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Renormalization-group analysis of layering transitions in solid films
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The layering critical points of a multilayer adsorbed solid film are examined with the use of a re-

normalization group. The critical temperature T,„,of the nth layering transition will, for large n,
be less than the roughening temperature, T&, of the corresponding interface between bulk phases by
an amount proportional to 1/1n n. The layering critical points are in the universality class of the
two-dimensional Ising model.

I. INTRODUCTION

Multilayer films adsorbed on attractive substrates may
exhibit a variety of possible phase transitions, as has been
recently reviewed by Pandit, Schick, and Wortis. ' One
type of transition is the layering transition, in which the
thickness of a typically solid film increases discontinuous-
ly by one layer as the pressure is increased. Such transi-
tions have been observed in a variety of systems' includ-
ing, for example, He (Refs. 2 and 3) and ethylene (Refs. 4
and 5) adsorbed on graphite. The nth layering transition,
from an (n —1)-layer film to an n-layer film, typically is
only present at low temperatures' and may terminate as
the temperature increases in a layering critica/ point at
T,„.For T & T,

„

the film may evolve continuously
from n —1 to n layers as the pressure is increased. A pos-
sible phase diagram with such layering transitions and
layering critical points is shown in Fig. 1. Ramesh and
co-workers ' have explored the phase diagram of solid
He films adsorbed on graphite (in a Grafoil superleak)

using fourth sound as a probe and found results qualita-
tively similar to Fig. 1. In particular, they have measured

T,
„

for n =4—8 and found that these critical tempera-
tures increase with n.

A simple lattice-gas model with layering transitions and
critical points has been introduced and studied in the
mean-field approximation by de Oliveira and Griffiths.
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FIG. 1. Possible phase diagram for an adsorbed film with
layering transition lines terminating in layering critical points
(open circles). The bulk fluid-to-solid phase transition occurs at
pressure P =P (T) and the roughening transition of the inter-
face separating bulk fluid and solid phases occurs at T& (solid
circle).
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in a continuum representation (of course, lattice versions
are also used), have proven important in understanding
the roughening transition. ' However, the calculation
of the universal critical behavior at the roughening transi-
tion has generally' ' relied on a duality transformation
to the Coulomb gas, ' ' a transformation that is only
possible when the potential V(h) is a sufficiently well-

behaved function. The duality transformation does not
appear to be useful for the type of potential needed to
realistically model the effect of a nearby substrate. '

In this paper renormalization-group techniques are ap-
plied directly to the interfacial Hamiltonian (1.1). This
has recently been done for the critical wetting problem by
Brezin et al. ' An expansion to first order in the poten-
tial V(h) was sufficient for that problem' but for
roughening and layering criticality it is necesary to go to
second order in the potential, as in Sec. III. The results
for the layering critical points are qualitatively similar to
those obtained by Weeks using a variational approxima-
tion, but the precise critical behavior is actually somewhat
different from that found in the variational approxima-
tion. In particular, the layering critical temperatures
behave as

Tz —T,„—1/ln n (1.2)

for large n. This result holds for substrate potentials that
fall off algebraically with distance, such as those that
arise from van der Waals forces. The variational approxi-

They proposed that the layering critical points are related
to the roughening transition of the corresponding inter-
face between bulk phases. Ebner then carried out Monte
Carlo simulations of such a lattice-gas model and found
layering critical temperatures T,

„

increasing with layer
number and approaching an apparent roughening tem-
perature T~ for large n This. relationship between layer-
ing criticality and roughening was demonstrated explicitly
by Weeks using not a lattice-gas model, but an even
simpler interfacial Hamiltonian in which the only degree
of freedom is the height h (r) of the film-fluid interface
above the substrate. Such interfacial Hamiltonians, of the
form
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mation gives Tz —T, „—1/inn. If one inverts (1.2), one
finds an essential singularity typical of the roughening
transition, ' namely

n -exp[8/(Tir —T, „)'~), (1.3)

where 8 is a nonuniversal constant.
Solid films of arbitrarily large thickness n will general-

ly not be thermodynamically stable, due to elastic contri-
butions to the total energy, ' and therefore the precise
asymptotic behavior of (1.2) may not be confirmable ex-

perimentally. Qn the other hand, the qualitative behavior

T«& T«+i & TR, which should apply to all sufficiently
thick films, has already been observed in He on graphite.
Another theoretical prediction that might be checked ex-

perimentally is that each layering critical point is in the
universality class of the two-dimensional Ising model.

FIG. 2. Potential V(h) in our interfacial Hamiltonian (1.1)
for a pressure and temperature near the fourth layering transi-
tion. Neglecting fluctuations, the three and four-layer films are
nearly degenerate.

II. MODEL

V(h) =hf h +ch +y cos(2nh)+ Vo . (2.1)

Note that the layer spacing has been taken as unity and
higher harmonics in the oscillatory term have been ig-
nored (they are not a factor in determining universal criti-
cal behavior).

At low temperatures fluctuations in the film thickness,
h, are suppressed and the equilibrium film thickness is
determined by the global miniinum of the potential V(h).
If the oscillatory term y is relatively strong, then V(h)
will have local minima only near integral film thicknesses,
as illustrated in Fig. 2. As, say, the pressure and conse-

Interfacial Hamiltonians such as (1.1) have been used in
studies of roughening, ' layering, and wetting. ' They
are useful in problems where the interface undergoes
phase transitions while the bulk phases it separates do
not. ' The simple form (1.1) is a coarse-grained Hamil-
tonian appropriate for modeling universal long-
wavelength properties of the interface; terms of the form

~

Vh ~, (V h), etc., that determine nonuniversal,
shorter-distance behavior have been ignored.

The potential V(h) in our interfacial Hamiltonian (1.1)
is the total free energy per unit area of a film of thickness
h as obtained by integrating out all degrees of freedom ex-
cept translations of the interface. There are contributions
to this total that are intrinsic to the film, as well as others
that arise from interactions with the substrate. The solid
phase, of which the film is comprised, has a free energy
per unit volume that exceeds that of the fluid phase by
bf; this will give a contribution of b fh to V(h). The lat-
tice structure of the solid causes a preference for films
that are an integral number of layers thick. Fractional
layers cost more energy due to strains, dislocations, or
steps. Thus, V(h) will also have a component that is os-
cillatory with h; this term gives rise to the roughening
transition in the interface between bulk phases. ' Final-
ly, the van der Waals attractions to the substrate fall off
as z, where z is the distance from the substrate. These
must be integrated over the film to give a contribution to
V(h) that varies as h for large h. Thus the full poten-
tial we consider is essentially the same as that used by
%'eeks, namely

quently hf are varied, the global minimum of V(h) can
change discontinuously. These discontinuities in the film
thickness are the layering transitions shown in Fig. 1,
where bf-ln(P /I') for small bf. The potential shown
in Fig. 2 is for a pressure and temperature near the transi-
tion from a three-layer to a four-layer film. If we focus
on this transition and assume we are looking at sufficient-
ly large length scales that fluctuations to h =2 or 5 are
very rare and unimportant, then we may approximate
V(h) as V(h)= —gh +uh 4, with h=h —3.5. This is
simply the potential one inserts in (1.1) to obtain a
continuous-spin Ising model. ' This illustrates a
correspondence between the layering-transition line and
the first-order line in a two-dimensional Ising model and
thus is why we expect each layering-transition line to ter-
minate, as the temperature is increased, in a critical point
of the Ising universality class.

As a brief aside, let us consider the possibility of layer-
ing transitions in liquid films. Sutton et a/. have claimed
to observe such transitions in ethylene on graphite from
two to three and three to four layers, although the evi-
dence is slight. For a fluid film, the smooth part of the
potential V(h) will be qualitatively similar to that for the
solid film, (2.1), but the oscillatory part will certainly not
be present for thick films. However, at low temperatures
the fluid in the film will be close packed and highly corre-
lated and presumably has a tendency to form layers
within a few atomic distances of the substrate. Thus, the
potential V(h) for a fluid film may have an oscillatory
component whose amplitude decays exponentially with a
correlation length of order one or more atomic spacings.
This can give rise to layering transitions in liquid films of
very few layers. The first layering transition, from a
zero-layer to monolayer fiuid film, is simply the conden-
sation of the two-dimensional monolayer liquid and is ex-
hibited by many adsorbate-substrate systems. It will be
interesting to see if any further layering transitions in
fluid films can be experimentally substantiated.

III. RENQRMALIZATION

If the potential V(h) vanishes, our interfacial Hamil-
tonian (1.1) reduces to a Gaussian model,
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H =—
2

(3.1}

h(k)=A ' f d re'"'h(r) . (3.2)

for which one can construct exact renormalization-group
transformations. The potential may then be treated per-
turbatively, provided that it is small in the region of in-
terest. In what follows, a renormalization-group transfor-
mation for (1.1) is expanded to second order in the poten-
tial V(h).

For convenience, we work with a square system with
periodic boundary conditions and arbitrarily large area A.
The Fourier-transformed height variables are

Z (A, /I ',H') =Z (A, A;H), (3.7)

where A'=A (1—e) . The renormalization-group flow
equations are given by'

H= H' l.=o
Be

(3.8)

and thus we need only to expand to linear order in e.
Let us divide h(r ) into the part not to be integrated

over,

in momentum space. Then, the system is rescaled by a
factor of 1 —e and the renormalized Hamiltonian H' is
given by

To avoid ultraviolet divergences we need a short-distance
or high-momentum cutoff; a Gaussian cutoff in momen-
tum space is chosen. (Renormalization with a sharp cut-
off produces long-range interactions. ) This smooth cutoff

—+

is such that of the possible degrees of freedom h(k ') for
k' near k, only a fraction exp( —k /2A ) are present,
where A is the cutoff scale. The Gaussian part of the
Hamiltonian may then be written as

h (r) g —)/2y ~e —(" ~h(k)
k

and the part to be integrated out (the "fast" part),

hf(r)=A ' g '"'h(k)

(3.9)

(3.10)

Ho(A, A) =—g 0 k
i
h(k)

io (3.3)
The momentum-space density of elements in this last sum
is given by (3.6). The interaction part of the Hamiltonian
may be expanded as

where the interaction part of the Hamiltonian is

H~ —— rV r (3.5)

To renormalize we must first reduce the cutoff scale to
A'=A(1 —e), where e is arbitrarily small, by integrating
out degrees of freedom with density

r r

where this sum runs only over those degrees of freedom
present with the cutoff scale A. The partition function is

Z (A, A;H) =Trz[e

=TrpIe [1 pH(+ 2 (p—H)) + ]I,
(3.4)

H) ——f d r V(h'(r))+hf(r)
dh'(r)

) hp( )
d V(h'(r))

dh' (r)
(3.11)

X[1 PH)+-;(PH—() + ' ' ]I,
(3.12)

The expression for the partition function resulting from
performing the Gaussian integrals over the fast degrees of
freedom is

Z (A, A;H) =Trz I exp[ PHD(A', /I } —Pe/IEO]—

B A —k
Ae exp

(2m)z 2A'
2A k2

~ exp
(2m A) 2A~

(3.6) where Eo is just the change in the energy zero, and

H) = f d r V(h'(r))+ —,A ' g (pJk )
dh'(r)

dV(h'(r))) dV(h'(r2)), ~;k.(-, , -, , )
r)dr2 ;.e ' " "(PJI')-'+ ~ ~ ~

dh'(r)) dh'(r2)
(3.13)

The sums here may be replaced by Gaussian integrals in the thermodynamic limit. Rescaling the system so that
r '= r(1 —e) then gives our renormalized Hamiltonian as

H'= H (A0, A')+eAE()+ f d~r' V(h'(r '))+e 2V(h'(r '))+
4~PJ dh 2(-, )

( r ( r 2)2A2/2 dV(h'(r ) )) dV(h'(r 2))
f28 + 0 0 ~

4~J dh'(r ) ) dh'(r ~)
(3.14)
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The short-ranged interactions generated at second order in the potential may be Taylor-expanded and integrated out, and,
via (3.8), the renormalization-group flow equation is found to be'9

a= Jd" E,'+2V(h(-. ))+
4m.PJ

'2

4JA'

dV(h(r))
dh(r)

I.et us now apply thcs renormalczatron group to the po-
tential (2.1) appropriate for modeling a multilayer solid
film. More generally, the potential may be divided into a
smooth part, V, (h), reflecting effective interactions be-
tween the interface and the substrate, and the oscillatory
part, reflecting the interaction between the interface and
the lattice structure of the film. I.et us expand the
smooth part about its minimum at h0 as

V, (h) = V, (ho)+g(h —ho) + g u„(h—ho)" . (3.16)

If the potential has the form

V (h)=Vo+hfh+ch +O(h ~), -
with 0& a &P, and

(~c /gf )
i /(a+ 1 )

(3.17)

(3.18)

g =go-"o (3.20)

To first order in g and second order in y the
renormalization-group equations (3.15) for this potential

is sufficiently large, then
~
u„~&&g. The approximate

potential we will then consider is

V(h ) =g (h —h o ) —y cos(2~h ),
where the constant and the irrelevant (in the
renormalization-group sense of the word) higher harmon-
ics have also been ignored. For large ho we have

normalization to macroscopic scales determines the film
thickness (h ). As discussed in Sec. II the layering transi-
tions occur when the global minimuin of V(h) becomes
nonunique. For the present potential, (3.19), such degen-
eracies only occur when

ho= —,
' (modl) . (3.22)

Thus, let us now focus on such half-integral values of
20

In the smooth phase of the roughening model (g =0)
the system orders into one of a countable infinity of
equivalent ordered states, each with (h ) an integer. An
infinitesimal g breaks this symmetry so that for ho a
half-integer the system will order in one of only two possi-
ble states, with (h ) =ho+ —,'. This ordering is equivalent
to that of an Ising model. As g is increased further, these
two global minima of V(h) become shallower relative to
the local maximum at h =50 which separates them.
Thus increasing g is similar to increasing the temperature
in a continuous-spin Ising model. For given values of PJ
and y in the g =0 ordered or smooth phase, the system
will clearly have an Ising critical point at some g, (PJ,y),
and for g~g, the system will be disordered, having
(h ) =ho, by symmetry. The schematic location of this
Ising critical surface g, (PJ,y) is illustrated in Fig. 4 for
both PJ & rr/2 and PJ & irl2.

Each layering-transition line in an adsorbate-substrate
system is represented in this model by a curve in (PJ,g,y)
space within the ordered phase. The layering critical

g=2g, y=(2 m/PJ)y, J=4—m. y /JA (3.21)

If g =0 this is just the roughening problem and the
renorrnalization-group equations are well known. ' ' '
The flow and phase diagram for g =0 is illustrated in Fig.
3. The roughening transition and the rough or unpinned
(low-PJ or high-temperature) phase are governed by the
fixed line g=y =0. The lowest-order renormalization-
group equations (3.21) are only accurate for sufficiently
small g and y. However, even if y is large at some micro-
scopic length scale, it will renormalize to small values
provided that PJ is near or below its value at the g =0
roughening transition and g is sufficiently small.

Near a substrate, the smooth part of our potential, pro-
portional to g in (3.19), will not vanish. When its
minimum, ho, is not a half-integer, the full potential
(3.19) will have a unique global minimum. Under renor-
malization this minimum will become more pronounced,
due to the increase of g, and its location will shift (unless
ho is an integer&. The location of this minimum after re-

FIG. 3. Renormalization-group fIow diagram for the
roughening problem (g =0). The thick solid line is the
roughening transition, separating the high-temperature rough
phase from the low-temperature pinned or smooth phase. The
rough phase is governed by the fixed line y =O,PJ & n/2, while
the fixed point y =O, PJ=vr/2 governs the roughening transi-
tion.
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FIG. 4. Schematic location of the manifold of Ising critical
points g, (PJ,V} for PJ &m/2 and PJ &m/2. The ordered phase
exists for g &g, (PJ,y}. For PJ &n /2 the Ising critical line ter-
minates at the roughening transition point R.

Tz —T of the original system.
The surface of Ising critical points g, (y,K) is an invari-

ant manifold under the flow (3.24). Thus, if one point on
a given trajectory (3.25) is critical, the entire trajectory
must be critical as well. All of the trajectories with

yp &
~
Kp

~

are asymptotic for gp+ Apl ~m/2 to the plane
y =K (see Fig. 3). Let us therefore locate the Ising critical
surface near y=Kf &0, where Kf is sufficiently small
that our simple expressions (3.25) for the trajectories are
still good approximations. The Ising critical surface may
be expanded about the point y =Xf as

g, (V,Kf ) =g, (y =Kf )+(y Kf)g—, (y =Kf )+ . (3.27)

Trajectories representing systems near roughening will
have Ao «

~
Kp ~,Kf,' let us concentrate on locating such

trajectories that are in the critical surface g, (y,K). The
initial point of the trajectory is

point is the intersection of this line with the surface of Is-
ing critical points, g, (PJ,V). The one-phase regions be-
tween the layering lines (see Fig. 1) are represented by po-
tentials (3.19) with hp not a half-integer. In the limit of
thick films the parameters PJ and y will take on values
close to those of the free interface (no substrate) and the
parameter g will be small by (3.20). For small g and y & 0
the surface of Ising critical points, g, (PJ,V), goes to the
roughening line (thick solid curve in Fig. 3; also see Fig.
4). To obtain some details of the universal behavior ex-
pected in this thick-film limit we inust now return to the
renormalization-group equations (3.21).

The roughening transition is governed by the fixed
point y =O,PJ =m/2. Let us expand (3.21) about this
point using the variables

(3.28)

and it reaches K(l)=Kf at I =lf, where

77 1
+O(Ap) .

f
(3.29)

277
gf ——go exp

Ap

2 2 [I+O(Ao)] .
/Kp

/
Kf

This trajectory is in the critical surface only if

gf gc(yf~Kf) i (3.31)

This "final" point of the trajectory is also specified by

yf —Kf +0 (2 p /Kf )

(3.30)

K =2—m/PJ, y =4v 2PV/A

and truncate at lowest order, giving

(3.23) or, in the limit of small gp,

2 o-—2m /in(go/g ), (3.32)

g =2g~ y =Ey, X=y (3 24) where

The renormalization-group trajectory of a system in the
thick-film limit (small g), with y and PJ near the g =0
roughening transition, will pass near this fixed point.
Thus, at some intermediate length scale, the system is
described by gp, yp, and Ep, where all three parameters
are small so we may use (3.24). When parametrized in the

usual fashion by I, where Ip ——0 and 1= 1, the
renormalization-group flow is (see, e.g., Ref. 10)

g(I) =goe",
y(l) =Apsec(go+ Apl ),
K(I)=Wotan(yo+WoI),

where

(3.25)

~o =y o Ko eo=—tan (Ko/~o) (3.26)

and yo& ~Kp
~

is assumed (this is the case of interest,
namely T & Tz ). The roughening-transition line is

y = —X ~ O,g =0, and flows into the fixed point
y =X=g =0. The parameter Ap measures the deviation
from the roughening line and is therefore proportional to

2 2
g =g, (y =Kf )exp +

0 f
(3.33)

4m.
Tg —T& lt Ap

(2+a) ln (n/n)
(3.35)

where n is a nonuniversal number determined by the
strength of the substrate potential. Note that this result
holds for any power-law interaction between the interface
and the substrate, with exponent a in (3.17).

This gives us the form of the Ising critical surface near
the roughening-transition line.

Now we must translate this back into the original
language of multilayer films to see what we have learned
about the layering critical temperatures T«. The number
of layers is n =ho, and in the thick-film limit we then
have

(3.34)

by (3.20). The deviation from the roughening temperature
is proportional to Ap, so that
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IV. DISCUSSION

As mentioned in the Entroduction, the limiting func-
tional form of Tlt —T«as given by (3.35) is not some-
thing that one can readily check experimentally. To veri-
fy it requires studying a wide range of 1nn, which means
such extremely thick films that it does not appear possi-
ble. However, the above renormalization-group treatment
makes the simpler, but nontrivial, prediction that for large

n, T, „&T,„+~~ T~. Such behavior has indeed been ob-
served for one system, namely He on graphite, and also
in a lattice-gas model. Nightingale, Saam, and Schick '

have independently arrived at the result (3.35).
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