-Klein method. It is clear, however, that the
RG calculation is now consistent with the solution em-
ploying the product property.

Another useful application of the RG is to allow us to
define a fractal dimension' for the fluctuations at the
phase transition. The fractal dimension can be defined
(e.g., in percolation' ' ) by relating a volume to a length.
For example, the volume of the incipient percolation clus-
ter N can be related to the connectedness or correlation
length g by

Nccgf . (3.18)

The fractal dimension, in turn, can be related to the per-
colation exponent vz and Pz by'

dj~ ——d Pqlvq .— (3.19)

Coniglio and Klein ' have shown that a fractal dimension
can also be assigned to fluctuations at the Ising critical
point by first mapping the Ising transition onto a percola-
tion problem. This results in a fractal dimension of

(3.13)

f,(&p)=(I/b")f, '(&p') . (3.14)

ps-
Bp

where f, is the singular part of the free-energy density.
From Eq. (3.12),

F,(u)=F, (u') .

Taking the derivative

lim (~,/hp) = (N ), ,—+0

(3.22)

(3.23)

We must also have

g Sps=
~

(3.15)

we obtain the singular part of the mean number of parti-
cles. (N), can be interpreted as the mean number of par-
ticles in a volume with a linear dimension of the order of
the correlation length g. The singular part of the density
is then

Equations (3.13)—(3.15), together with the restriction that
p, =p» give (3.24)
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where g»' is the "fractal volume. " Froin Eqs.
(3.21)—(3.23}and the relation

lim (~,'!hp' }=(N,)','~Q

we can infer that

(N, )'= (Ng )/b

Since p, is invariant under the RG, we must have

((N, ) lb') I(/lb)! = (N, )lg!,

(3.25)

(3.26)

(3.27)

which implies dy=2. For Eq. (2.3), therefore, in d=2,
df —L

This is consistent with P=O and implies that the phase
transition in the systein described by Eq. (2.3) is patholog-
ical in that it has features of one-dimensional (i.e., P=O,
d!——d) transitions.

We will see, however, that this method of obtaining a
fractal dimension readily generalizes to equations with

more standard transitions and nontrivial fractal dimen-

sions.

IV. RENORMALIZATION-GROUP ANALYSIS
OF THE ORNSTEIN-ZERNIKE EQUATION

h(xi&)=c(xiii)+p J h(x/3)c(xi3)dx3 (4.1)

where p is the density, c(xi2) is the direct correlation
function, h (X iz) =g (X i2) —1, and g (X i3) is the pair
correlation function. Equation (4.1) is "exact" but devoid
of content: Physical insight or other means must be used
to specify another equation ("closure" ) that relates c (x i2}
to h(x, 2). For example, the assumption that c(xi2) is
short ranged (i.e J I c(xi2) Id xi2«e) and analytic at
the critical point leads to mean-field critical exponents.

The assumption made in this section is that

c(k)= f c(x„)e ' ""dx„&~ (4.2}

for all wave vectors k. In the neighborhood of a critical
point, we take the leading terms of the Fourier transform
of the direct correlation function to be

pc(k =0)=A +(bp)"+(b T)», (4.3)

where x and y can be any real numbers. In contrast to the
GZ mean-field assumption of analyticity, we have taken

p, c(k)—1=k (4.4)

in the vicinity of k=O, ~here p, is the density at the criti-
cal point. It follows that g has its standard meaning as
the correlation function exponent, since the usual defini-
tion

h(k) =k (4.5)

The position-space RG introduced above may be used
to obtain information about the singular behavior of other
(perhaps more familiar) linear integral equations. First,
we derive general expressions for the critical exponents
and fractal dimension from the Ornstein-Zernike (OZ)
equation, which for spherically symmetric potentials is

and the Fourier transform of Eq. (4.1),

p c (xiz)=p J c(x33)c(x]3)dx3 . (4.7)

There are two key remarks arising from this equation.
(1) Since the asymptotic limit of h, (xi&) is zero, rather

than some function of the density [as is the limit of the
distribution function pz(xiii)], the invariance under the
RG of h, (xi2) does not necessarily imply the invariance
of p„ the singular contribution to the density.

(2) In the OZ equation, c(xi2) is the inhomogeneous
term as well as the kernel of the integral equation. Since
c

(xi&�)

is not assumed to be analytic, the inhomogeneous
term will also be singular. However, in the following
analysis we will treat c(xiii) as if it were nonsingular
when it contributes to the inhomogeneous term. From
Eq. (4.6), it is clear that the divergence of h (k) (related to
the susceptibility) is governed by the zeros of 1 —c(k),
and has nothing to do with the nonanalyticity of c(k)
(which is, by assumption, finite). Consequently, to
describe the long-wavelength fluctuations which cause the
divergent susceptibility (isothermal compressibility), we

h (k) =c(k)/[1 —pc(k)],
together, imply Eq. (4.4), given that h (k=0)~ ao, but
c (k=0) & ao at the critical point.

The difference in applying position-space RG to lattice
systems and to integral equations is now clear. In lattice
systems, the specification of the spatial dimension d and
the exponents x and y, along with hyperscaling (which is
implicit in the RG), uniquely determines all critical ex-

ponents. In integra1 equations, however, the rescaling
length is not defined by the RG transformation. We will

see below that, in our analysis, fixing b is equivalent to
fixing q.

If in addition to the Ornstein-Zernike equation we also
demand (reasonably enough) that the free energy remains
invariant under the RG, we will be able to obtain all criti-
cal exponents by specifying the exponent y and either rt or
X.

As an example we return briefly to the Kirkwood-
Salsburg equation. We can now see that choosing f(xi2)
to be the hard-sphere Mayer function in Eq. (2.3) forces
g=0. This choice also fixes the dependence of the scaling
field zf(k) on z. Since there is only one relevant scaling
field at spinodals, this choice of f(xi2) fixes all three
exponents —x, y, and g. If the standard free-energy re-

scaling is also invoked, as it is in Eq. (3.12), this reduces
the number of free parameters in the analysis by one.
However, since the spatial dimensionality d was the only
remaining parameter, the effect of the free-energy rescal-
ing condition is to fix it (to the value d =2).

For the OZ equation at the critical point (where there
are two relevant scaling fields), the reduction by one in the
number of free parameters due to the free-energy rescaling
condition simply links x and y. We emphasize that this
does not follow from the OZ equation alone.

The RG for the OZ equation is generated by iteration,
just as in Eq. (2.3). Since at the critical point h, (xi2), the
singular part of h (x,2), remains invariant under the RG,
we obtain
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where ai f (k, )
——and a2 ——z, . Differentiating both sides

of Eq. (4.9}with respect to z and k, we obtain

az' ak'
a, +2a2 (k' k, ) =2a-, ,

az az
(4.10)

a 1 ak
+2az (k' —k, ) =4(k —k, )ai .

az' ak'
(4.11)

We have four unknown derivatives and only two equa-
tions. However, if we assume that we have constructed a
"proper" RG, then z' and k' are analytic functions of z
and k. This implies that ak'/az and ak'/ak are finite.
At the fixed point ( k'= k, ),

do not need to explicitly consider the inhomogeneous
term. In other words, if c(k} were replaced in the
numerator of Eq. (4.6) by an analytic function, the critical
exponents would be unchanged.

We now return to the question of how to determine the
independent scaling fields, which was first mentioned in
Sec. II. This discussion also leads to the evaluation of the
matrix M which defines the RG transformation linearized
about the singular fixed point. It is convenient to
Fourier-transform Eq. (4.7) and rewrite it as

ln[p'c(k')] =21n[pc(k)] .

As an illustration of the analysis we return once again
to the Kirkwood-Salsburg equation and the analogous Eq.
(2.9), ln[z'f (k')] =21n[zf (k)]. Expanding zf (k) about
the fixed points z =z, and k =k„we obtain

ai(z' —z, )+a2(k' —k, ) =2[ai(z —z, )+a2(k —k, ) ],

with z —z, and k —k, as scaling fields must have this
form.

For the Ornstein-Zernike equation, the linearized RG
transformation matrix may be obtained in an analogous
way. Recall that near the critical point we have assumed
that c(k) has the form

c(k}=A +B(bp)"+C(AT)»+D(hk)2 '1, (4.17)

ak'
+(2 rl)D (—hk')' "=yCb "(5T)» ' (4 19b)aT

ap Ix —1xB P (hp')" '+yC (b, T')»
ak ak

+(2 ri)D (b—k')' 1=(2 rj)Db' —1(bk)' 1
ak'
a

where, from Eq. (4.8), 2 =1/p, . Inserting Eq. (4.17) into
Eq. (4.8) and linearizing, we obtain

B(hp')"+C(b T')»+D(bk')

=2[B(bp)x+C(ET)»+D(hk) "] . (4.18)

We first assume that x &y &2—rt and treat the case
where two or more exponents are equal below. We will
also assume that all derivatives of the form aT'/ap,
aT /ak, etc., are finite (possibly zero). Differentiating
both sides of Eq. (4.18) with respect to p, T, and k gives

a aTxB (bp')" '+yC (b, T')»
ap ap

ak'
+(2 ri)D —(bk')' "=xBb "(Ap)" ', (4.19a)

ap

xB (bp')" '+yC (b, T')»ap, ~ aT
aT aT

and

az'

a

z' =0.

(4.12)

(4.13)

(4.19c)

where we have defined b from the equation b "=2
This is a natural definition in light of Eqs. (2.20) and
(4.4). Dividing both sides of Eq. (4.19a) by (bp')" ', we
obtain

k =k,z=z

From Eqs. (4.11) and (4.13), we have

ak k' —k,
lim

k=k„z=z, k
=2 (4.14) (4.20)

ap aT (~T) 'a-k (~k)'-~xB +yc +2—7)D
&t}x —1 a (g s}x—1

=xBb
Ap'

and hence
2

Since all derivatives are assumed finite and 2—g &y &x,
we must have

ak
ak

=2. (4.15)

From Eqs. (4.12), (4.13), and (4.15), the RG matrix M
evaluated at the fixed point is of the form

(b, T')» ' (hk')' =0
(g ~t)x —1

( g It)x —1

in the limit Ap~0. Since

2 0
half =

akim vZ
az

(4.16)

pap' a
o Ap ap

Eq. (4.20) implies that

Such a matrix, which is of the same form as simple
two-parameter RG matrices at the Ising critical point, jus-
tifies the equations b k' =V 2 hk and M'= 2 M used in
Sec. II. From the structure of Eq. (4.9), a linearized RG

I
ap

b (2—g)/x
ap

(4.21)

We now divide both sides of Eq. (4.19b) by (b, T'} ' to
obtain
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'y —1

bT=y (4.22}

tion of (hp)" and (b, T)». This case is further discussed
below.

We may now complete the task of relating critical ex-

ponents to the parameters x, y, and 2—g.

A. Correlation-length exponent v

Employing the assumption that all derivitives are finite,
we obtain the result that all terms except
(bp'}" '/(b T')» ' are finite. This implies that
Bp'/BT=O. Since (bk')' /)(b, T'}» ' approaches zero as
AT'~0, we obtain

From Eq. (4.25) we have

g T'=b' ~' ygT .

From

(4.26)

(4.27}

(4.23) and Eq. (4.26), we have

Application of such arguments to Eq. (4.19c) leads to the

result that Bp'/8k=0, BT'/dk=O, and

=b, (4.24)
k

B. Order-parameter exponent P

From Eq. (4.25) we have

(4.28)

where, from above, b =2'/'
From the above discussion the matrix M, which is the

RG transformation linearized about the fixed point, has

the form

b (2—g)/x

BT
Bp

ak
Bp

0 0

b (&—q)/y 0

Bk'

BT

(4.25)

This matrix applies to the case x &y &2—g. As long as
no two exponents are exactly equal, changing the order of
the exponents in the inequality simply permutes the
nonzero off-diagonal elements of the matrix, with no
change in the physics.

We now treat the case where two of the exponents x, y,
and 2 —g have the same value. This is exactly the situa-
tion in the truncated Kirkwood-Salsburg equation (2.3),
where M and b,k enter with the same power (unity). The
RG transformation, Eq. (2.19), for this integral equation

has a fixed point whenever zf(k)=1. We have already
identified z, = 11.0648 as the singular value of z. In addi-
tion, for z &z, other special values k* exist for which

zf(k*)= 1, and these values fall into two classes. For the

first class, f(k) is quadratic for k in the neighborhood of
k", and the number of solutions to zf(k)=1 changes
For example, at the point z=11.0648 and k =ko, the
number of solutions increases from zero to one at z =z„
and from zero to two for z &z, .

The second class of values k' form a continuum of
solutions for which zf(k)=1, but no new solutions ap-

pear, and for which f(k) is linear for k near k*. In this
region hk and M enter with the same power and there is
a line of fixed points in the RG. Such a line of fixed
points has only one relevant scaling field, namely the scal-
ing field associated with moving away from the line of
fixed points. Hence, if, for example, x and y in Eq. (4.17)
have the same value, then hp and hT are not separate
scaling fields. The only scaling field is a linear combina-

b (2—r])/xg (4.29)

Since bp'-(AT)~, from Eqs. (4.26) and (4.29) we obtain

(b(2 —q)/»gT)P b(2 —g)/x(g T)li (4.30)

which implies

P=y/x . (4.31)

f, (b,T)= f,' (b T')
(4.32)

The singular part of the specific heat c, has the form

c, -(b, T)' (4.33)

and is given by

Bf,(b, T)

(}T
(4.34)

From Eqs. (4.26} and (4.32)—(4.34), it is a straightforward
procedure to obtain

b (2—g)/y
(/ T)

i —~
( b ( 2 —7J ) /»g T )

) /~ (4.35)

which yields

a=2 —dy/(2 —rl) .

With Eq. (4.28) this becomes

dv=2 —cx ~

(4.36)

(4.37)

as expected.

D. Compressibility exponent y

Returning again to Eq. (3.14), but using the variables

hp and 6T, we have

C. Specific-heat exponent a

In order to calculate the specific-heat exponent we must
make use of Eq. (3.14}, which we rewrite in terms of the
temperature variable setting Ap =Ak =0,
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f, (hp, hT)= ~f,'(Ap', AT') .
b 4f

(4.38) S(k) cc(bk) ' "'~ I e '"'"h(x)dx

The compressibility Xz is proportional to the inverse of
8 f, /Bp and diverges as

must transform as

d '=d /b2 (4.49a)

XT-(hT)

From Eqs. (4.26), (4.29), (4.38), and (4.39) we obtain

b 2{2—g)/x
(~T)r = (b"-v'"~T)r .

db

This implies that

(4.39)

(4.40)

d —(2—ri)/x (4.41)
(2—i) )/y

As a check it is useful to note that the exponents a, P, and

y as defined in Eqs. (4.31), (4.36), and (4.41), respectively,
satisfy the equality

a+2P+y=2 . (4.42)

df (4.43)

where g is the correlation length and df is the "dimen-
sion" of the critical fluctuation. After renormalization,

+'=p' —p, =N'/(g') I . (4.44)

Since N'=N/b " in this RG, and g'=g/b, we have,
'

with Eq. (4.29),

N/b "
=b( v)Ix N—

gf/b f gf
This implies that

(4.45)

We now turn to the question of the fractal dimension at
the phase transition. At the transition the density is p, .
Fluctuations in the density away from this value are of a
linear dimension approximately equal to the correlation
length. The difference, then, between the average density

p, and the density p should be a measure of the density of
a critical fluctuation. We then have

which implies a fractal dimension of 2 —i). With the scal-
ing relation y/v=2 —il derived below, this fractal dimen-
sion is equivalent to the one defined by Stanley' in the
percolation problem.

The two fractal dimensions have different physical in-
terpretations. One can, as in percolation, interpret
d —P/v as the fractal dimension of the ordered phase. It
is, for example, the fractal dimension of the liquid as one
approaches the liquid-gas critical point. This is consistent
with the mapping of the percolation problem onto the Is-
ing critical problem. '

The fractal y/v is related through the Fourier
transform of the pair correlation function minus 1 [i.e.,
h (x)] to the fluctuations about the ordered phase (that is,
to the finite fluctuations). This, again, is in analogy to
what is done in percolation. ' '

Finally, in this section we discuss the implications and
validity of the free-energy scaling assumption, Eq. (3.14).
In our present formulation, three parameters are necessary
to specify critical exponents: x, y, and 2—i). The quanti-
ty 2 —g is necessary to set the rescaling length through

(4.49b)

where 1/n is the fraction of particles decimated (in the ex-
amples in this manuscript, n=2), and to specify the frac-
tal dimension. At this point in the development, 2—g is
different from the other critical exponents in that it is not
a function of x and y. However, after applying the free-
energy rescaling condition (3.14), we shall see that 2 —i) is
a function of x and the spatial dimension d.

We begin by determining how the singular part of the
pressure p transforms under the RG transformation.
Equation (3.14) is, of course, exactly the statement that
the singular part of the free energy is invariant under the
RG [i.e., Eq. (3.22)]. Since

df ——(2—q)/x+2 —i) . (4.46)

aV'=aV/b f . (4.47)

Note that this implies that hV, the singular part of the
volume, transforms as

p —p
—=Qp= = 11ID

3U zv o hV '

the singular part of the pressure transforms as

1Ap'=b fop .

(4.50)

From Eqs. (4.28) and (4.31), df becomes

df =P/v+2 —i) . (4.48) (4.51)

We now rewrite Eq. (3.14) using bp as the scaling field,

f, (&p)=(1/b )f,'(b f&p) .

It is interesting to note that the expression for df given in
Eq. (4.48) is independent of the validity of Eq. (3.14), and
therefore may be a better expression for approximate
equations. As we will see below, for exact equations, the
df defined in Eq. (4.48) is completely equivalent to the
standard definitions.

We should also mention the existence of a second frac-
tal dimension defined through the RG. Since we demand
that the correlation function remain invariant under the
RG and that its Fourier transform S(k) diverge as
bk ' "', this implies that the volume element dx in

af, (ap)
p p~ =~p=

Bp

Equations (4.51) and (4.52) imply that
cf —Lf4p'=b fop .

From Eqs. (4.29), (4.46), and (4.53) we obtain

d —[(2—g)/x] —2 —g = (2—i) )/x,

(4.52)

(4.53)

(4.54)

However, the singular part of the density is related to
f.(~p') by
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or

2—ri=dx/(2+x) . (4.55)

where N' is the renormalized number of spins. To keep
the lattice invariant under the RG we must have

Note that this expression for 2 —g, together with Eqs.
(4.28) and (4.41) imply the scaling law

N'/V'=X/V,

which implies, from Eqs. (4.50) and (4.61), that

(4.62)

y/v=2 —g .

This, in turn, implies that

df =(p+y)/v .

From Eqs. (4.37), (4.42), and (4.57) we obtain

(4.56)

(4.57)

(4.63)

In our case we have decimated every second particle
and have therefore also reduced the number of particles N
by a factor of 2. However, from the relation b "=2 [see
discussion after Eq. (4.19c}],we have

df =d —p/v . (4.58) y d 2d/(2 —g) (4.64}

The imposition of invariance of the free energy under
the RG transformation, together with known thermo-
dynamic identities, has imposed a relation between x,
2—g, and d. The critical exponents are now specified by
x, y, and d. As noted above, this occurs only after the
imposition of relationships outside the initial integral
equation.

Here, we should point out that if ri is fixed independent
of d, then x is fixed by the dimension. This often hap-

pens when ad hoc choices are made for the direct correla-
tion function. Examples of such choices are the
Ornstein-Zernike assumption of a short-ranged c(r) and
the truncated Kirkwood-Salsburg equation studied in Sec.
II. If, as for the truncated Kirkwood-Salsburg equation,
the parameter x is also fixed, then there is only one di-
mension in which the solution of the Ornstein-Zernike
equation yields consistent thermodynamics.

We also note that if q =0 then Eq. (4.55} can be written

4=(d —2)x . (4.59)

V'= V/b" . (4.60)

Two points must be made. First, there is more than one
volume to rescale. One is the critical volume, which is
roughly the size of the critical fluctuation and is rescaled

by a factor b f [see Eq. (4.45)], and the other is the
volume of the system which rescales with a factor b .
Second, in standard approaches to position-space RG, the
factor b" is related to the rescaling of the degrees of free-
dom. Thus, for example, in a lattice system such as an Is-
ing model one decimates every other spin so that the num-
ber of lattice spins X is reduced by a factor of 2, that is

N'=N /2, (4.61)

If d=2 then x =00 and we have P=O and df ——2=d.
Since p=O usually describes a first-order transition, it
would seem that g=O and d=2 are mutually exclusive
with critical points or, alternatively, that the standard
scaling approach to such transitions must be modified.
This result can, of course, be obtained from standard
hyperscaling relations. Again, this inconsistency cannot
be seen from the integral equation alone, but requires the
imposition of free-energy scaling, Eq. (3.14).

Only discussion of the volume rescaling remains. Note
that in Eq. (3.14), f(Iu„l) is the free energy per unit
volume. The factor b~ arises from rescaling the volume;
that is, the renormalized volume V' is related to V by

x =4/(d —2) .

The critical exponents are then

(4.65)

il =0, y= 1, v=-,', P=(d —2}/4, a=2 —d/2 .

(4.66)

In this form of mean-field theory, spinodal lines will be
evident when there is only one relevant scaling field,
which here means x=1. Hence the spinodal exponents
are

y= 1, v= —,, P=1, a= —1, (4.67}

and hyperscaling holds only in d=6. These are, of
course, the known results of the mean-field theory of spi-
nodals (but see Ref. 23 for a discussion of the proper form
of the scaling field and the exponents).

For a mean-field description of the critical point (two
relevant scaling fields) we must have x&y. With the
natural choice, x=2, we find an upper critical dimension

Consequently, the relation between the volume rescaling
and the scaling of the degrees of freedom is somewhat
more complicated in this case. It is interesting to note
that when d =2—g so that b"=2, this implies, from Eq.
(4.55), that x = oo. This, in turn, implies, from Eq. (4.31),
that p=O and, from Eq. (4.58), that df —d. It must also
be noted that this rescaling is determined by how k re-
scales and k is a relevant variable. At the fixed point,
k =k, so that b,k=O, and the k variable cannot be used
to determine how lengths rescale. Consequently, at the
fixed point one is free to choose, and one for consistency,
must choose b =2.

Finally, we explicitly state what has been said implicitly
in the above discussion and elsewhere. In most RG
transformations the way that lengths are rescaled is part
of the definition of the transformation and is fixed by the
transformation. For our analysis of integral equations for
fluids this is not so: the length rescaling depends on the
values of the renormalized variables. The results of this
section are summarized in Table I.

As a simple example we study the linear integral equa-
tion of most interest, which follows from the OZ equation
by assuming that c (r) is short ranged and that the Fourier
transform of c(r) is analytic in Ap=p —p, and
hT =T —T„and, in fact, linear in b, T as T~T, . In the
above langauge this implies q=O and y =1. From the
general results, we obtain
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TABLE I. Exponents in the position-space renormalization group for fluids.
p, (k,p, T) =A +8(p —p, )"+C(T—T, )"+Dk ", for p —p„T—T„and k~0.

Exponent Equation

Mean-field
critical
point

Mean-field
spinodal

point

2—g =dx /(2+x)

y
6

df

y/(2 —g)

y/x
2 —dy/(2 —q)

1+x
(2—g)(1+ 1/x)

1

2

1

2

1

2

1a

'At a spinodal point the correct scaling field is ( T —T, ), and hence the correct exponent is P= 2 (see

Ref. 23).

of d =4 and the correct mean-field critical exponents

Y= I, v= —,', P= —,', X=O . (4.68)

point, for small P(x), to give

~p J V(y )0( I
x —y I

)dy . (5.4)

The other integral equations of interest in the theory of
fluids are invariably nonlinear in c(r). Generalization of
the position-space RG to treat such nonlinear equations is
feasible but nontrivial.

V. TOWARD A RENORMALIZATION GROUP
FOR NONLINEAR INTEGRAL EQUATIONS

We now extend our position-space RG method to treat
a relatively simple nonlinear integral equation, which
arises in the mean-field theory of metastable liquids.
Grewe and Klein have shown that for infinite-range,
positive definite potentials of the form ydP(yr) in the lim-
it y —+0, the single-particle density pi(x) is a solution of
the equation

The RG method can now be applied directly to the
linearized equation (5.4). Since the kernel of the equation
is now Ppf(x —y), we find, by direct comparison with the
QZ equation treated in Sec. IV, that the present equation
leads to x= 1 and y = 1. Hence we obtain the exponents

P=y/x =1, y=y =1,
5=1+x =2, 2 —g=dx/(x+2)=d/3 .

These exponents have also been obtained with much
greater effort by other methods. ' The exponent g de-
pends on the dimension d. Consideration of information
beyond p, (x), namely the structure factor, ' leads to g =0
and d=6. Hence Eq. (5.1) leads to the set of mean-field
"spinodal" exponents.

p, (x)=z exp —P J pi(y)g(
~

x —y ~
)d y (5.1) VI. CONCLUSIONS

where again z is the activity.
For the physically relevant region z &0 and P&0, it is

easy to prove that the constant function pi(x)=p is al-
ways a solution of Eq. (5.1). Furthermore, for any fixed P
there is a minimum value of z where the solution of Eq.
(5.1) bifurcates. This bifurcation point has been shown
to be related to a "spinodal" in this kind of mean-field
theory, with classical spinodal exponents. ' Here we
derive these exponents very quickly using our RG pro-
cedure.

We begin by writing

pi(x) =p+P(x), (5.2)

which is substituted into Eq. (5.1) to yield
T

p+P(x)=pexp —P f P(y)g(
~

x —y ~
)dy . (5.3)

Since the "spinodal" is associated with a true ("soft") bi-
furcation, Eq. (5.3) can be expanded about the bifurcation

We have presented a formulation of the position-space
RG technique that can be used to obtain the singular
behavior of the solutions to several types of integral equa-
tions. This technique is comprised of two operations,
iteration and decimation. For integral equations in fluids,
unlike most lattice systems, the specification of these two
operations does not determine the rescaling length b.
However, by invoking the natural free-energy rescaling
condition, the RG for fluids generates sets of critical ex-
ponents.

It is important to note that given an ansatz for c(r) in
the Ornstein-Zernike equation, there may be only certain
spatial dimensions where the usual scaling and hyperscal-
ing laws hold. This behavior is found explicitly for cer-
tain examples in Sec. IV, and entirely analogous behavior
occurs in the truncated Kirkwood-Salsburg equation
described in Sec. III. In these examples, the choice of the
kernel in the integral equation is "mean-field-like, " in-
sofar as hyperscaling holds only in one spatial dimension.
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The RG also leads to one natural way to define "fractal
dimensions" at a fluid phase transition, and these are
shown to be intimately related to fractal dimensions
which have been defined in lattice systems and percolation
problems.
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